Long-Term Pavement Performance (LTPP)

Ohio SPS-1 and -2 Dynamic Load Response (DLR) Data Processing

Draft Report

Prepared for

Federal Highway Administration Turner-Fairbank Highway Research Center

LTPP Program HRDI-30

6300 Georgetown Pike

McLean, VA 22101

Prepared by

Mahesh Agurla and Sean Lin

The DLR Study Team

Engineering & Software Consultants, Inc.

14123 Robert Paris Court

Chantilly, VA 20151

October 1, 2012

Table of Contents

E	XECUTIVE SUMMARY	1
1.	BACKGROUND	2
2.	PROBLEM STATEMENT	8
3.	OBJECTIVE	14
4.	DLR DATA	14
	4.1 Ohio SPS-1 Data	15
	4.2 Ohio SPS-2 Data	16
5.	METHDOLOGY	18
	5.1 DLR DATA CALIBRATION	18
	5.1.1 Ohio SPS-1 Data Calibration	18
	5.1.2 Ohio SPS-2 Data Calibration	19
	5.2 GAIN ADJUSTMENT FACTOR	19
	5.2.1 Ohio SPS-1 Gain Adjustment Factor	20
	5.2.2 Ohio SPS-2 Gain Adjustment Factor	21
	5.3 Smoothing Raw Traces	21
	5.3.1 Smoothing Ohio SPS-1 Raw Traces	21
	5.3.2 Smoothing Ohio SPS-2 Raw Traces	22
	5.4 EXTRACTING TRACE PEAKS AND VALLEYS AS WELL AS THEIR CORRESPONDING TIME STAN	⁄IPS
		25

	5.4.1	Extraction of Ohio SPS-1 Trace Peaks and Valleys	25
	5.4.2	Extraction of Ohio SPS-2 Trace Peaks and Valleys	
	5.5 QU	ALITY CONTROL (QC) ANALYSIS	
	5.5.1	Ohio SPS-1 QC Analysis	
	5.5.2	Ohio SPS-2 QC Analysis	
	5.6 Cof	RRECTING SENSOR LOCATIONS AND WHEELPATH OFFSETS	
6.	QC R	ESULTS	32
(6.1 Оні	IO SPS-1 DATA QC RESULTS	
	6.1.1	Smoothed Trace Processing	
	6.1.2	Raw (unsmoothed) Trace Processing	
	6.2 Оні	IO SPS-2 DATA QC RESULTS	45
7.	DLR '	TRACE ISSUES	47
,	7.1 Оні	O SPS-1 TRACE ISSUES	47
	7.1.1	LVDT Trace Pattern Issue	47
	7.1.2	Strain Gauge Trace Pattern Issue	
,	7.2 Оні	O SPS-2 TRACE ISSUES	51
8.	UPDA	ATES TO THE OHIO SPS-1 AND 2 DLR TABLES	56
9.	SAMI	PLE RESULTS	61
	9.1 Оні	O SPS-1 DATA SAMPLE PLOTS	61
9	9.2 Оні	O SPS-2 DATA SAMPLE PLOTS	65
10.	CON	CLUSIONS	68

10.1	Ohio SPS-1 Data Issues
10.2	Ohio SPS-2 Data Issues71
10.3	Ohio SPS-1 and 2 Data Issues
ACKNO	OWLEDGEMENT74
REFER	ENCE
APPEN	DIX A: SENSOR LAYOUT IN THE OHIO SPS-1 DLR SECTIONS
APPEN	DIX B: SENSOR STATUS OF THE 23 OHIO SPS-1 DLR TEST JOBS81
APPEN	DIX C: SENSOR LAYOUT IN THE OHIO SPS-2 DLR SECTIONS104
APPEN	DIX D: SENSOR STATUS OF THE 24 OHIO SPS-2 DLR TEST JOBS130

List of Figures

Figure 1: SHRP Test Pavement Layout (Courtesy of Cimini (1))
Figure 2: Ohio SPS-1 Section 390102 Sensor Layout
Figure 3: Ohio SPS-2 Section 390212 Sensor Layout7
Figure 4: Comparison of Strain Gauge Dyn12 at 2000.579 Hz
Figure 5: Sketch of Strain Gauge Dyn12 Locations and Wheelpath Offsets: Ohio Raw Data vs. SDR
22.0 on Section 390102 southbound lane
Figure 6: Comparison of strain gauge Dyn5 trace using the Ohio SPS-2 DLR raw data vs. SDR 22.0
for Ohio Section 390201 Test Job J1A Run 2 conducted on August 12, 199613
Figure 7: Comparison of a Normalized Strain Gauge Raw Trace in Red vs. an MM-smoothed Trace
in Blue vs. a Bandpass Filter-smoothed Trace in Green
Figure 8: A Magnified View of the Three Trace Peaks in Figure 7, Showing the BP-smoothed Trace
in Green Appears to Approximate the Raw Trace Peaks in Red Better Than the MM-smoothed race
in Blue
Figure 9: Extracted Trace Peaks and Valleys for Ohio SPS-1 Data
Figure 10: Extracted Trace Peaks and Valleys for Ohio SPS-2 Data
Figure 11: Ohio SPS-1 Transverse Strain Gauge Trace Categorization
Figure 12: Ohio SPS-1 LVDT Trace Categorization
Figure 13: Ohio SPS-2 Longitudinal Strain Gauge Trace Categorization
Figure 14: Ohio SPS-2 LVDT Trace Categorization
Figure 15: Graphical Representation of QC Results by Sensor Type for Section 390102 J2F Test
Job

Figure 16: Transverse LVDT3 Trace Exhibiting a Longitudinal Strain Gauge Trace Pattern That
Assumes Valleys
Figure 17: Unresponsive Strain Gauge Trace
Figure 18: Longitudinal Strain Gauge Sensor Dyn17 Trace Exhibiting an Upside Down Transverse
Strain Gauge Trace Pattern That Assumes No Valleys
Figure 19: Comparison of strain gauge Dyn12 traces using the Ohio SPS-1 DLR raw data, SDR
22.0 data, and the newly created Ohio SPS-1 and 2 DLR database (temporarily designated as SDR
27.0) for Ohio Section 390102 test job J2C Run 1 conducted on August 5, 1996
Figure 20: Comparison of LVDT1 traces using the Ohio SPS-1 DLR raw data, SDR 22.0 data, and
the newly created Ohio SPS-1 and 2 DLR database (temporarily designated as SDR 27.0) for Ohio
Section 390102 test job J2C Run 1 conducted on August 5, 199663
Figure 21: Comparison of pressure cell PC1 traces using the Ohio SPS-1 DLR raw data, SDR 22.0
data, and the newly created Ohio SPS-1 and 2 DLR database (temporarily designated as SDR 27.0)
for Ohio Section 390102 test job J2C Run 1 conducted on August 5, 199664
Figure 22: Comparison of strain gauge Dyn5 traces using the Ohio SPS-2 DLR raw data, SDR 22.0
data, and the newly created Ohio SPS-1 and 2 DLR database (temporarily designated as SDR 27.0)
for Ohio Section 390201 test job J1A Run 2 conducted on August 12, 1996
Figure 23: Comparison of LVDT1 traces using the Ohio SPS-2 DLR raw data, SDR 22.0 data, and
the newly created Ohio SPS-1 and 2 DLR database (temporarily designated as SDR 27.0) for Ohio
Section 390201 test job J1A Run 2 conducted on August 12, 1996
Figure 24: Section 390102 Sensor Layout
Figure 25: Section 390104 Sensor Layout
Figure 26: Section 390108 Sensor Layout

Figure 27: Section 390110 Sensor Layout	80
Figure 28: Graphical Representation of QC Results by Sensor Type for Section 390102 J2A Test	C
Job	81
Figure 29: Graphical Representation of QC Results by Sensor Type for Section 390102 J2C Test	-
Job	82
Figure 30: Graphical Representation of QC Results by Sensor Type for Section 390102 J2D Test	Ċ
Job	83
Figure 31: Graphical Representation of QC Results by Sensor Type for Section 390102 J2E Test	
Job	84
Figure 32: Graphical Representation of QC Results by Sensor Type for Section 390102 J2F Test	
Job	85
Figure 33: Graphical Representation of QC Results by Sensor Type for Section 390102 J2G Test	Ċ
Job	86
Figure 34: Graphical Representation of QC Results by Sensor Type for Section 390104 J4A Test	Ļ
Job	87
Figure 35: Graphical Representation of QC Results by Sensor Type for Section 390104 J4B Test	
Job	88
Figure 36: Graphical Representation of QC Results by Sensor Type for Section 390104 J4CTest	Job
	89
Figure 37: Graphical Representation of QC Results by Sensor Type for Section 390104 J4D Test	ī
Job	90
Figure 38: Graphical Representation of QC Results by Sensor Type for Section 390104 J4E Test	
Job	91

Figure 39: Graphical Representation of QC Results by Sensor Type for Section 390104 J4F Test
Job
Figure 40: Graphical Representation of QC Results by Sensor Type for Section 390104 J4G Test
Job
Figure 41: Graphical Representation of QC Results by Sensor Type for Section 390108 J8A Test
Job94
Figure 42: Graphical Representation of QC Results by Sensor Type for Section 390108 J8D Test
Job95
Figure 43: Graphical Representation of QC Results by Sensor Type for Section 390108 J8E Test
Job
Figure 44: Graphical Representation of QC Results by Sensor Type for SPS-1 J8G Test Job97
Figure 45: Graphical Representation of QC Results by Sensor Type for Section 390110 J10A Test
Job
Figure 46: Graphical Representation of QC Results by Sensor Type for Section 390110 J10C Test
Job
Figure 47: Graphical Representation of QC Results by Sensor Type for Section 390110 J10D Test
Job
Figure 48: Graphical Representation of QC Results by Sensor Type for Section 390110 J10E Test
Job101
Figure 49: Graphical Representation of QC Results by Sensor Type for Section 390110 J10F Test
Job102
Figure 50: Graphical Representation of QC Results by Sensor Type for Section 390110 J10G Test
Job

Figure 51: Graphical Representation of QC Results by Sensor Type for Section 390201 J1A Test
Job
Figure 52: Graphical Representation of QC Results by Sensor Type for Section 390201 J1B Test
Job
Figure 53: Graphical Representation of QC Results by Sensor Type for Section 390201 J1C Test
Job107
Figure 54: Graphical Representation of QC Results by Sensor Type for Section 390205 J5A Test
Job108
Figure 55: Graphical Representation of QC Results by Sensor Type for Section 390205 J5B Test
Job
Figure 56: Graphical Representation of QC Results by Sensor Type for Section 390205 J5C Test
Job
Figure 57: Graphical Representation of QC Results by Sensor Type for Section 390205 J5J1M Test
Job
Figure 58: Graphical Representation of QC Results by Sensor Type for Section 390205 J5J1N Test
Job112
Figure 59: Graphical Representation of QC Results by Sensor Type for Section 390205 J5J1O Test
Job
Figure 60: Graphical Representation of QC Results by Sensor Type for Section 390205 J5J1P Test
Job
Figure 61: Graphical Representation of QC Results by Sensor Type for Section 390208 J8A Test
Job116

Figure 62: Graphical Representation of QC Results by Sensor Type for Section 390208 J8B Test
Job117
Figure 63: Graphical Representation of QC Results by Sensor Type for Section 390208 J8C Test
Job
Figure 64: Graphical Representation of QC Results by Sensor Type for Section 390208 J8S3M Test
Job119
Figure 65: Graphical Representation of QC Results by Sensor Type for Section 390208 J8S3N Test
Job
Figure 66: Graphical Representation of QC Results by Sensor Type for Section 390208 J8S3O Test
Job
Figure 67: Graphical Representation of QC Results by Sensor Type for Section 390208 J8S3P Test
Job
Figure 68: Graphical Representation of QC Results by Sensor Type for Section 390212 J12A Test
Job123
Figure 69: Graphical Representation of QC Results by Sensor Type for Section 390212 J12B Test
Job
Figure 70: Graphical Representation of QC Results by Sensor Type for Section 390212 J12C Test
Job
Figure 71: Graphical Representation of QC Results by Sensor Type for Section 390212 J12J10M
Test Job
Figure 72: Graphical Representation of QC Results by Sensor Type for Section 390212 J12J10N
Test Job

igure 73: Graphical Representation of QC Results by Sensor Type for Section 390212 J12J100	
est Job12	3
igure 74: Graphical Representation of QC Results by Sensor Type for Section 390212 J12J10P	
est Job)

List of Tables

Table 1: Comparison of TCS (Ohio Raw Data) and SDR 22.0 Strain Gauge Dyn12 Data	9
Table 2: Inconsistent Strain Gauge Locations between the Ohio Raw Data & SDR 22.0 Are in B	Bold
Black	12
Table 3: Ohio SPS-1 DLR Raw Trace Count	16
Table 4: Ohio SPS-2 DLR Raw Trace Count	16
Table 5: Summarized QC Results for Smoothed Traces in Ohio SPS-1 J2F Test Job	34
Table 6: Peaks and Valleys Extracted For Smoothed Traces in J2F Test Job	38
Table 7: Summarized QC Results for Raw Traces in J2F Test Job	39
Table 8: Peaks and Valleys Extracted for Raw Traces in J2F Test Job	39
Table 9: Comparing First Peak of Smooth and Raw Peak Values with Ohio Peak Value	
(truckpeak.txt)	41
Table 10: Pressure Cell Sensor Begin offset, End offset, and Range values	41
Table 11: Summarized QC Results for Smoothed Traces	42
Table 12: Summarized QC Results for Raw Traces	43
Table 13: Summarized QC Results in Percentage for Ohio SPS-1 Smoothed Traces	44
Table 14: Summarized QC Results in Percentage for Ohio SPS-1 Raw Traces	44
Table 15: Comparing First Peak of Smooth Values with Ohio Peak Value (truckpeak.txt)	45
Table 16: Summarized QC Results for Ohio SPS-2 Smoothed Traces	46
Table 17: Summarized QC Results in Percentage for Ohio SPS-2 Smoothed Traces	47
Table 18: Sample Ohio SPS-1 Truck Peak Data for J2F Test Job (TruckPeak.txt)	51
Table 19: Ohio SPS-2 Inconsistency between Test Section Visits and Subseries	53

Table 20: Strain Gauge Sensors that have Time History Data for Each Test Job
Table 21: Sample Ohio SPS-2 Truck Peak Data for J1A Test Job (TruckPeak.txt)
Table 22: Raw Strain Gauge (DYN8) Values of J5J1P Test Job
Table 23: The nine records in the DLR_TEST_MATRIX table in SDR 22.0 that did not have any
source data to update with and thus, were removed
Table 24: TruckPass.txt does not contain any data for Section 390110 (J10E Run 1)60
Table 25: Sample data from EmbeddedSensor.txt 70
Table 26: Summarized QC Results for Smoothed Traces in Section 390201 J1A Test Job130
Table 27: Summarized QC Results for Smoothed Traces in Section 390201 J1B Test Job131
Table 28: Summarized QC Results for Smoothed Traces in Section 390201 J1C Test Job
Table 29: Summarized QC Results for Smoothed Traces in Section 390205 J5A Test Job
Table 30: Summarized QC Results for Smoothed Traces in Section 390205 J5B Test Job134
Table 31: Summarized QC Results for Smoothed Traces in Section 390205 J5C Test Job
Table 32: Summarized QC Results for Smoothed Traces in Section 390205 J5J1M Test Job 136
Table 33: Summarized QC Results for Smoothed Traces in Section 390205 J5J1N Test Job137
Table 34: Summarized QC Results for Smoothed Traces in Section 390205 J5J1O Test Job138
Table 35: Summarized QC Results for Smoothed Traces in Section 390205 J5J1P Test Job
Table 36: Summarized QC Results for Smoothed Traces in Section 390208 J8A Test Job140
Table 37: Summarized QC Results for Smoothed Traces in Section 390208 J8B Test Job141
Table 38: Summarized QC Results for Smoothed Traces in Section 390208 J8C Test Job142
Table 39: Summarized QC Results for Smoothed Traces in Section 390208 J8S3M Test Job143
Table 40: Summarized QC Results for Smoothed Traces in Section 390208 J8S3N Test Job144
Table 41: Summarized QC Results for Smoothed Traces in Section 390208 J8S3O Test Job 145

EXECUTIVE SUMMARY

The DLR Study Team completed re-interpreting 4,290 Ohio SPS-1 DLR raw traces as in Table 3 and 9,240 Ohio SPS-2 DLR raw traces as in Table 4, correcting the data issues identified by DAOFRs Ecompex-75 to -77 for SDR 22.0, including trace peak time lag shift, incorrect sensor locations and wheelpath offsets. Using the methodology in Section 5, the DLR Study Team calibrated and smoothed the Ohio SPS-1 and 2 raw traces before categorizing those traces into three categories: "Good", "Maybe", and "Not Good" according to the trace categorization criteria in Section 5.5.1. For the Ohio SPS-1 data, the trace categorization QC results for smoothed and raw traces are listed in Table 13 and 14, respectively; about 24% of strain gauge traces, 55% of LVDT traces, and 99% of pressure cell traces were concluded to be "Good." For the Ohio SPS-2 data, due to significant noise in the raw traces, only smoothed traces were categorized and the QC result is listed in Table 17; about 61% of strain gauge traces and 15% of LVDT traces were concluded to be "Good." Above all, only "Good" traces were used for further extraction of trace peaks and valleys for the upcoming SDR 27. Moreover, the sensor locations and the corresponding wheelpath offsets were corrected using Section 5.6 approach. In all, the newly created DLR data in SDR 27.0 appear to match the DLR raw traces as demonstrated by the charts in Section 9.

To facilitate future DLR data users in identifying the layout and status of each sensor in different test runs, the necessary information is listed as follows:

- Appendix A: Sensor layout in the Ohio SPS-1 DLR sections.
- Appendix B: Sensor status of the 23 Ohio SPS-1 DLR test jobs.
- Appendix C: Sensor layout in the Ohio SPS-2 DLR sections.
- Appendix D: Sensor status of the 24 Ohio SPS-2 DLR test jobs.

1. BACKGROUND

The Long-Term Pavement Performance (LTPP) Program conducted an internal review of the dynamic load response (DLR) data collected in 1996-97 from Route US-23 in Delaware County, north of Columbus, Ohio. Figure 1 shows the layout of Strategic Highway Research Program (SHRP) test pavement for Specific Pavement Studies (SPS) (1). The test sections were constructed by Ohio Department of Transportation (ODOT), which included forty test sections along a 3.5 mile length on US-23. The test sections encompassed the SPS-1, -2, -8 and -9 experiments. This study focused on the DLR data collected on Ohio SPS-1 (AC) and SPS-2 (PCC) test sections.

Figure 1: SHRP Test Pavement Layout (Courtesy of Cimini (1))

Figure 2: Ohio SPS-1 Section 390102 Sensor Layout

Figure 2 is a sample test section layout drawing, which shows the instrumentation of strain gauge, linear variable differential transformer (LVDT), and pressure cell sensors in plan and profile view, and pavement layer structure in profile view for test section 390102. Sensors were deployed on the defined right wheelpath which was 30 in. from the right pavement edge. A total of twelve sensors were deployed on test section 390102, which include four LVDTs (LVDT1 to LVDT4), two

pressure cells (PC1 and PC2) and six strain gauges (Dyn7 to Dyn12). On the other hand, test sections 390104, 390108, and 390110 have a total of nine strain gauge sensors (Dyn10 to Dyn18), LVDTs and pressure cells remain the same as 390102 test section. It can be noticed in the profile view of Figure 2 that Dyn7, Dyn9, and Dyn11 were buried in the transverse direction whereas Dyn8, Dyn10, and Dyn12 were buried in the longitudinal direction. Trace pattern for a strain gauge sensor is contingent on the direction in which the sensor was laid. If a strain gauge was buried in the transverse direction, then the sensor would only display peaks (compressive strains) but no valleys (tensile strains) in a raw trace. In contrast, if a strain gauge was buried in the longitudinal direction, then it would display both peaks and valleys in a raw trace.

In terms of sensor locations, the metrics are listed as follows:

- For the Ohio SPS-1 (AC) test sections:
 - X_AC: Distance in mm along the direction of traffic as referenced from the start of the southernmost 1st LVDT gauge in the section.
 - Y_AC: Distance in mm from the shoulder joint as referenced from the start of the southernmost 1st LVDT gauge in the section.
 - Z: Distance in mm from the pavement surface to measurement point of sensor. Sensor layout of the Ohio SPS-1 test sections 390102, 390104, 390108, and 390110 can be seen in Appendix A.
- For the Ohio SPS-2 (PCC) test sections:
 - X: Distance in mm along the direction of traffic as referenced from the entry slab corner.
 - Y: Distance in mm from the shoulder joint as referenced from the entry slab corner.

Z: Distance in mm from the pavement surface to measurement point of sensor. Sensor layout of the Ohio SPS-2 test sections 390201, 390205, 390208, and 390212 can be seen in Appendix C.

Figure 3 shows instrumentation of Ohio SPS-2 (PCC) sensors which include strain gauge (Dynatest), LVDT, pressure cell, rossettes PMR-60, KM-100B gauge, Carlson A-8 gauge, and VCE-1200 VW gauge in plan and profile view, and pavement layer structure in profile view for 390212 test section. However, the raw DLR traces for Ohio SPS-2 test jobs show time history data only for strain gauge and LVDT sensors; other sensors do not have recorded time history data. A total of sixteen LVDTs (LVDT1 to LVDT16) and eight strain gauges (Dyn1 to Dyn8) were deployed on Ohio SPS-2 test sections. Test sections 390201, 390205, 390208 have similar sensor instrumentation to that of test section 390212 as shown in figure 3.

PROFILE VIEW (section A-A along shoulder edge) (NOT TO SCALE)

PROFILE VIEW (section B-B) (NOT TO SCALE) Figure 3: Ohio SPS-2 Section 390212 Sensor Layout

Since the completion of the Ohio SHRP test site in 1996, nine series of controlled vehicle tests have been run to monitor dynamic response under known vehicle parameters and environmental conditions. For the Ohio SPS-1 test sections, a Series II test truck with a single or tandem rear axle was used in different test jobs (i.e., one rear axle configuration with load parameters was used in each test job). For Ohio SPS-2 (PCC) test sections, Series II and Series IV test trucks (each of which had a single or tandem rear axle configuration) were used in different test runs (i.e., within one test job, one test run used a single rear axle test truck while the other test run used a tandem rear axle test truck).

Detailed sensor layout in the Ohio SPS-2 DLR sections is listed in Appendix C while sensor status of each of the 24 test Jobs is listed in Appendix D.

2. PROBLEM STATEMENT

Several DLR data issues were identified by DAOFRs (Data analysis/operations feedback report) Ecompex-75, -76 and -77 ^(3, 4, 5) and the TSSC technical memorandum ⁽⁶⁾: *Investigation of Ohio DLR data in LTPP Database*, which indicated that the Ohio SPS-1 DLR data in LTPP Standard Data Release (SDR) 22.0 has inconsistencies in strain gauge trace peak and its time stamp, sensor location, and wheelpath offset when compared to the Ohio SPS-1 DLR raw data. Similar inconsistencies were found in Ohio SPS-2 DLR data in SDR 22.0.

DAOFRs Ecompex-75 and -76 and the TSSC technical memorandum indicated that the Ohio SPS-1 DLR data in SDR 22.0 has time lag shifts in pavement deflection peak strains compared to the Ohio DLR raw data (i.e. the Test Control Software (TCS) data in ASCII format). A time lag shift was defined as the difference in time stamp between two peak strains.

Figure 4: Comparison of Strain Gauge Dyn12 at 2000.579 Hz for Section 390102: Test Job J2C Run 1 from the DLR raw traces vs. SDR 22.0

Figure 4 and Table 1 show the comparison of strain gauge Dyn12 peaks for a tandem-axle truck from both Ohio SPS-1 DLR data in SDR 22.0 and Ohio raw DLR data for test section 390102. It can be noticed from Figure 4 that TCS Dyn12 trace has three peaks. The first peak on the left was generated by the front axle, followed by next two peaks generated by the two rear axles. On the other and, Dyn12 trace in SDR 22.0 has only two rear-axles peaks, and misses the front-axle peak. When comparing strain gauge Dyn12 peak strain time stamps between the TCS DLR raw data and SDR 22.0 for Ohio section 390102 in J2C test job for Run1, a time lag shift factor of 1.92 (i.e., (4.12-3.89)/(2.06-1.95) = 1.92)) was found.

Table 1: Comparison of TCS (Ohio Raw Data) and SDR 22.0 Strain Gauge Dyn12 Data for Ohio section 390102

Test			TCS	SDR22	Dyn12	Dyn12 TCS Raw		SDR 22 Raw		TCS raw vs. SDR 22 raw
Norma	Run	Test Date	Truck	Truck	Peak	Dyn12	Time	Dyn12	Time	Time Log Chift Feator
Iname			ID	ID	No.	(microstrain	(s)	(microstrain)	(s)	Time Lag Shiit Factor
J2C	1	8/5/1996	2B	2	1	1,210.00	1.94	1,245.20	3.89	1.92
J2C	1	8/5/1996	2B	2	2	1,180.00	2.06	1,232.70	4.12	
J2C	2	8/5/1996	2B	2	1	1,180.00	1.83	1,282.70	3.81	N/A
J2C	2	8/5/1996	2B	2	2	1,300.00	1.94	1,315.20	N/A	
J2E	2	8/6/1996	2C	1	1	1,270.00	1.43	1,282.70	2.85	2.01
J2E	2	8/6/1996	2C	1	2	1,540.00	1.70	1,537.70	3.39	
J2E	3	8/6/1996	2C	1	1	999.00	0.87	1,015.20	1.74	1.97
J2E	3	8/6/1996	2C	1	2	1,440.00	1.15	1,455.20	2.29	
J2E	10	8/6/1996	2C	1	1	472.00	1.24	480.10	2.49	2.01
J2E	10	8/6/1996	2C	1	2	1,650.00	1.40	1,650.30	2.81	
J2G	1	8/9/1996	2D	1	1	736.00	1.13	740.10	2.25	2
J2G	1	8/9/1996	2D	1	2	1,110.00	1.41	1,117.70	2.81	

Note: SDR 22.0 Truck ID 1 refers to a single rear axle truck and Truck ID 2 refers to a tandem rear axle truck.

The other two inconsistencies, one with strain gauge location and the other with wheelpath offset between the Ohio SPS-1 raw DLR data and DLR data in SDR 22.0, were reported in DAOFR Ecompex-77 ⁽⁵⁾. Figure 5 below shows a sample sketch of strain gauge Dyn12 locations using Table 2 data. The strain gauge location of Dyn12 in the Ohio raw data was 16 ft. from the end station of Section 390102, whereas Dyn12 in SDR 22.0 was 8 ft. from the end station of the section.

Inconsistent wheelpath offsets between the Ohio raw DLR data and DLR data in SDR 22.0 are shown in Figure 5 and listed in Table 2. The Ohio wheelpath offset data were measured from the defined wheelpath, which was 30 in. from the right pavement edge, whereas SDR 22.0 wheelpath offset data were measured from the right pavement edge. However, the example in Figure 5 shows the Ohio wheelpath offset data as 23 in., whereas SDR 22.0 wheelpath offset data as 21 in., which means the total of the two offsets is 44 in., inconsistent with 30 in., the width of the defined wheelpath.

Figure 5: Sketch of Strain Gauge Dyn12 Locations and Wheelpath Offsets: Ohio Raw Data vs. SDR 22.0 on Section 390102 southbound lane

	SDR	Ohio raw data (EmbeddedSensor.txt)						
Section_ID	Test_Name	TAG_ID	X_AC(mm/in.)	Y_AC(mm/in.)	Z(mm/in.)	X(in.)	Y(in.)	Z(in.)
390102	j2b	Dynl	5486/216	762/30	0	72	30	2
390102	j2b	Dyn2	4877/192	762/30	0	96	30	2
390102	j2b	Dyn3	4267/168	762/30	0	120	30	2
390102	j2b	Dyn4	3658/144	762/30	0	144	30	2
390102	j2b	Dyn5	3048/120	762/30	0	168	30	2
390102	j2b	Dyn6	2438/96	762/30	0	192	30	2
390102	j2b	Dyn7	2438/96	762/30	0	72	30	4
390102	j2b	Dyn8	2438/96	762/30	0	96	30	4
390102	j2b	Dyn9	2438/96	762/30	0	120	30	4
390102	j2b	Dyn10	2438/96	762/30	0	144	30	4
390102	j2b	Dynll	2438/96	762/30	0	168	30	4
*390102	j2b	Dyn12	2438/96	762/30	0	192	30	4
390102	j2b	Dyn13	2438/96	1829/72	0	72	72	4
390102	j2c	Dyn12	2438/96	762/30	0	192	30	4
390102	j2c	Dyn13	2438/96	1829/72	0	72	72	4
390102	j2e	Dyn12	2438/96	762/30	0	192	30	4
390102	j2e	Dyn13	2438/96	1829/72	0	72	72	4
390102	j2g	Dyn12	2438/96	762/30	0	192	30	4
390102	j2g	Dyn13	2438/96	1829/72	0	72	72	4
390104	j4b	Dynl	5486/216	762/30	0	72	30	2
390104	j4b	Dyn2	4877/192	762/30	0	96	30	2
390104	j4b	Dyn10	2438/96	762/30	0	72	30	7
390104	j4b	Dynll	2438/96	762/30	0	96	30	7
390104	j4b	Dyn12	2438/96	762/30	0	120	30	7
390104	j4b	Dyn13	2438/96	762/30	0	144	30	7
390104	j4b	Dyn14	2438/96	762/30	0	168	30	7
390104	j4b	Dyn15	2438/96	762/30	0	192	30	7

Table 2: Inconsistent Strain Gauge Locations between the Ohio Raw Data & SDR 22.0 Are in Bold Black

*: Plotted in Figure 5

Note:

SDR 22: table DLR_STRAIN_CONFIG_AC:

X_AC: Distance along the direction of traffic as referenced from the start of the 1st LVDT gauge in the section. Y_AC: Distance from the shoulder joint as referenced from the start of the 1st LVDT gauge in the section.

Z: Distance from the pavement surface to measurement point of sensor.

Ohio raw data (EmbeddedSensor table in DataFormat.pdf):

X float [inch] x coordinate measured from southernmost joint of first instrumented slab in PCC

sections, or from southernmost deep LVDT in AC sections; increases to the north

Y float [inch] y coordinate measured from right edge of pavement; increases to the left

Z floats [inch] z coordinate measured from surface of pavement; increases downward; this makes a left-handed coordinate system in the northbound lane

Similar to DAOFRs Ecompex-75, -76, and -77, the Ohio SPS-2 (PCC) DLR data in SDR 22.0 has time lag shifts in pavement deflection peak strains compared to Ohio raw DLR data and also inconsistent sensor location and wheelpath offset values. Figure 6 below shows the comparison of strain gauge Dyn5 peaks for a tandem-axle truck from both Ohio SPS-2 DLR data in SDR 22.0 and Ohio SPS-2 raw DLR data for section 390201.

Figure 6: Comparison of strain gauge Dyn5 trace using the Ohio SPS-2 DLR raw data vs. SDR 22.0 for Ohio Section 390201 Test Job J1A Run 2 conducted on August 12, 1996

3. OBJECTIVE

The primary objective of this study is to address the Ohio SPS-1 (AC) and SPS-2 (PCC) DLR data issues in SDR 22.0 as identified by DAOFRs ECOMPEX-75 to -77^(3, 4, 5) and the TSSC technical memorandum ⁽⁶⁾ by re-interpreting the Ohio SPS-1 and 2 DLR raw traces. The processing of DLR raw data involves the following steps: 1) to smooth the raw traces; 2) to perform quality control (QC) analysis for strain gauge, LVDT, and pressure cell sensors into three categories: "Good", "Maybe", and "No Good" traces and to graphically represent the results obtained from QC analysis in the profile view of a test section's sensor layout; 3) to extract trace peaks and valleys; 4) to correct sensor locations and wheelpath offsets; 5) finally, to populate the DLR tables in the next SDR using the processed DLR data from this study.

4. DLR DATA

It is very important to define the DLR data used in this study. Ohio University (OU) submitted two data sets: the Ohio raw DLR data and the OU-processed DLR data. First, the Ohio raw DLR data contains the raw traces from each test job collected on Ohio SPS-1 and SPS-2 DLR test sections. Secondly, the OU-processed DLR data has text files pertaining to truck pass, truck run, truck peak, axle spacing, embedded senor, truck geometry, surface temperature, etc. for Ohio SPS-1, 2, 8, and 9 test sections.

In this study, the DLR raw traces collected by OPTIM Corporation's MEGADAC SERIES 3100 data acquisition system from the strain gauge, LVDT, and pressure cell sensors for SPS-1 and SPS-2 test sections were first converted to ASCII data format using the Test Control Software (TCS). To maintain consistency and clarity throughout this report, the author uses the word "DLR

data" instead of ASCII formatted Ohio raw DLR data and "Ohio data" for OU-processed DLR data (text files).

4.1 Ohio SPS-1 Data

In the test job summary listed in Table 3, the Ohio SPS-1 DLR data contains a total of 34 test jobs, of which test jobs J2B, J8B, J8C, and J8F were empty, and test Jobs J6J4K, J6J4L, J8J5K, J8J5L, J10BX, J10J9K, J10J9L did not have information pertaining to sensor locations as in EmbeddedSensor.txt, TruckPass.txt, and TruckPeak.txt in the Ohio SPS-1 data. As a result, these eleven test jobs were excluded for processing due to incomplete information. A total of 23 test jobs were used for the Ohio SPS-1 DLR data processing. Each test job has test files or runs in ASCII format. For example, the test job J2A has a total of 16 test runs, with test run names AJ2A.001 to AJ2A.016. Each test run contains raw traces collected by strain gauge, LVDT, and pressure cell sensors. The naming convention for a test run like AJ2A.001 is: the second and the third alphabets represent the test job (e.g., J2 with 2 referring to Section 390102); the following alphabet represents visits to the site in alphabetical order (e.g., A for the first visit, B for the second visit, C for the third visit, etc., to the job site: J2), and the numeric extension represents the test run number for that particular visit to that particular site. Table 3 shows the test job names, test run count, sensors count (number of sensors deployed for a particular sensor type for a particular test section) and sensors trace count.

Test Job	Test Section	Test Date	# Test Runs	# Strain Gauge (Count)	# LVDT (Count)	# PC (Count)	# Strain Gauge Traces (Sum)	# LVDT Traces (Sum)	# PC Traces (Sum)
J2A	390102	8/2/1996	16	6	4	2	96	64	32
J2C	390102	8/5/1996	10	6	4	2	60	40	20
J2D	390102	8/6/1996	16	6	4	2	96	64	32
J2E	390102	8/6/1996	13	6	4	2	78	52	26
J2F	390102	8/7/1996	8	6	4	2	48	32	16
J2G	390102	8/9/1996	12	6	4	2	72	48	24
J4A	390104	8/2/1996	16	9	4	2	144	64	32
J4B	390104	8/3/1996	13	9	4	2	117	52	26
J4C	390104	8/5/1996	10	9	4	2	90	40	20
J4D	390104	8/6/1996	15	9	4	2	135	60	30
J4E	390104	8/6/1996	13	9	4	2	117	52	26
J4F	390104	8/7/1996	12	9	4	2	108	48	24
J4G	390104	8/9/1996	12	9	4	2	108	48	24
J8A	390108	8/2/1996	16	9	4	2	144	64	32
J8D	390108	8/6/1996	15	9	4	2	135	60	30
J8E	390108	8/6/1996	13	9	4	2	117	52	26
J8G	390108	8/9/1996	12	9	4	2	108	48	24
J10A	390110	8/2/1996	16	9	4	2	144	64	32
J10C	390110	8/5/1996	10	9	4	2	90	40	20
J10D	390110	8/6/1996	16	9	4	2	144	64	32
J10E	390110	8/6/1996	12	9	4	2	108	48	24
J10F	390110	8/7/1996	13	9	4	2	117	52	26
J10G	390110	8/9/1996	12	9	4	2	108	48	24
						-	2,484	1,204	602
			_					4,290	

Table 3: Ohio SPS-1 DLR Raw Trace Count

4.2 Ohio SPS-2 Data

Ohio SPS-2 DLR data contains a total of 24 test jobs and all of the test jobs were used for data processing. Table 4 shows the test job names, test run count, sensors count (number of sensors deployed for a particular sensor type for a particular test section) and sensors trace count. It can be observed from Table 4 that Ohio SPS-2 DLR data do not have any pressure cell sensors.

Table 4: Ohio SPS-2 DLR Raw Trace Count

Test Job	Test Section	Test Date	# Test Runs	# Strain Gauge (Count)	# LVDT (Count)	# Strain Guage Traces (Sum)	# LVDT Traces (Sum)
J1A	390201	8/12/1996	28	4	16	112	448
J1B	390201	8/13/1996	24	4	16	96	384
J1C	390201	8/14/1996	14	4	16	56	224
J5A	390205	8/12/1996	29	4	16	116	464
J5B	390205	8/13/1996	25	4	16	100	400
J5C	390205	8/14/1996	14	4	16	56	224
J8A	390208	8/12/1996	26	4	16	104	416
J8B	390208	8/13/1996	26	4	16	104	416
J8C	390208	8/14/1996	17	4	16	68	272
J12A	390212	8/12/1996	4	4	16	16	64
J12B	390212	8/13/1996	26	4	16	104	416
J12C	390212	8/14/1996	14	4	16	56	224
J5J1M	390205	7/29/1997	18	4	16	72	288
J5J1N	390205	7/30/1997	18	4	16	72	288
J5J1O	390205	7/30/1997	18	4	16	72	288
J5J1P	390205	8/6/1997	18	4	16	72	288
J8S3M	390208	7/29/1997	18	4	16	72	288
J8S3N	390208	7/30/1997	18	4	16	72	288
J8S3O	390208	7/30/1997	18	4	16	72	288
J8S3P	390208	8/6/1997	18	4	16	72	288
J12J10M	390212	7/29/1997	18	4	16	72	288
J12J10N	390212	7/30/1997	18	4	16	72	288
J12J10O	390212	7/30/1997	18	4	16	72	288
J12J10P	390212	8/6/1997	17	4	16	68	272
						1,848	7,392
						9.2	240

5. METHDOLOGY

This section presents a step-by-step approach of the study methodology used to process the Ohio SPS-1 and SPS-2 DLR data using Matlab^{® (7)}. For the Ohio SPS-1 data that has relatively distinct pavement deflection signal peaks and valleys, a peak finding algorithm was developed using the tools available in Matlab[®] software to perform the first five steps of the methodology. For the Ohio SPS-2 data that has indistinctive pavement deflection signal peaks and valleys with significant noise, a bandpass filter algorithm was developed using the Matlab[®] toolbox to perform the methodology. The methodology involves the following steps:

- 1. DLR data calibration
- 2. Gain adjustment factors
- 3. Smoothing the raw traces
- 4. Extracting trace peaks and valleys as well as their corresponding time stamps
- 5. Quality Control (QC) analysis
- 6. Correcting sensor locations and wheelpath offsets

5.1 DLR Data Calibration

5.1.1 Ohio SPS-1 Data Calibration

Ohio SPS-1 DLR data has two sensor types in need of data calibration: LVDT and pressure cells. The units of LVDT and pressure cell sensors in DLR data are in voltage. Calibration factors were obtained from OU, and it is clarified by LTPP team that all LVDT calibrations (approximately 600 LVDTs) are linear and pass through the origin with slopes ranging from 19.5 - 20.5 Volts per inch. Therefore, an average value of 20.0 V/in. was used to convert LVDT traces from voltage to

pavement deflection in inches. For all of the pressure cell sensors, a factor of 10 psi/volt was used, which were generally correct to within \pm 2%, according to OU ⁽⁸⁾. Dynatest strain gauges are calibrated using the MEGADAC data acquisition system in the ¹/₄ Wheatstone bridge setup and did not require any calibrations, units of strain gauge traces are in microstrain (µe). All calibrations for LVDT and pressure cell sensors were computed in Matlab[®].

5.1.2 Ohio SPS-2 Data Calibration

The Ohio SPS-2 data had only one sensor type in need of data calibration: LVDT. The units of Ohio SPS-2 LVDTs are in voltage. Similar to Ohio SPS-1 data discussed above, LVDT calibration factors with an average value of 20.0 V/in. were used to convert LVDT traces from voltage to pavement deflection in inches. LVDT data calibrations were completed using Matlab[®].

5.2 Gain Adjustment Factor

Once the data was calibrated, the next step was to normalize the sensor traces to base zero on the y-axis (pavement deflection) i.e. under no load conditions, so that the resulting peak values represented the change due to load response. A gain adjustment factor is an average of the first 500 data points in a calibrated raw trace which is subtracted from each trace data point to normalize the trace to zero in the y axis. Theoretically, the number of data points needed to determine a gain adjust factor is about ten percent of the data collection frequency for each sensor. If data collection frequency is 2000Hz, then the number of data points needed to determine a gain adjustment factor is 10% of 2000Hz, which is 200 data points per second. If data collection frequency is 500Hz, then the number of data points needed to determine a gain adjustment factor is 50 data points needed to determine a gain adjustment factor is 10% of 500Hz, which is points to average a gain adjustment because the Ohio SPS-1 gain adjustment factors appear to stabilize when the number of data points is about 500. Similarly, the DLR Study Team used the first 500 data points to determine a gain adjustment factor for the Ohio SPS-2 data.

5.2.1 Ohio SPS-1 Gain Adjustment Factor

Each Ohio SPS-1 time history dataset in the majority of the DLR raw trace files contained, on average, 5,000 data points. So a sample size of 10 percent (500 data points) of the time history measurements was considered reasonable to calculate the gain adjustment factor. The DLR Study Team also computed the gain adjustment factor considering 200, 300, and 400 data points at the start of the trace, but there wasn't any significant difference in mean values for these number of data points. For example, the computed mean values for AJ2A.007 file are -1.0470, -1.1168, -1.1345, and -1.1326 for 200, 300, 400, and 500 data points, respectively. A mean value of the first 500 data observations was subtracted from each observation of a sensor raw trace to normalize the trace to zero in the y axis (pavement deflection). For example, assuming that strain gauge Dyn12 trace in test job J2F had a total of six thousand observations, the mean value of the first 500 observations was subtracted from each observations. The algorithm adjusted all sensor traces to base zero on y-axis for all files in J2F test job.

5.2.2 Ohio SPS-2 Gain Adjustment Factor

Each Ohio SPS-2 time history dataset in the majority of the DLR raw trace files contained, on average, close to 7,000 data points. Meanwhile, the Ohio SPS-2 data had significantly more noise and lower pavement deflection magnitude due to stiffer PCC compared to Ohio SPS-1 AC sections. Nevertheless, similar to Ohio SPS-1 data, a mean value of the first 500 data observations was subtracted from each observation of a sensor raw trace to normalize the trace to zero in the y axis (pavement deflection). However, in retrospect, due to significant noise in the Ohio SPS-2 data, the first 500 data points may not have been enough. For future research, the first 700 data points is recommended to be used to determine a gain adjustment factor for the Ohio SPS-2 data because it is about 10% of each Ohio SPS-2 time history dataset that contains, on average, close to 7,000 measurements.

Furthermore, due to significant noise in the Ohio SPS-2 data, it is extremely difficult to identify peaks and valleys in a raw trace. Thus, smoothing the Ohio SPS-2 raw traces becomes necessary, and only from a smoothed trace can peaks and valleys be extracted.

5.3 Smoothing Raw Traces

5.3.1 Smoothing Ohio SPS-1 Raw Traces

Smoothing of raw sensor trace was necessary to eliminate redundant local minima, local maxima, and noise in a trace. The DLR tables in SDR 22.0 have time stamp columns and location (pavement deflection value) stamp columns for both raw and smoothed traces for all strain gauge, LVDT, and pressure cell sensors. In this study, the mslowess function available in Matlab[®] bioinformatics toolbox was explored to smooth sensor traces. LOWESS stands for locally weighted

scatterplot smoothing method, assumes a default span of 10 data samples. For more information on the mslowess function see reference ⁽⁹⁾. For the Ohio SPS-1 raw traces collected by strain gauge, LVDT, or pressure cell, the mslowess function was used to smooth the raw traces, regardless of sensor type.

5.3.2 Smoothing Ohio SPS-2 Raw Traces

It is extremely difficult to extract pavement deflection peaks and valleys from the Ohio SPS-2 strain gauge raw traces that are significantly noisier and of lower deflection magnitude due to stiffer PCC sections. Figure 7 shows a comparison plot of a normalized raw trace in red vs. a moving median (MM)-smoothed trace in blue vs. a bandpass filter-smoothed trace in green as sampled from strain gauge DYN8 in Ohio SPS-2 390201 Test Name J1A Run 27. Figure 7 demonstrates the level of noise and magnitude of signal associated with a typical Ohio SPS-2 raw trace collected from a strain gauge compared to smoothed ones. On the other hand, the Ohio SPS-2 LVDT raw traces did not appear to be as noisy as did strain gauges and hence, the moving median function was used to smooth Ohio SPS-2 LVDT raw traces.

Figure 7: Comparison of a Normalized Strain Gauge Raw Trace in Red vs. an MM-smoothed Trace in Blue vs. a Bandpass Filter-smoothed Trace in Green

Figure 8: A Magnified View of the Three Trace Peaks in Figure 7, Showing the BP-smoothed Trace in Green Appears to Approximate the Raw Trace Peaks in Red Better Than the MM-smoothed race in Blue.

The bandpass filter function in Matlab[®] appears to be a feasible solution for filtering out the significant noise in Ohio SPS-2 strain gauge raw traces as demonstrated in Figure 8. Before filtering the noise, one can use the power density function in Matlab[®] to identify an optimal bandpass filtering frequency range by plotting the power density of a raw trace. Using the optimal filtering frequency range, one can further tighten the optimal range by comparing bandpass filter-smoothed trace plots created within various narrower frequency ranges in order to determine the optimal frequency range for the bandpass filter to smooth a raw trace. In general for the Ohio SPS-2 strain gauge raw traces, 1 to 50 Hertz appears to be the optimal filtering frequency range for

the bandpass filter and thus, it was the filtering frequency range chosen for the bandpass filter to smooth the Ohio SPS-2 strain gauge raw traces. Figure 8 shows a magnified view of the three trace peaks in Figure 7, including a normalized raw trace from J1A Run 27 DYN8, a moving median-smoothed (MM with a moving average window of 20 milliseconds) trace, and a bandpass filter-smoothed trace. The bandpass filter-smoothed trace in green appears to *approximate* the raw trace peaks in red *better* than the moving median-smoothed trace in blue as sampled from strain gauge DYN8 in Ohio SPS-2 390201 Test Name J1A Run 27. Meanwhile in Figure 8, it also appears that the bandpass filter-smoothed trace in green demonstrates the least noise, compared to the normalized raw trace in red and the MM-smoothed trace in blue.

5.4 Extracting Trace Peaks and Valleys as well as Their Corresponding Time Stamps

5.4.1 Extraction of Ohio SPS-1 Trace Peaks and Valleys

The mspeaks function ⁽¹⁰⁾ of Matlab[®] was used to extract the trace peaks and valleys from both the raw and smoothed traces from strain gauges, LVDTs, and pressure cells for the Ohio SPS-1 data. The function finds the relevant peaks in a raw noisy peak trace data, and creates peak list, a two column matrix, containing the time stamp value and magnitude (location stamp) value for each peak. The mspeaks function has input arguments like height filter value and over segmentation filter value to locate peaks. Height filter value is a positive real value that specifies the minimum height for reported peaks and over segmentation filter value is a positive real value that specifies the minimum distance in time stamp units between neighboring peaks. When a trace is not smoothed appropriately, multiple maxima can appear to represent the same peak. Increasing this filter value will help to join over segmented peaks into a single peak. The default value for both the arguments is zero. The extracted trace peaks and valleys identified from the mspeaks function are used in QC analysis to categorize the sensor traces. Figure 9 shows the extracted peaks in red star and valleys in green star and other information (test job name, run number, truck speed, sensor location, truck type, truck loading, pavement layer structure, offset values and direction of strain gauge sensor) for a smoothed longitudinal strain gauge sensor Dyn11.

Figure 9: Extracted Trace Peaks and Valleys for Ohio SPS-1 Data

5.4.2 Extraction of Ohio SPS-2 Trace Peaks and Valleys

The mspeaks function of Matlab[®] was used to extract the trace peaks and valleys from the smoothed traces only for the Ohio SPS-2 data because the raw traces were too noisy to be extracted. Figure 10 shows the bandpass filter-smoothed trace from Test Job J1A Run 27 DYN8. The red stars in the figure indicate the pavement deflection signal peaks while the blue stars indicate the signal valleys extracted by the mspeaks function. The local valley (blue star) near time 2 seconds

was manually removed before incorporating the extracted peaks and valleys as well as their time stamps into the DLR_STRAIN_TRACE_SUM_PCC table.

Figure 10: Extracted Trace Peaks and Valleys for Ohio SPS-2 Data

5.5 Quality Control (QC) Analysis

5.5.1 Ohio SPS-1 QC Analysis

QC analysis is a process to assess the data quality. It is important as it provides insight into data quality issues and helps in decision making. In this study, QC analysis was performed to categorize the sensor *raw* and *smoothed* traces into three quality categories: "Good", "Maybe", and "No Good" traces. QC check is developed based on three criteria. The rationale for the criteria is the number of peaks; two peaks in case of single-axle dump truck and three peaks for a tandem-axle dump truck, and difference in begin and end offset of a trace. An offset is a reference point of value averaging two hundred data points in a trace.

The three criteria used to categorize DLR raw and smoothed traces are:

- Good trace: number of peaks should be equal to the number of test truck axles and the difference in begin and end offset is less than 10 percent of the first peak (peak considered from left in a trace chart in Figure 11.
- 2. Maybe trace: number of peaks should be equal to the number of test truck axles and the difference in begin and end offset is more than 10 percent of the first peak.
- 3. No Good trace: number of peaks less than or greater than test truck axles.

How the QC check criteria works is explained by considering transverse strain gauge traces and is shown in Figure 11. The figure has three transverse strain gauge trace charts for good, maybe, and no good traces. The first trace chart was categorized as Good trace; it satisfies the good trace criterion (i.e.) the number of peaks was equal to the number of test truck axles and the difference in begin and end offset was less than 10 percent of the first peak for a single-axle dump truck. The second trace chart satisfied the number of peaks (three peaks), but failed to satisfy the difference in begin and end offset less than 10 percent of first peak for a tandem-axle dump truck. The difference in begin and end offset was more than 10 percent, satisfied the maybe trace criterion and was categorized as Maybe trace. The third trace chart did not satisfy the number of peaks (three peaks) for a tandem-axle dump truck; there were multiple peaks identified in third trace chart and satisfied No Good trace criterion. It was categorized as No Good trace.

Figure 11: Ohio SPS-1 Transverse Strain Gauge Trace Categorization

Similar to the transverse strain gauge trace categorization shown in Figure 11, LVDT trace categorization is shown in Figure 12.

Figure 12: Ohio SPS-1 LVDT Trace Categorization

Almost all (99%) of the raw and smoothed traces from Ohio SPS-1 pressure cells were categorized as Good traces based on the criteria aforementioned.

5.5.2 Ohio SPS-2 QC Analysis

Due to significant noise in Ohio SPS-2 strain gauge and LVDT raw traces, only smoothed Ohio SPS-2 strain gauge and LVDT traces were categorized using the trace categorization criteria in Section 5.5.1. Figures 13 and 14, show sample categorization results for longitudinal strain gauge and LVDT traces, respectively.

Figure 13: Ohio SPS-2 Longitudinal Strain Gauge Trace Categorization

Figure 14: Ohio SPS-2 LVDT Trace Categorization

5.6 Correcting Sensor Locations and Wheelpath Offsets

Inconsistent sensor locations between Ohio SPS-1 and 2 data and SDR 22.0 were corrected using the embedded sensor data in the Ohio data set (EmbeddedSensor.txt). An inner join procedure, based on STATE_CODE, SHRP_ID, TAG_ID as matching columns, was used which joined all the columns in the DLR_STRAIN_CONFIG_AC table with the strain gauge sensor location (columns X, Y, and Z) in the embedded sensor data. LVDT and PC sensor locations in the DLR_LVDT_CONFIG_AC and DLR_PC_CONFIG_AC tables were also corrected using the same embedded senor data.

Similarly, the inconsistent wheelpath offset data in DLR_TEST_MATRIX were updated using the truck pass (TruckPass.txt), truck run (TruckRun.txt), and raw Ohio DLR ASCII data. However, the DLR_TEST_MATRIX table in SDR 22.0 has wheelpath offset records for both Ohio and NC test sections. Only Ohio wheelpath offset records were inner joined with STATE_CODE, SHRP_ID, SUBSERIES, and RUN_NUMBER as matching columns in the Ohio TruckPass.txt data. Since the wheelpath offset data for NC test sections is not available, the NC wheelpath offset records were not updated.

6. QC RESULTS

6.1 Ohio SPS-1 Data QC Results

This section presents the results obtained from the application of above discussed methodology to process DLR raw data. The results from this study are very important for two main reasons: it helps to make a decision as to which quality DLR data (good and maybe traces by test job and by sensor type) should be included into the next SDR, and the QC-processed DLR data can be used to determine the approaches and methodologies most appropriate for applications in pavement analysis and design processes.

6.1.1 Smoothed Trace Processing

As mentioned in the report earlier, the study considered 23 test jobs in Ohio SPS-1 DLR data. However, one test job at a time was processed using Matlab[®]. Test job J2F, that had eight test runs with run names AJ2F.001 to AJ2F.008, was used to illustrate the working of first four steps of the methodology in Matlab[®]. The peak finding algorithm developed was test job specific i.e., the algorithm ran through all the test runs/files in a particular test job. It imported all the runs/files in test job J2F into Matlab[®] environment. Calibration factors discussed in the first step of the methodology were applied to LVDT and pressure cell sensors to convert them into pavement deflection in inches and test vehicle loading in psi.

As discussed in the third step of the methodology, sensor traces for three sensor types: strain gauge, LVDT, and pressure cell sensors for all runs in test job J2F were smoothed using the mslowess function available in Matlab[®] bioinformatics tool box.

The QC part of the algorithm checked trace quality categorization for all smoothed sensor traces in J2F test job based on the three criteria discussed in the fifth step listed in the Methodology section of this report. The algorithm saved the QC results separately into MS Excel[®] file using sensor type and test job name as file name, for example, LVDT_J2F_QC, for LVDT sensor in J2F test job. QC results in MS Excel[®] file were checked manually for each smoothed trace to correct any improperly categorized traces. Table 5 shows the summarized QC results for each run number and sensor type for J2F test job. The numbers 1, 2, and 3 for sensors strain gauge (Dyn7 to Dyn12), LVDT (LVDT1 to LVDT2) and PC (PC1 and PC2) in Table 6 represent the trace quality in good,

maybe, and no good trace categories respectively (i.e. 1: Good, 2: Maybe, and 3: No Good). In J2F test job there were 48 strain gauge traces of which sixteen traces were Good, i.e. the total of eight "1's" or Good traces under Dyn9 and the other eight "1's" under Dyn12 columns, respectively.

				J2F Te	est Job	o QC R	lesults						
Run #	Dyn7	Dyn8	Dyn9	Dyn10	Dyn11	Dyn12	LVDT1	LVDT2	LVDT3	LVDT4	PC1	PC2	
1	3	3	1	3	3	1	1	2	1	1	1	1	
2	3	3	1	3	3	1	1	1	1	1	1	1	
3	3	3	1	3	3	1	1	2	1	1	1	1	
4	3	3	1	3	3 1 1 1 1 1 1 1								
5	3	3	1	3	3	1	1	2	1	1	1	1	
6	3	3	1	3	3	1	1	1	1	1	1	1	
7	3	3	1	3	3	1	1	1	1	1	1	1	
8	3	3	1	3	3	1	1	1	1	1	1	1	
Sanco	rtupo	Good	May be	No Good	Note: N	lumbers	1, 2, & 3	under ea	ach sens	or (not fi	romru	ın #)	
Sellso	rtype	traces*	traces*	traces*	in the a	bove tal	ble repre	sent 1: G	ood, 2: N	/laybe, a	nd 3:	No	
Strain	gauge	16**	0	32	Good re	espectiv	ely. *: sł	nows sur	nmarized	trace co	unts	for	
LVDT		29	3	0	good, n each se	nay be, a	and no g	ood trace	es from t	he above obt "1's"	table unde	e for	
PC		16	0	0	Dyn9 a	nd other	r eight "	l's" unde	r Dyn12.		unuc	^1	

 Table 5: Summarized QC Results for Smoothed Traces in Ohio SPS-1 J2F Test Job

To make it easy for data users, the QC results obtained for J2F test job are graphically shown in Figure 15 with QC results table, i.e. the trace quality obtained from the two sensor types (strain gauge and LVDT) are graphically presented either in combination or separately in green, orange, and red colors to represent good, maybe and no good sensors either in combination or separately in a sensor layout drawing. For example strain gauge sensors Dyn7, Dyn8, Dyn10, and Dyn11 sensors are in red color representing data obtained from these sensors are in No Good quality, whereas Dyn9, Dyn12, LVDT1, LVDT3, and LVDT4 sensors are in green color representing data obtained from these sensors are in green color quality for some runs and in Maybe quality for remaining runs in J2F test job. Except for three traces, the QC results obtained for pressure cell sensors are in good condition for all the traces; they are not represented in colors in the drawings. Graphical representation of QC results for all the 23 test jobs can be seen in Appendix B.

Note: Sensor colors represent the status of a sensor based on QC results (Green: Good, Orange: Maybe, Red: No Good). The sensors with color combinations of more than one color represent status in combination. For example, if a sensor color is in a combination of green and orange then the status of the sensor is Good and Maybe.

Figure 15: Graphical Representation of QC Results by Sensor Type for Section 390102 J2F Test Job

36

The peaks and valleys for the smoothed traces in J2F test job were extracted using the mspeaks function discussed in the fourth step listed in the Methodology section of this document. These extracted peaks and valleys for each trace were directly saved into a separate MS Excel[®] file using the sensor number by sensor type, test job name, and run number as file name, for example, Dyn12_J2F1, for Dyn12 sensor in J2F test job for run one. Based on the QC results, the peaks and valleys extracted for good traces for J2F test job are summarized in Table 6. For J2F test job two-axle test truck was used, and since sensor Dyn9 was laid in transverse direction, it has only two peaks, whereas sensor Dyn12 was laid in longitudinal direction therefore it has two peaks and four valley points.

		1 000				<u> </u>						1 10500	00	
			TIME S	STRAIN_	TIME	STRAIN_	TIME	STRAIN_	TIME	STRAIN_	TIME	STRAIN_	TIME S	STRAIN
TAG_I	TEST_	RUN	MOOTH	VALUE_	_SM	VALUE_	SMOO	VALUE_	_SMO	VALUE_S	_SMO	VALUE_S	MOOTH	VALUE S
D	NAME	KON	1	SMOOTH	00T	SMOOT	TH 3	SMOOT	OTH_	MOOTH_	OTH_	MOOTH_	6	MOOTH 6
			1	_1	H_2	H_2	111_5	H_3	4	4	5	5	_0	WOOTIL_0
Dyn9	J2F	1	1.58	228.28	1.85	333.01								
Dyn9	J2F	2	1.59	759.57	1.84	296.37								
Dyn9	J2F	3	1.52	709.65	1.76	301.81								
Dyn9	J2F	4	1.50	718.30	1.74	276.85								
Dyn9	J2F	5	1.60	1,067.32	1.83	341.22								
Dyn9	J2F	6	1.52	822.41	1.71	281.21								
Dyn9	J2F	7	1.53	293.97	1.72	245.72								
Dyn9	J2F	8	1.43	481.43	1.62	228.29								
Dyn12	J2F	1	1.43	433.04	1.70	796.86	1.40	-110.72	1.47	-58.19	1.67	-196.59	1.75	-119.02
Dyn12	J2F	2	1.44	677.99	1.72	893.38	1.41	-173.41	1.49	-60.70	1.69	-214.46	1.77	-123.61
Dyn12	J2F	3	1.38	636.70	1.65	872.43	1.36	-167.57	1.43	-70.65	1.62	-229.22	1.70	-122.18
Dyn12	J2F	4	1.35	641.91	1.62	937.55	1.33	-179.50	1.40	-75.22	1.59	-225.53	1.67	-129.91
Dyn12	J2F	5	1.47	766.11	1.72	967.68	1.45	-217.15	1.51	-83.93	1.69	-242.25	1.77	-118.40
Dyn12	J2F	6	1.41	627.06	1.62	1,086.41	1.39	-225.64	1.45	-86.46	1.60	-277.34	1.66	-117.95
Dyn12	J2F	7	1.42	441.83	1.62	1,089.63	1.40	-185.48	1.46	-77.49	1.60	-280.45	1.66	-108.65
Dyn12	J2F	8	1.32	547.97	1.52	1,141.55	1.30	-212.76	1.36	-79.22	1.50	-284.95	1.56	-119.13

Table 6: Peaks and Valleys Extracted For Smoothed Traces in J2F Test Job

Note: The units of TIME_SMOOTH columns are in seconds and STRAIN_VALUE _SMOOTH columns are in microstrain (µe).

6.1.2 Raw (unsmoothed) Trace Processing

The same above processing steps were applied to raw traces i.e. without smoothing sensor traces for J2F test job and the results are shown in Tables 7 and 8 below. Table 7 shows the summarized QC results for raw traces, it can be noticed that there is no change in QC results for raw traces compared to the QC results for smoothed traces for J2F test job. Table 8 shows the summarized peaks and valleys extracted for good raw traces.

	J2F Test Job QC Results Run # Dyn7 Dyn8 Dyn9 Dyn10 Dyn11 Dyn12 LVDT1 LVDT2 LVDT3 LVDT4 PC1 PC2 1 3 3 1 3 3 1												
Run #	Dyn7	Dyn8	Dyn9	Dyn10	Dyn11	Dyn12	LVDT1	LVDT2	LVDT3	LVDT4	PC1	PC2	
1	3	3	1	3	3	1	1	2	1	1	1	1	
2	3	3	1	3	3	1	1	1	1	1	1	1	
3	3	3	1	3	3	1	1	2	1	1	1	1	
4	3	3	1	3	3	1	1	1	1	1	1	1	
5	3	3	1	3	3	1	1	2	1	1	1	1	
6	3	3	1	3	3	1	1	1	1	1	1	1	
7	3	3	1	3	3	1	1	1	1	1	1	1	
8	3	3	1	3	3	1	1	1	1	1	1	1	
Senso	rtung	Good	May be	No Good	Note: N	lumbers	1, 2, & 3	under ea	ach sens	or (not fi	romru	ın #)	
Seliso	rtype	traces*	traces*	traces*	in the a	bove tal	ole repre	sent 1: G	ood, 2: N	Aaybe, a	nd 3:	No	
Strain g	gauge	16**	0	32	Good respectively. *: shows summarized trace counts for								
LVDT		29	3	0	good, may be, and no good traces from the above table for each sensor type, **: 16 is the total of eight "1's" under								
PC		16	0	0	Dyn9 a	nd other	eight " 1	's" unde	r Dyn12.		ande		

Table 7: Summarized QC Results for Raw Traces in J2F Test Job

Table 8: Peaks and Valleys Extracted for Raw Traces in J2F Test Job

TAG_ID	TEST_ NAME	RUN	TIME_ RAW_1	STRAIN_ VALUE_ RAW_1	TIME_ RAW_2	STRAIN _VALUE _RAW_2	TIME_ RAW_3	STRAIN_ VALUE_ RAW_3	TIME_ RAW_4	STRAIN _VALUE _RAW_4	TIME_ RAW_5	STRAIN_ VALUE_ RAW_5	TIME_ RAW_6	STRAIN_ VALUE_ RAW_6
Dyn9	J2F	1	1.58	229.81	1.85	333.57								
Dyn9	J2F	2	1.59	761.85	1.84	-297.43								
Dyn9	J2F	3	1.52	712.71	1.76	302.67								
Dyn9	J2F	4	1.50	719.66	1.74	278.99								
Dyn9	J2F	5	1.60	1,070.29	1.83	343.34								
Dyn9	J2F	6	1.52	825.52	1.71	282.34								
Dyn9	J2F	7	1.53	295.44	1.72	247.31								
Dyn9	J2F	8	1.43	483.47	1.62	229.69								
Dyn12	J2F	1	1.43	435.75	1.70	801.42	1.40	-111.18	1.47	-59.30	1.67	-196.81	1.75	-119.30
Dyn12	J2F	2	1.44	682.82	1.72	898.46	1.41	-174.14	1.49	-61.63	1.69	-214.77	1.77	-124.14
Dyn12	J2F	3	1.38	641.79	1.65	878.06	1.36	-168.92	1.43	-71.41	1.62	-230.17	1.70	-122.66
Dyn12	J2F	4	1.35	647.40	1.62	942.43	1.33	-180.81	1.40	-75.80	1.59	-226.44	1.67	-130.18
Dyn12	J2F	5	1.47	773.32	1.72	973.96	1.45	-218.65	1.51	-84.27	1.69	-243.03	1.77	-118.64
Dyn12	J2F	6	1.41	635.66	1.62	1,095.08	1.39	-226.93	1.45	-86.91	1.60	-278.18	1.66	-118.17
Dyn12	J2F	7	1.42	446.82	1.62	1,100.64	1.40	-186.37	1.46	-78.23	1.60	-282.00	1.66	-109.48
Dyn12	J2F	8	1.32	556.01	1.52	1,152.32	1.30	-214.07	1.36	-79.68	1.50	-285.95	1.56	-119.68

Note: The units of TIME_RAW columns are in seconds and STRAIN_VALUE_RAW columns are in microstrain (µe).

The first peaks extracted for good sensor traces in J2F test job shown in Tables 6 and 8 were used to check how close the processed J2F data were in comparison with Ohio data peak file (TruckPeak.txt). Table 9 shows the comparison of Ohio data peak values with first peak values of smoothed and raw traces for strain gauge Dyn9 and Dyn12 sensors in J2F test job. Column X in Table 9 was the estimated position of front-axle at the time when peak occurred i.e., x coordinate measured from southernmost deep LVDT in AC sections. It can be observed from Table 9 that the smoothed and raw peak values were close to Ohio data peak values. However, there was a significant increase in smoothed and raw peak values for Dyn12 sensor compared to Ohio data peak values. The actual location of strain gauge Dyn9 sensor was X=120 in. and Dyn12 sensor was X=192 in. from the measured southernmost deep LVDT in AC sections, but the Ohio peak data (Truckpeak.txt) show multiple locations for sensors, which are two to three inches off the actual sensor location (see Table 18). From the observation it is anticipated that X values closer and below the actual sensor location have smoothed and raw peak values would be close to Ohio data peak values. For example, Dyn9 sensor for run one has Ohio peak value of 224.30 (μ e) at X= 118.3 in. which is close and below the actual sensor location of X=120 in. and the smoothed and raw peak values 228.23 (µe) and 229.81(µe) extracted are very close to Ohio data peak value. Whereas Dyn12 sensor for run one has Ohio peak value of $411.40 (\mu e)$ at X=194.7 in. and is not a close match of first peak value extracted from smoothed and raw traces i.e. 433.04 (µe) and 435.75 (µe) at X=192 in.

					,		
Test Job	Run	Section Number	Sensor Name	X (in.)	Ohio Peak Value (µe)	Smooth Peak Value (µe)	Raw Peak Value (µe)
J2F	1	"390102"	DYN9	118.3	224.30	228.28	229.81
J2F	2	"390102"	DYN9	121.8	751.90	759.57	761.85
J2F	3	"390102"	DYN9	121.5	702.10	709.65	712.71
J2F	4	"390102"	DYN9	121	709.90	718.30	719.66
J2F	5	"390102"	DYN9	121.8	1048.00	1,067.32	1,070.29
J2F	6	"390102"	DYN9	121.5	814.60	822.41	825.52
J2F	7	"390102"	DYN9	118.5	289.50	293.97	295.44
J2F	8	"390102"	DYN9	120.5	475.60	481.43	483.47
J2F	1	"390102"	DYN12	194.7	411.40	433.04	435.75
J2F	2	"390102"	DYN12	195.4	629.80	677.99	682.82
J2F	3	"390102"	DYN12	195.5	585.00	636.70	641.79
J2F	4	"390102"	DYN12	194.5	591.60	641.91	647.40
J2F	5	"390102"	DYN12	194.8	683.80	766.11	773.32
J2F	6	"390102"	DYN12	195.2	581.80	627.06	635.66
J2F	7	"390102"	DYN12	194.8	418.80	441.83	446.82
J2F	8	"390102"	DYN12	195.2	509.90	547.97	556.01

Table 9: Comparing First Peak of Smooth and Raw Peak Values with Ohio Peak Value (truckpeak.txt)

Begin offset, end offset, and range values are computed for all sensor traces in J2F test job.

Table 10 shows begin offset, end offset, and range values for pressure cell sensor in J2F test job.

	Tuble 10. Trebb		jegin enset, El	ia onibet, and i	tunge vulue	5
Test Eile		PC1			PC2	
Test File	Begin Offset	End Offset	Range	Begin Offset	End Offset	Range
AJ2F001	0.0000206	0.0172634	1.227	0.0000000	0.0223676	1.215
AJ2F002	0.0000675	0.0140629	1.300	-0.0000228	0.0189775	1.387
AJ2F003	-0.0000184	0.0141437	1.330	0.0000303	0.0200913	1.490
AJ2F004	0.0000341	0.0096094	1.329	0.0000631	0.0128362	1.495
AJ2F005	0.0000228	0.0115536	1.344	0.0000078	0.0179510	1.576
AJ2F006	-0.0000250	0.0099899	1.082	-0.0000269	0.0131659	1.336
AJ2F007	0.0000203	0.0076421	1.035	0.0000162	0.0112694	1.328
AJ2F008	0.0000191	0.0092828	1.126	-0.0000325	0.0102851	1.392

Table 10: Pressure Cell Sensor Begin offset, End offset, and Range values

The above data processing steps used for smoothed and raw traces in J2F test job are repeated one by one for the remaining twenty two test jobs. The QC results summarized for all 23

test jobs for both smoothed and raw traces are shown in Tables 11 and 12. Similar to Tables 6 and 8 for J2F test job, DLR data tables were created separately for each sensor type from all the good traces for twenty three test jobs and will be included in future SDR.

Test Job	No. of	Strain Gu	age			LVDT	1			Pressure	Cell		
Name	Test Runs	Good	May be	No good	Total	Good	May be	No good	Total	Good	May be	No good	Total
J2A	16	32	13	51	96	39	7	18	64	32	0	0	32
J2C	10	12	0	48	60	26	4	10	40	20	0	0	20
J2D	16	17	8	71	96	45	11	8	64	32	0	0	32
J2E	13	15	0	57	72	41	7	0	48	24	0	0	24
J2F	8	16	0	32	48	29	3	0	32	16	0	0	16
J2G	12	16	8	48	72	38	10	0	48	24	0	0	24
J4A	16	46	5	93	144	32	32	0	64	32	0	0	32
J4B	13	30	5	82	117	24	24	4	52	26	0	0	26
J4C	10	15	9	48	72	16	12	4	32	14	0	2	16
J4D	15	30	15	90	135	32	27	1	60	30	0	0	30
J4E	13	26	15	76	117	40	12	0	52	26	0	0	26
J4F	12	24	33	51	108	24	24	0	48	24	0	0	24
J4G	12	24	7	77	108	24	24	0	48	24	0	0	24
J8A	16	48	48	48	144	21	43	0	64	31	1	0	32
J8D	15	45	45	45	135	22	38	0	60	30	0	0	30
J8E	13	39	44	34	117	23	29	0	52	26	0	0	26
J8G	12	36	37	35	108	36	12	0	48	24	0	0	24
J10A	16	15	5	115	135	26	15	19	60	30	0	0	30
J10C	10	10	0	80	90	6	19	15	40	20	0	0	20
J10D	16	19	21	104	144	13	43	8	64	32	0	0	32
J10E	12	12	17	79	108	27	15	6	48	24	0	0	24
J10F	13	61	12	44	117	31	16	5	52	26	0	0	26
J10G	12	12	34	62	108	36	12	0	48	24	0	0	24
Total	301	600	381	1,470	2,451	651	439	98	1,188	591	1	2	594

Table 11: Summarized QC Results for Smoothed Traces

Test Job	No. of	S	train Gua	ge	Tatal		LVDT		Tatal	Р	ressure C	ell	Tatal
Name	Test Runs	Good	May be	No good	Total	Good	May be	No good	Total	Good	May be	No good	Total
J2A	16	32	13	51	96	39	7	18	64	32	0	0	32
J2C	10	12	0	48	60	26	4	10	40	20	0	0	20
J2D	16	17	8	71	96	45	11	8	64	32	0	0	32
J2E	13	14	0	58	72	39	9	0	48	24	0	0	24
J2F	8	16	0	32	48	29	3	0	32	16	0	0	16
J2G	12	16	8	48	72	38	7	3	48	24	0	0	24
J4A	16	46	2	96	144	32	32	0	64	32	0	0	32
J4B	13	30	2	85	117	24	24	4	52	26	0	0	26
J4C	10	15	2	55	72	14	14	4	32	14	0	2	16
J4D	15	30	15	90	135	32	27	1	60	30	0	0	30
J4E	13	26	15	76	117	39	13	0	52	26	0	0	26
J4F	12	24	1	83	108	24	24	0	48	24	0	0	24
J4G	12	24	7	77	108	24	24	0	48	24	0	0	24
J8A	16	48	48	48	144	21	43	0	64	31	1	0	32
J8D	15	45	45	45	135	22	38	0	60	30	0	0	30
J8E	13	39	44	34	117	23	29	0	52	26	0	0	26
J8G	12	36	37	35	108	36	12	0	48	24	0	0	24
J10A	16	15	5	115	135	24	18	18	60	30	0	0	30
J10C	10	10	0	80	90	6	19	15	40	20	0	0	20
J10D	16	19	21	104	144	13	43	8	64	32	0	0	32
J10E	12	12	17	79	108	27	15	6	48	24	0	0	24
J10F	13	61	12	44	117	30	17	5	52	26	0	0	26
J10G	12	12	34	62	108	36	12	0	48	24	0	0	24
Total	542	599	336	1,516	2,451	643	445	100	1,188	591	1	2	594

Table 12: Summarized QC Results for Raw Traces

Table 13 shows the summarized QC results for smoothed traces in percentage for strain gauge, LVDT, and pressure cell sensors. It can be observed that of all the three sensor types pressure cell had the highest percentage of good traces with 99 percent followed by LVDT with 55 percent and the lowest was strain gauge sensor with 24 percent.

Quality Cont	rol Res	ults for S	moothed 7	Traces
Sensor type	Good	May be	No good	Total
Sensor type	trace	trace	trace	Total
Strain Gauga	600	381	1470	2451
Sualli Gauge	24%	16%	60%	100%
IVDT	651	439	98	1188
LVDI	55%	37%	8%	100%
DC	591	1	2	594
FC	99%	0%	0%	100%
			Total	4,233

Table 13: Summarized QC Results in Percentage for Ohio SPS-1 Smoothed Traces

Similarly, Table 14 shows the summarized QC results for raw traces in percentage for strain gauge, LVDT, and pressure cell sensors. No significant difference in percentage was observed when compared to QC results of smoothed traces. Similar to Table 13, it can be observed that of all the three sensor types pressure cell had the highest percentage of Good traces with 99 percent, followed by LVDT with 54 percent and the lowest was strain gauge sensor with 24 percent.

Quality Co	ontrol F	Results fo	r Raw Tra	ces
Sonsor trmo	Good	May be	No good	Total
Sensor type	trace	trace	trace	Total
Strain Cours	599	336	1516	2451
Stralli Gauge	24%	14%	62%	100%
LVDT	643	445	100	1188
LVDI	54%	37%	8%	100%
DC	591	1	2	594
rt	99%	0%	0%	100%
			Total	4,233

Table 14: Summarized QC Results in Percentage for Ohio SPS-1 Raw Traces

6.2 Ohio SPS-2 Data QC Results

Similar to Table 9, Table 15 below shows the comparison of Ohio SPS-2 first peak smooth values of J1A test job and DYN1 sensor with Ohio data peak values (Truckpeak.txt). The extracted smooth values of J1A test job and DYN1 sensor match the Ohio peak values.

Tast Job	Dum	Section Number	Sancor Nama	V (in)	Ohio Peak	Smooth Peak
1651 300	Kull	Section Number	Selisor Marine	А (Ш.)	value (µe)	value (µe)
J1A	1	"390201"	DYN1	82.3	-22.07	-22.53
J1A	2	"390201"	DYN1	85.2	-38.20	-38.68
J1A	3	"390201"	DYN1	82.6	-20.62	-20.22
J1A	4	"390201"	DYN1	85	-36.42	-36.75
J1A	5	"390201"	DYN1	82.5	-20.48	-20.07
J1A	6	"390201"	DYN1	85.7	-34.08	-34.64
J1A	7	"390201"	DYN1	82.4	-20.74	-20.73
J1A	8	"390201"	DYN1	85	-34.25	-34.15
J1A	9	"390201"	DYN1	82.4	-21.29	-21.28
J1A	10	"390201"	DYN1	84.4	-35.69	-35.75
J1A	11	"390201"	DYN1	81.8	-18.50	-18.05
J1A	12	"390201"	DYN1	85.3	-36.14	-35.73
J1A	13	"390201"	DYN1	82.8	-21.16	-20.77
J1A	14	"390201"	DYN1	85	-32.30	-31.41
J1A	15	"390201"	DYN1	82.1	-20.61	-20.16
J1A	16	"390201"	DYN1	85	-34.77	-34.12
J1A	17	"390201"	DYN1	82.1	-20.10	-19.69
J1A	18	"390201"	DYN1	85.1	-32.73	-32.08
J1A	19	"390201"	DYN1	82.2	-20.49	-19.45
J1A	20	"390201"	DYN1	84.3	-30.04	-29.23
J1A	21	"390201"	DYN1	82.7	-22.58	-21.49
J1A	22	"390201"	DYN1	84.3	-33.11	-31.97
J1A	23	"390201"	DYN1	82.1	-22.10	-20.99
J1A	24	"390201"	DYN1	84.8	-28.67	-27.59
J1A	25	"390201"	DYN1	82.2	-21.36	-19.78
J1A	26	"390201"	DYN1	83.9	-30.20	-29.13
J1A	27	"390201"	DYN1	84.3	-35.76	-34.43
J1A	28	"390201"	DYN1	85.1	-33.05	-32.11

Table 15: Comparing First Peak of Smooth Values with Ohio Peak Value (truckpeak.txt)

Table 16 below shows summarized QC results for smoothed traces for all 24 Ohio SPS-2 test jobs.

Test Job	No. of		Strain Ga	uge	Total		LVD	Γ	Total
Test Job	Test Runs	Good	May Be	No Good	Total	Good	May Be	No Good	Total
J1A	28	112	0	0	112	103	7	282	392
J1B	24	96	0	0	96	30	28	278	336
J1C	14	56	0	0	56	55	34	107	196
J5A	29	9	0	107	116	45	4	357	406
J5B	25	75	0	25	100	46	18	286	350
J5C	14	42	0	14	56	23	12	161	196
J8A	26	78	0	26	104	68	13	283	364
J8B	26	87	0	17	104	70	6	288	364
J8C	17	52	0	16	68	55	12	171	238
J12A	4	16	0	0	16	9	5	42	56
J12B	26	102	2	0	104	75	10	279	364
J12C	14	51	3	2	56	68	3	125	196
J5J1M	18	72	0	0	72	67	8	177	252
J5J1N	18	72	0	0	72	52	8	92	152
J5J1O	18	49	3	20	72	58	5	189	252
J5J1P	18	64	0	8	72	53	5	194	252
J8S3M	18	16	0	56	72	10	7	235	252
J8S3N	18	20	9	43	72	3	9	240	252
J8S3O	18	17	1	54	72	12	2	238	252
J8S3P	18	15	2	55	72	0	2	250	252
J12J10M	18	0	11	61	72	24	20	208	252
J12J10N	18	11	7	54	72	15	9	228	252
J12J10O	18	9	15	48	72	21	2	229	252
J12J10P	17	0	0	68	68	25	50	163	238
Total	462	1,121	53	674	1,848	987	279	5,102	6,368

Table 16: Summarized QC Results for Ohio SPS-2 Smoothed Traces

Table 17 below shows summarized QC results in percentage for smoothed traces for all 24 Ohio SPS-2 test jobs. It can be noticed that strain gauge had 61% of Good traces, whereas LVDT had 15% of Good traces.

Quality Control Results for Smoothed Traces							
Sensor Type	Good	May be	No good	Total			
Sensor Type	trace	trace	trace	Total			
Strain Gauge	1,121	53	674	1,848			
	61%	3%	36%	100%			
	987	279	5,102	6,368			
	15%	4%	80%	100%			
	Total	8,216					

Table 17: Summarized QC Results in Percentage for Ohio SPS-2 Smoothed Traces

7. DLR TRACE ISSUES

Some dubious sensor trace patterns were identified when processing the Ohio SPS-1 and 2 DLR data. For example, some sensor traces exhibited a flat, unresponsive pattern as in Figure 17 whereas some sensor traces indicated mislabeling a transverse strain gauge as a longitudinal one as in Figure 18.

7.1 Ohio SPS-1 Trace Issues

7.1.1 LVDT Trace Pattern Issue

All of the LVDTs were buried deep into the subgrade or close to the interface between the subgrade and the base layer in the Ohio test sections and thus, LVDT traces should not contain any trace valleys (no tensile strains) but peaks (compressive strains). However, LVDT3 sensor for test jobs J2A, J2C, J2D, J2E, J2F and J2G (test section 390102) showed a trace pattern similar to a longitudinal strain gauge trace that assumes valleys. Figure 16 shows LVDT3 trace in test job J2A with a trace pattern similar to a longitudinal strain gauge trace.

Figure 16: Transverse LVDT3 Trace Exhibiting a Longitudinal Strain Gauge Trace Pattern That Assumes Valleys

7.1.2 Strain Gauge Trace Pattern Issue

Strain gauge sensors Dyn10 and Dyn11 for test jobs J2A, J2C, J2D, J2E, J2F and J2G in test section 390102 showed a flat, unresponsive trace pattern. It was assumed that the sensors were not connected properly. Figure 17 shows flat strain gauge sensor Dyn10 trace in J2A test

job.

Figure 17: Unresponsive Strain Gauge Trace

Longitudinal strain gauges are expected to assume trace valleys whereas transverse strain gauges are not. However, longitudinal strain gauge sensor Dyn17 for test jobs J8A, J8D, J8E, and J8G (test section 390108) showed a trace pattern similar to a transverse strain gauge trace that assumed no valleys if the trace in Figure 18 is flipped upside. Figure 18 below shows longitudinal strain gauge Dyn17 trace in test job J8A which exhibited an upside down transverse strain gauge trace pattern.

Figure 18: Longitudinal Strain Gauge Sensor Dyn17 Trace Exhibiting an Upside Down Transverse Strain Gauge Trace Pattern That Assumes No Valleys

It was assumed that the above two sensors LVDT3 and strain gauge Dyn17 for test sections 390102 and 390108 may have been mislabeled inadvertently. The data collection dates match for test jobs in both test sections. For example, the data collection date for J2A and J8A test jobs were the same. Similarly, data collection dates for J2D, J2E, and J2G test jobs were the same as J8D, J8E, and J8G test jobs respectively.

The peak data information contained in Ohio TruckPeak.txt file was unclear to understand. The data have peak values recorded for same sensor number and run number but at different sensor locations. Table 18 below shows sample Ohio truck peak data for 390102 test section, strain gauge sensor Dyn12, and run one. Column X in Table 18 was the estimated position of front-axle at the time when peak occurred i.e., x coordinate measured from southernmost deep LVDT in AC sections, and Column Peak Value showed the recorded frontaxle peak values. The actual location of strain gauge sensor Dyn12 from the measured southernmost deep LVDT in AC sections was 192 in. (X=192 in.), but the Ohio truck peak data showed multiple sensor locations (X values) and it was also noticed in Table 18 that the peak value of 411.40 (μ e) at X=194.7 in. closely matched the first peak value extracted from the DLR data process i.e. peak value of 433.04 (μ e) at X=192 in.

Table 18. Sample Onio SFS-1 Truck Feak Data for J21 Test J00 (TruckFeak.txt)								
Series	Subseries	Run	Section	Sensor Name	Sensor Number	X (in.)	Peak Value (µe)	
2	"F"	1	"390102"	"DYN"	12	30	-118.60	
2	"F"	1	"390102"	"DYN"	12	55.8	758.00	
2	"F"	1	"390102"	"DYN"	12	71	-203.30	
2	"F"	1	"390102"	"DYN"	12	120.1	5.03	
2	"F"	1	"390102"	"DYN"	12	171.5	-57.61	
2	"F"	1	"390102"	"DYN"	12	194.7	411.40	
2	"F"	1	"390102"	"DYN"	12	209.9	-114.10	

Table 18: Sample Ohio SPS-1 Truck Peak Data for J2F Test Job (TruckPeak.txt)

The begin offset, end offset, and range values for strain gauges, LVDTs, and pressure cells obtained from the DLR raw traces did not match the begin/end offset and range values in SDR 22. Per the TSSC's recommendations, the begin offset, end offset, and range columns were removed and will not show up in the upcoming SDR 27.

7.2 Ohio SPS-2 Trace Issues

All the Ohio DLR SPS-2 data information was reviewed before processing to check if there are any data discrepancies. Data information include the Ohio SPS-2 TCS raw data, Ohio University (OU) data (.txt files), SDR 22.0 DLR data, and Shad Sargand et al. 2007 report *Evaluation of Pavement Performance on DEL 23* ⁽²⁾ for truck series, truck load and other relevant information. It is noticed that site visits ('A', 'B', and 'C') of Ohio SPS-2 test sections J1, J5, J8, J12 or (39-0201, 0205, 0208 and 0212 respectively) are inconsistent with Ohio SPS-2 subseries ('H', 'I', and 'J') of OU TruckRun.txt file. In contrast, site visits ('A', 'B', 'C', 'D', 'E', 'F' and 'G') of Ohio SPS-1 test sections J2, J4, J8 and J10 or (39-0102, 0104, 0108 and 0110

respectively), have matching subseries in TruckRun.txt file. However, the data collection dates of the Ohio SPS-2 test section visits A, B, and C match subseries H, I and J respectively of OU TruckRun.txt file. Since subseries 'A', 'B', 'C', 'D', 'E', 'F' and 'G' have already been used for Ohio SPS-1 in TruckRun.txt, it is assumed that OU assigned 'H', 'I', and 'J', in place of 'A', 'B', and 'C' for Ohio SPS-2. It is also noticed that wheelpath offset values in SDR 22.0 for Ohio SPS-2 were populated from subseries 'H', 'I', and 'J' of TruckPass.txt file for test sections 'A', 'B', and 'C', respectively. Table 19 below shows the inconsistency between the Ohio SPS-2 test section visits and the OU subseries.

RAW OHIO-TCS DATA		Test Truck Series	TruckRun.Txt		
Test Job	# files/Runs	Test Date	from Shad M. Sargand et al. report	Subseries	StartTime for run #1
J1A	28	8/12/1996	2	Н	1996-08-12 15:15:00
J1B	26	8/13/1996	2	Ι	1996-08-13 11:00:00
J1C	14	8/14/1996	2	J	1996-08-14 10:11:00
J5A	29	8/12/1996	2	Н	1996-08-12 15:15:00
J5B	26	8/13/1996	2	Ι	1996-08-13 11:00:00
J5C	14	8/14/1996	2	J	1996-08-14 10:11:00
J5J1M	18	7/29/1997	4	М	1997-07-29 13:10:00
J5J1N	18	7/30/1997	4	N	1997-07-30 10:20:00
J5J1O	18	7/30/1997	4	0	1997-07-30 13:32:00
J5J1P	18	8/6/1997	4	Р	1997-08-06 07:18:00
J8A	26	8/12/1996	2	Н	1996-08-12 15:15:00
J8B	27	8/13/1996	2	Ι	1996-08-13 11:00:00
J8C	17	8/14/1996	2	J	1996-08-14 10:11:00
J8S3M	18	7/29/1997	4	М	1997-07-29 13:10:00
J8S3N	18	7/30/1997	4	N	1997-07-30 10:20:00
J8S3O	18	7/30/1997	4	0	1997-07-30 13:32:00
J8S3P	18	8/6/1997	4	Р	1997-08-06 07:18:00
J12A	4	8/12/1996	2	Н	1996-08-12 15:15:00
J12B	27	8/13/1996	2	Ι	1996-08-13 11:00:00
J12C	14	8/14/1996	2	J	1996-08-14 10:11:00
J12J10M	18	7/29/1997	4	Μ	1997-07-29 13:10:00
J12J10N	18	7/30/1997	4	Ν	1997-07-30 10:20:00
J12J10O	18	7/30/1997	4	0	1997-07-30 13:32:00
J12J10P	17	8/6/1997	4	Р	1997-08-06 07:18:00

Table 19: Ohio SPS-2 Inconsistency between Test Section Visits and Subseries

Note: test truck series 2 and 4 were used for Ohio SPS-2. StartTime field in above table shows date with run time for first test run.

Ohio SPS-2 DLR sensors LVDT 5 and LVDT 6 were unresponsive for all test jobs (i.e.)

LVDT 5 and LVDT 6 records have all zero values.

Ohio SPS-2 test jobs J5J1M, J5J1N, J5J1O, J5J1P, J8S3M, J8S3N, J8S3O, J8S3P,

J12J10M, J12J10N, J12J10O, and J12J10P ASCII files had 32 LVDT sensors (LVDT1-

LVDT32) unlike the other test jobs (J1A, J1B, J1C, J5A, J5B, J5C, J8A, J8B, J8C, J12A, J12B,

and J12C) that only had sixteen LVDT sensors (LVDT1-LVDT16). The DLR Study Team

processed only the first sixteen LVDTs (LVDT1-LVDT16) based on information present in

EmbeddedSensor.txt file (shows only the first sixteen LVDTs).

Table 20 below shows strain gauge sensors for each Ohio SPS-2 test job that had time history data. For example, J1A test job had eight strain gauge sensors of which only four sensors (Dyn1, Dyn4, Dyn5, and Dyn8) had time history data and others strain gauge sensors (Dyn2, Dyn3, Dyn6, and Dyn7) did not have time history data.

Test Job	Test	Strain Gauge Sensors that		
Test Job	Section	have Time History Data		
J1A	390201	Dyn1, Dyn4, Dyn5 and Dyn8		
J1B	390201	Dyn1, Dyn4, Dyn5 and Dyn8		
J1C	390201	Dyn1, Dyn2, Dyn7 and Dyn8		
J5A	390205	Dyn1, Dyn4, Dyn5 and Dyn8		
J5B	390205	Dyn1, Dyn2, Dyn7 and Dyn8		
J5C	390205	Dyn1, Dyn2, Dyn7 and Dyn8		
J8A	390208	Dyn1, Dyn4, Dyn5 and Dyn8		
J8B	390208	Dyn1, Dyn2, Dyn7 and Dyn8		
J8C	390208	Dyn1, Dyn2, Dyn7 and Dyn8		
J12A	390212	Dyn1, Dyn4, Dyn5 and Dyn8		
J12B	390212	Dyn1, Dyn2, Dyn7 and Dyn8		
J12C	390212	Dyn1, Dyn2, Dyn7 and Dyn8		
J5J1M	390205	Dyn1, Dyn2, Dyn7 and Dyn8		
J5J1N	390205	Dyn1, Dyn2, Dyn7 and Dyn8		
J5J1O	390205	Dyn1, Dyn2, Dyn7 and Dyn8		
J5J1P	390205	Dyn1, Dyn2, Dyn7 and Dyn8		
J8S3M	390208	Dyn1, Dyn2, Dyn7 and Dyn8		
J8S3N	390208	Dyn1, Dyn2, Dyn7 and Dyn8		
J8S3O	390208	Dyn1, Dyn2, Dyn7 and Dyn8		
J8S3P	390208	Dyn1, Dyn2, Dyn7 and Dyn8		
J12J10M	390212	Dyn1, Dyn2, Dyn7 and Dyn8		
J12J10N	390212	Dyn1, Dyn2, Dyn7 and Dyn8		
J12J100	390212	Dyn1, Dyn2, Dyn7 and Dyn8		
J12J10P	390212	Dyn1, Dyn2, Dyn7 and Dyn8		

Table 20: Strain Gauge Sensors that have Time History Data for Each Test Job

Note: All Ohio SPS-2 test sections have eight strain gauge sensors deployed.

Similar to Table 18, Table 21 below shows multiple peak values for the same sensor name, number (DYN1) and run number (RUN 1). However, based on Embeddedsensor.txt file, the location of DYN1 sensor was 84 inches from the southernmost 1st LVDT (coordinate reference point), so the first peak value of -22.07 was compared to Ohio SPS-2 extracted smooth first peak values.

	Tuble 21. Sumple Onto STS 2 Truck Foux Duta for STT Test 500 (Trucki Cuk.txt)								
Series	Subseries	Run	Section	Sensor Name	Sensor Number	X (in.)	Peak Value (µe)		
2	"H"	1	"390201"	"DYN"	1	18.6	3.00		
2	"H"	1	"390201"	"DYN"	1	82.3	-22.07		
2	"H"	1	"390201"	"DYN"	1	153.9	11.14		
2	"H"	1	"390201"	"DYN"	1	222	-44.72		
2	"H"	1	"390201"	"DYN"	1	311.9	4.95		

Table 21: Sample Ohio SPS-2 Truck Peak Data for J1A Test Job (TruckPeak.txt)

Note: In above table subseries 'H' infers 'A'.

In the DLR_STRAIN_TRACE_SUM_PCC table, strain gauge DYN8 from Test Job J5J1P Runs 1 to 10 collected at 499.964Hz on 8/6/1997 had significantly larger raw strain values compared to other Ohio SPS-2 strain gauge values that were mostly less than 100 microstrains. Thus, further investigation is needed for this strain gauge. Listed below in Table 22 are sample values from strain gauge DYN8 from Test Job J5J1P Runs 1 to 10 collected at 499.964Hz on 8/6/1997 where MIN/MAX_STRAIN_RAW_VALUEs are in microstrains.

STATE_CODE	SHRP_ID	TEST_NAME	RUN_NUMBER	TAG_ID	MIN_STRAIN_RAW_VALUE	MAX_STRAIN_RAW_VALUE
39	0205	J5J1P	1	DYN8	19939.61	19974.62
39	0205	J5J1P	2	DYN8	20024.00	20058.39
39	0205	J5J1P	3	DYN8	19990.25	20027.13
39	0205	J5J1P	4	DYN8	20066.51	20097.77
39	0205	J5J1P	5	DYN8	20164.66	20200.29
39	0205	J5J1P	6	DYN8	20224.04	20257.80
39	0205	J5J1P	7	DYN8	20269.05	20307.19
39	0205	J5J1P	8	DYN8	20340.94	20372.82
39	0205	J5J1P	9	DYN8	20386.58	20422.21
39	0205	J5J1P	10	DYN8	20458.47	20483.47

Table 22: Raw Strain Gauge (DYN8) Values of J5J1P Test Job

Currently, the first 500 trace data points were used to average a gain adjustment factor for Ohio SPS-2 data. On average, each Ohio SPS-2 time history dataset contains close to 7,000 data points whereas each Ohio SPS-1 time history dataset contains about 5,000 data points. However, in retrospect, due to significant noise in Ohio SPS-2 data, the first 500 data points may not be enough. For future research, the first 700 data points should be used to determine a gain adjustment factor for Ohio SPS-2 data because it is about 10% of each Ohio SPS-2 time history dataset that contains, on average, close to 7,000 measurements.

Similar to the Ohio SPS-1 data discussed at the bottom of Section 7.1.2, the Ohio SPS-2 begin offset, end offset, and range values for strain gauges and LVDTs obtained from the DLR raw traces did not match the begin/end offset and range values in SDR 22. Per the TSSC's recommendations, the begin offset, end offset, and range columns were removed and will not show up in the upcoming SDR 27.

8. UPDATES to THE OHIO SPS-1 and 2 DLR TABLES

This section summarizes the key updates made to the Ohio SPS-1 and 2 DLR tables in the upcoming SDR 27. In the five trace tables: DLR_STRAIN_TRACE_SUM_AC/PCC,

DLR_LVDT_TRACE_SUM_AC/PCC, and DLR_PRESSURE_TRACE_SUM_AC, the following columns were updated:

- A new GAIN_ADJUST_FACTOR (average of the first 500 trace data points) column was added. A gain adjustment factor was subtracted from each raw trace data point to generate a normalized trace base zero on the y-axis i.e. under no load conditions, so that the resulting peak values represented the change due to load response. For the Ohio SPS-1 data, normalized raw or smoothed traces were used to extract the trace peaks and valleys. For the Ohio SPS-2 data that has significant noise in the raw traces, only normalized smoothed traces were used to extract the trace peaks and valleys even though the gain adjustment factor was determined using the raw trace data.
- A new DATA_COLLECTION_FREQUENCY (the frequency at which the trace data point was collected by the corresponding sensor identified by the TAG_ID (sensor ID) field) column was added.
- For the Ohio SPS-1 data:
 - TIME_RAW_* and STRAIN/LVDT/PRESSURE_VALUE_RAW_* are the timestamps and trace peak and valley location values updated using the data extracted from Ohio SPS-1 normalized raw traces.
 - TIME_SMOOTH_* and STRAIN/LVDT/PRESSURE _VALUE_SMOOTH_* are the timestamps and trace peak and valley location values updated using the data extracted from Ohio SPS-1 smoothed traces.
- For the Ohio SPS-2 data:
 - TIME_RAW_* and STRAIN/LVDT_VALUE_RAW_* columns were removed from the DLR database due to the fact that SPS-2 raw traces were too noisy to extract any meaningful peaks and valleys.

 TIME_SMOOTH_* and STRAIN/LVDT _VALUE_SMOOTH_* are the timestamps and trace peak and valley location values updated using the data extracted from Ohio SPS-2 smoothed traces.

In the five configuration tables: DLR_STRAIN_CONFIG_AC/PCC,

DLR_LVDT_CONFIG_AC/PCC, and DLR_PRESSURE_CONFIG_AC, the following columns were updated:

- Initially, some newly added Ohio SPS-1 and 2 test jobs had missing sensor calibration information such as channel number, record status, input card, card gain, post gain, gauge resolution etc. Fortunately, by matching STATE_CODE, SHRP_ID, and TAG_ID (sensor ID) of existing test jobs that have sensor calibration information, those test jobs that had missing information could be populated regardless of test job names.
- The sensor locations in terms of X, Y, and Z coordinates were updated using the X, Y, and Z data in EmbeddedSensor.txt by matching section ID and sensor ID.
- The SENSOR_LAYER_NUMBER column was updated using the Z (sensor depth in inches) data and the LAYER column in EmbeddedSensor.txt and Ohio_Letter.pdf (has Ohio SPS-1 and 2 test section charts with information on layer type, thickness, test section start and end stations) ⁽¹¹⁾.
- The strain gauge ORIENTATION column in the DLR_STRAIN_CONFIG_AC/PCC tables was updated using the DirCosX (1 for longitudinal) and DirCosY (1 for transverse) data in EmbeddedSensor.txt.

In the DLR_TEST_MATRIX table, the following columns were updated:
- RUN_TIME (the time of the test as determined by the data acquisition computer's internal clock): was updated using the timestamp in cell A3 of each AJ*.* raw trace file by matching STATE_CODE, SHRP_ID, TEST_NAME, and RUN_NUMBER.
- REVISION_DATE (Date of latest revision to the information stored in the DLR_TEST_MATRIX table): was set to August 24, 2012 when the DLR Study Team submitted the newly created Ohio SPS-1 and 2 DLR database.
- ACTUAL_SPEED (actual speed of the test truck in kilometers per hour): was newly added and populated using the SPEED data in TruckPass.txt. The DLR Study Team believes that this column will provide invaluable information for data users when interpreting DLR traces, in addition to the DESIRED_SPEED column.
- WHEEL_PATH_OFFSET1_M (distance from the edge of pavement to the outside of the *front* tire track for OH data) was updated using the OFFSET1 data in TruckPass.txt.
- WHEEL_PATH_OFFSET2_M (distance from the edge of pavement to the outside of the *rear* tire track for OH data) was updated using the OFFSET2 data in TruckPass.txt
- WHEEL_PATH_OFFSETX1_M (distance along the direction of traffic as referenced from the start of the southernmost 1st LVDT in the section to the location where the front axle wheelpath offset was measured) was newly added using the OFFSETX1 data inTruckPass.txt.
- WHEEL_PATH_OFFSETX2_M (distance along the direction of traffic as referenced from the start of the southernmost 1st LVDT in the section to the location where the rear axle wheelpath offset was measured) is newly added using the OFFSETX2 data in TruckPass.txt.
- When comparing the DLR_TEST_MATRIX table in SDR 22.0 to the five trace tables, the DLR Study Team found that the following nine (as in Table 23) out of the 724

records in DLR_TEST_MATRIX did not have any source data to populate the columns:

ACTUAL_SPEED, WHEEL_PATH_OFFSET1_M, WHEEL_PATH_OFFSET2_M,

WHEEL_PATH_OFFSETX1_M, WHEEL_PATH_OFFSETX2_M, and

MATRIX_INDEX.

2

"E"

1

Table 23: The nine records in the DLR_TEST_MATRIX table in SDR 22.0 that did not have any source data to update with and thus, were removed.

STATE_CODE	SHRP_ID	TEST_NAME	RUN_NUMBER
39	104	J4A	7
39	104	J4D	12
39	104	J4F	9
39	108	J8D	3
39	110	J10E	1
39	201	J1B	6
39	205	J5A	29
39	205	J5B	5
39	212	J12J10P	2

Taking J10E Run 1 in Table 23 as an example, TruckPass.txt does not have any information for 390110 (J10E Run 1) as listed in Table 24. Therefore, the DLR Study Team did not include the nine records in Table 23 in the final DLR_TEST_MATRIX table in the upcoming SDR 27.

	10 2 11 11 00			e e e e e e e e e e e e e e e e e e e				
Series	Subseries	Run	Section	Actual_Speed	Offset1	Offset2	OffsetX1	OffsetX2
2	"E"	1	"390102"	28.77	10.000	10.000	264.00	0.00
2	"E"	1	"390104"	29.63	9.000	8.500	264.00	0.00
2	"E"	1	"390105"	28.31	9.500	9.500	264.00	0.00

8.000

8.000 288.00 -24.00

"390108" 28.31

Table 24: TruckPass.txt does not contain any data for Section 390110 (J10E Run 1).

Since the nine records in Table 23 were removed from the DLR_TEST_MATRIX table, 54 traces that did not have a matching record in the DLR_TEST_MATRIX were removed from the five trace tables in the upcoming SDR 27.

9. SAMPLE RESULTS

This section compares the DLR trace plots created using the Ohio SPS-1 DLR raw data, SDR 22.0 data, and the new Ohio SPS-1 and 2 DLR database (temporarily designated as SDR 27.0) created using the methodology presented in this report for the Ohio SPS-1 and 2 data.

9.1 Ohio SPS-1 Data Sample Plots

Figures 19 to 21 show the sample plots of Ohio Section 390102 Test Job J2C Run 1 using the newly created Ohio SPS-1 and 2 DLR database (temporarily designated as SDR 27.0) for strain gauge Dyn12, LVDT1, and pressure cell PC1, respectively. It appears that the newly created data match the DLR raw traces.

Per the recommendation from Eric Weaver (FHWA HRDI-20: Pavement Design and Construction Team) for the strain gauges, the front axle pavement deflection peaks and valleys as well as their corresponding time stamps were also included in the newly created Ohio SPS-1 and 2 DLR database whereas the front axle deflections are missing in SDR 22.0 as depicted in Figure 19. Meanwhile, Eric suggested that the onset of the third valley near time point 1.8 seconds was not required to be included in the database because researchers will focus on the peaks and valleys in a trace. As a result, the SDR 27 Dyn12 raw trace in Figure 19 goes directly from the second valley to the third valley without matching the DLR raw Dyn12 trace in between the two valleys.

Figure 19: Comparison of strain gauge Dyn12 traces using the Ohio SPS-1 DLR raw data, SDR 22.0 data, and the newly created Ohio SPS-1 and 2 DLR database (temporarily designated as SDR 27.0) for Ohio Section 390102 test job J2C Run 1 conducted on August 5, 1996.

Figure 20: Comparison of LVDT1 traces using the Ohio SPS-1 DLR raw data, SDR 22.0 data, and the newly created Ohio SPS-1 and 2 DLR database (temporarily designated as SDR 27.0) for Ohio Section 390102 test job J2C Run 1 conducted on August 5, 1996.

Per Eric Weaver's recommendation for the LVDTs, only the peaks (but no valleys) and

their corresponding time stamps were included in the Ohio SPS-1 and 2 DLR database as

depicted in Figure 20.

Figure 21: Comparison of pressure cell PC1 traces using the Ohio SPS-1 DLR raw data, SDR 22.0 data, and the newly created Ohio SPS-1 and 2 DLR database (temporarily designated as SDR 27.0) for Ohio Section 390102 test job J2C Run 1 conducted on August 5, 1996.

Per Eric Weaver's recommendation for the pressure cells, only the peaks (but no valleys)

and their corresponding time stamps were included in the Ohio SPS-1 DLR database as depicted

in Figure 21.

9.2 Ohio SPS-2 Data Sample Plots

Figures 22 to 23 show the sample plots of Ohio Section 390201 Test Job J1A Run 2 using the newly created Ohio SPS-1 and 2 DLR database (temporarily designated as SDR 27.0) for strain gauge Dyn5 and LVDT1, respectively. It appears that the newly created data match the DLR raw traces.

Per Eric Weaver's recommendation for the strain gauges, the front axle pavement deflection peaks and valleys as well as their corresponding time stamps were also included in the newly created Ohio SPS-1 and 2 DLR database whereas the front axle deflections were missing in SDR 22.0 as depicted in Figure 22. Meanwhile, Eric suggested that the third valley near time stamp 2.0 seconds in between the two tandem axle peaks was not required to be included in the database. As a result, the SDR 27 Dyn5 smoothed trace in Figure 22 goes directly from the second peak to the third peak without matching the third valley of the DLR Dyn5 raw trace in between the two tandem axle peaks.

Figure 22: Comparison of strain gauge Dyn5 traces using the Ohio SPS-2 DLR raw data, SDR 22.0 data, and the newly created Ohio SPS-1 and 2 DLR database (temporarily designated as SDR 27.0) for Ohio Section 390201 test job J1A Run 2 conducted on August 12, 1996.

Time (s)

Figure 23: Comparison of LVDT1 traces using the Ohio SPS-2 DLR raw data, SDR 22.0 data, and the newly created Ohio SPS-1 and 2 DLR database (temporarily designated as SDR 27.0) for Ohio Section 390201 test job J1A Run 2 conducted on August 12, 1996.

Per Eric Weaver's recommendation for the LVDTs, only the peaks (but no valleys) and

their corresponding time stamps were included in the Ohio SPS-1 and 2 DLR database as

depicted in Figure 23.

10. CONCLUSIONS

The DLR Study Team completed re-interpreting 4,290 Ohio SPS-1 DLR raw traces as in Table 3 and 9,240 Ohio SPS-2 DLR raw traces as in Table 4, correcting the data issues identified by DAOFRs ECOMPEX-75 to -77^(3, 4, 5) and the TSSC technical memorandum ⁽⁶⁾ for SDR 22.0, including trace peak time lag shift, incorrect sensor locations and wheelpath offsets. Using the methodology in Section 5 of this report, the DLR Study Team calibrated and smoothed the Ohio SPS-1 and 2 raw traces before categorizing those traces into three categories: "Good", "Maybe", and "Not Good" according to the trace categorization criteria in Section 5.5.1. For the Ohio SPS-1 data, the trace categorization QC results for smoothed and raw traces are listed in Table 13 and 14, respectively; about 24% of strain gauge traces, 55% of LVDT traces, and 99% of pressure cell traces were concluded to be "Good." For the Ohio SPS-2 data, due to significant noise in the raw traces, only smoothed traces were categorized and the QC result is listed in Table 17; about 61% of strain gauge traces and 15% of LVDT traces were concluded to be "Good." Above all, only "Good" traces were used for further extraction of trace peaks and valleys for the upcoming SDR 27. In addition, the sensor locations and the corresponding wheelpath offsets were corrected using the approach in Section 5.6. In all, the newly created DLR data in SDR 27.0 appear to match the DLR raw traces as demonstrated by the charts in Section 9.

Moreover, the QC results from the categorization criteria were manually checked, i.e. sensor status from visit to visit and run to run for all Ohio SPS-1 and 2 test jobs for smoothed and raw traces were checked. To facilitate future DLR data users in identifying the layout and status of each sensor from one test visit or run to another, the necessary information is listed as follows:

- Appendix A: Sensor layout in the Ohio SPS-1 DLR sections.
- Appendix B: Sensor status of the 23 Ohio SPS-1 DLR test jobs.
- Appendix C: Sensor layout in the Ohio SPS-2 DLR sections.
- Appendix D: Sensor status of the 24 Ohio SPS-2 DLR test jobs.

In addition, the first peak value extracted for good traces was compared with the TruckPeak.txt data from Ohio University, which indicated that the values were very close for most of the sensors for all test sections as presented in Table 18 (Ohio SPS-1) and Table 21 (Ohio SPS-2). Meanwhile, the data issues identified in the DLR raw traces are listed as follows in terms of Ohio SPS-1, Ohio SPS-2, and the issues common to both the Ohio SPS-1 and -2 data.

10.1 Ohio SPS-1 Data Issues

The Ohio SPS-1 data issues identified so far are listed as the following:

- Some test jobs in DLR data did not have any test files and some files did not have information pertaining to sensor locations, truck pass, and truck peak in Ohio data. These test jobs were not considered for processing. As a result, only 23 out of 34 test jobs were considered for DLR data processing.
- Strain gauge sensors Dyn10 and Dyn11 for test jobs J2A, J2C, J2D, J2E, J2F and J2G in test section 390102 showed a flat trace pattern.
- All of the LVDTs were buried deep into the subgrade or close to the interface between the subgrade and the base layer in the Ohio test sections and thus, LVDT traces should not contain any trace valleys (no tensile strains) but peaks (compressive strains). However, LVDT3 sensor for test jobs J2A, J2C, J2D, J2E, J2F and J2G (test section 390102) showed a trace pattern similar to a longitudinal strain gauge trace that contains trace valleys.

- 4. Longitudinal strain gauges are expected to assume trace valleys whereas transverse strain gauges are not. However, longitudinal strain gauge sensor Dyn17 for test jobs J8A, J8D, J8E, and J8G (test section 390108) showed a trace pattern similar to a transverse strain gauge trace that assumed no valleys.
- 5. As indicated by Table 9, a significant difference between the extracted peaks and Ohio data peak for some sensors was observed, this could be due to the sensor locations reported in Ohio data (Truckpeak.txt) being about two to three inches off the actual sensor locations from the southernmost deep LVDT.
- 6. In Table 25, inconsistent Z coordinates (depth of the sensor from the pavement surface) for strain gauges DYN16 to 18 were found between Ohio 390108 section profile view and EmbeddedSensor.txt. Test names J8A, J8D, J8E, and J8G were conducted in Ohio section 390108, consisting of three AC layers (2", 2", and 3"), one PATB (4") base, one DGAB (8") base, and subgrade.

Section	Name	Number	Model	X	Y	Z	Path	Layer	DirCosX	DirCosY	DirCosZ
			PAST-II								
390108	DYN	16	AC	72	72	7*	CL	Bottom*	0	1	0
			PAST-II								
390108	DYN	17	AC	96	72	7*	CL	Bottom*	1	0	0
			PAST-II								
390108	DYN	18	AC	120	72	7*	CL	Bottom*	0	1	0

Table 25: Sample data from EmbeddedSensor.txt

* indicates suspect data.

Ohio 390108 section profile view shows that DYN16 to 18 were buried at the bottom (Z=11" from the pavement surface) of the top PTAB base layer (4") which is below the three AC layers (2", 2", and 3"). In contrast, EmbeddedSensor.txt shows that DYN16 to 18 were buried at Z = 7" (from the pavement surface) and Layer is "bottom", referring to the bottom of the lowest of the three AC layers (2", 2", and 3"). Thus, the DLR Study

Team recommends changing the Z coordinate of 390108 DYN 16 to 18 to **11**" from 7" and changing the Layer to "**Base PATB**" or "**Base**" from "Bottom" for this case.

7. The construction plan from one of the original DLR documents showed that two AC layers were planned for Ohio Sections 390102, 0104, 0108, and 0110. However, the section profile views of these sections showed three AC layers. Based on the construction plan, the SECTION_LAYER_STRUCTURE table in LTPP SDR 26.0 showed two AC layers with the bottom AC layer combining the two bottom AC layers (2" and 3") shown in the profile views into a 5" AC layer while keeping the top 2" AC layer as the top AC layer. Thus, the DLR Study Team recommends revising the SECTION_LAYER_STRUCTURE table in order to show the *three* (instead of two) AC layers as displayed in the section profile views.

10.2 Ohio SPS-2 Data Issues

The Ohio SPS-2 data issues identified so far are listed as the following:

- Due the fact that test job J12A1 is empty and test job J12J10M1 is a partial repeat of J12J10M, the two test jobs were not processed. As a result, only 24 out of 26 test jobs were considered for DLR data processing.
- Site visits ('A', 'B', and 'C') of Ohio SPS-2 test sections 0201, 0205, 0208 and 0212 are inconsistent with Ohio SPS-2 subseries ('H', 'I', and 'J') of OU TruckRun.txt data. Since subseries 'A', 'B', 'C', 'D', 'E', 'F' and 'G' were already used for Ohio SPS-1 in TrcukRun.txt, it was assumed that, OU assigned 'H', 'I', and 'J' instead of 'A', 'B', and 'C' for Ohio SPS-2.
- In the DLR_STRAIN_TRACE_SUM_PCC table, strain gauge DYN8 from Test Name J5J1P Runs 1 to 10 collected at 499.964Hz on 8/6/1997 had significantly larger raw strain

values compared to other Ohio SPS-2 strain gauge values that were mostly less than 100 microstrains as listed in Table 22. Thus, further investigation is needed for this strain gauge.

- Ohio SPS-2 DLR sensors LVDT 5 and LVDT 6 were unresponsive for all test jobs (i.e.) LVDT 5 and LVDT 6 records had all zero values.
- 5. Ohio SPS-2 test jobs J5J1M, J5J1N, J5J1O, J5J1P, J8S3M, J8S3N, J8S3O, J8S3P, J12J10M, J12J10N, J12J10O, and J12J10P ASCII files had a total of thirty two LVDT sensors (LVDT1-LVDT32) unlike the other test jobs (J1A, J1B, J1C, J5A, J5B, J5C, J8A, J8B, J8C, J12A, J12B, and J12C that only had sixteen LVDT sensors (LVDT1-LVDT16). The DLR Study Team processed only the first sixteen LVDTs (LVDT1-LVDT16) based on information present in EmbeddedSensor.txt file (shows only first sixteen LVDTs).
- 6. As discussed in Section 5.2.2, the first 500 trace data points were used to determine the gain adjustment factor for Ohio SPS-2 data. On average, each Ohio SPS-2 time history dataset contains close to 7,000 data points whereas each Ohio SPS-1 time history dataset contains about 5,000 data points. However, in retrospect, due to significant noise in Ohio SPS-2 data, the first 500 data points may not be enough. For future research, the first 700 data points should be used to determine the gain adjustment factor for Ohio SPS-2 data because it is about 10% of each Ohio SPS-2 time history dataset that contains close to 7,000 measurements.

10.3 Ohio SPS-1 and 2 Data Issues

The data issues common to both the Ohio SPS-1 and -2 traces identified so far are listed as the following:

- The proposed REF_LOC_NO, the distance between the beginning of a test section and the southernmost first LVDT which serves the origin of the sensor coordinate system, is not possible as the section beginning was not used as a reference for sensor location and sections have been since overlaid, making this measurement unattainable.
- As listed in Table 18 (Ohio SPS-1) and Table 21 (Ohio SPS-2), the peak data information contained in Ohio TruckPeak.txt file was unclear to understand because it had multiple sensor location values for the same sensor and run.
- 3. The begin offset, end offset, and range values for strain gauges, LVDTs (for both Ohio SPS-1 and 2), and pressure cells (for Ohio SPS-1 only) obtained from the DLR raw traces did not match the begin/end offset and range values in SDR 22. Per the TSSC's recommendations, the begin offset, end offset, and range columns were removed and will not show up in the upcoming SDR 27.
- 4. The information on channel number, record status, input card, card gain, post gain, gauge resolution etc. in DLR_STRAIN_CONFIG_AC/PCC, DLR_LVDT_CONFIG_AC/PCC, DLR_PRESSURE_CONFIG_AC and run time in DLR_TEST_MATRIX presented in DLR tables in SDR was not found.
- 5. Inconsistent wheelpath offset field in DLR_TEST_MATRIX was updated only for Ohio test sections using the truck pass data in Ohio data set (TruckPass.txt). However, the DLR_TEST_MATRIX table in SDR had wheelpath offset records for both Ohio and NC test sections. Since the wheelpath offset data for NC test sections was not available, the wheelpath offset records for NC test sections were not updated.
- 6. As indicated by Table 23, the nine records in the DLR_TEST_MATRIX table in SDR22.0 that did not have any source data to update with and thus, were removed. As a

result, 54 traces that did not have a matching record in the DLR_TEST_MATRIX were removed from the five trace tables in the upcoming SDR 27.

7. The DLR Study Team could not find any information to interpret data in the MATRIX_INDEX column (distinct coded reference number for controlled truck testing used to aggregate the tests according to the type of truck, vehicle speed, and general time of testing (early morning, midmorning, or afternoon) in DLR_TEST_MATRIX. Thus, we recommend removing the column for which we cannot provide any explanation.

Acknowledgement

The authors of this report would like to extend our gratitude to Roger Green from Ohio Department of Transportation and Dr. Shad Sargand's team at Ohio University for providing the DLR raw traces and the associated data files (*.txt) and to Eric Weaver from the FHWA Pavement Design and Construction Team (HRDI-20), Gary Elkins from AMEC (the LTPP Technical Support Service Contractor (TSSC)), Gabe Cimini from Stantec (the LTPP Northern Regional Contractor), and Mary Anne Deeney from ESCINC as well as the whole LTPP Team for your comments and support for the completion of such a complex, challenging project.

Reference

- 1. Cimini, Gabe (2010). Layout Information. Stantec, Tonawanda, New York.
- Sargand, Shad et al. (2007). Evaluation of Pavement Performance on DEL 23, Report No. FHWA/OH-2007/05. Department of Civil and Environmental Engineering, Ohio University, Athens, Ohio.
- Lin, Sean (2009). LTPP Data Analysis/Operations Feedback Report, Report No. Ecompex-75_Rev_1. Ecompex, Inc., McLean, Virginia.
- Lin, Sean (2009). LTPP Data Analysis/Operations Feedback Report, Report No. Ecompex-76_Rev_1. Ecompex, Inc., McLean, Virginia.
- Lin, Sean (2009). LTPP Data Analysis/Operations Feedback Report, Report No. Ecompex-77_Rev_1. Ecompex, Inc., McLean, Virginia.
- Elkins, Gary (2009). Technical Memorandum: Investigation of Ohio DLR data in LTPP Database. AMEC, Reno, Nevada.
- MATLAB version 7.11 (2010). MATLAB Copyright © 1984-2010 by The MathWorks Inc. Natick, Massachusetts.
- Weaver, Eric (2000). Comparison and Quality Evaluation of LTPP DLR Data from Ohio and North Carolina. Federal Highway Administration, Turner-Fairbank Highway Research Center, Pavement Design and Construction Team (HRDI-20), McLean, Virginia.
- 9. The mslowess function of Matlab[®]:

http://www.mathworks.com/help/toolbox/bioinfo/ref/mslowess.html. site last accessed December 29, 2011. 10. The mspeaks function of Matlab[®]:

http://www.mathworks.com/help/toolbox/bioinfo/ref/mspeaks.html?nocookie=true. site last accessed December 29, 2011.

11. Khoury, Issam (undated). Ohio_Letter.pdf: Ohio SPS-1 and 2 Test Section Charts with Information on Layer Type, Thickness, Test Section Start and End stations. Department of Civil and Environmental Engineering, Ohio University, Athens, Ohio.

APPENDIX A: Sensor Layout in the Ohio SPS-1 DLR Sections

Figure 24: Section 390102 Sensor Layout

Figure 26: Section 390108 Sensor Layout

Figure 27: Section 390110 Sensor Layout

APPENDIX B: Sensor Status of the 23 Ohio SPS-1 DLR Test Jobs

Note: Sensor colors represent the status of a sensor based on QC results (Green: Good, Orange: Maybe, Red: No Good). The sensors with color combinations of more than one color represent status in combination. For example, if a sensor color is in a combination of green and orange then the status of the sensor is Good and Maybe.

Figure 28: Graphical Representation of QC Results by Sensor Type for Section 390102 J2A Test

				J2C	lest Jo	DUQU	Result	S				
Run #	Dyn7	Dyn8	Dyn9	Dyn10	Dyn11	Dyn12	LVDT1	LVDT2	LVDT3	LVDT4	PC1	PC2
1	3	3	3	3	3	1	1	3	1	1	1	1
2	3	3	3	3	3	1	1	3	1	1	1	1
3	3	3	3	3	3	1	1	3	1	1	1	1
4	3	3	3	3	3	1	1	3	1	1	1	1
5	3	3	1	3	3	1	2	3	1	1	1	1
6	3	3	1	3	3	1	2	3	1	2	1	1
7	3	3	3	3	3	1	1	3	1	1	1	1
8	3	3	3	3	3 3 1 1 3 1 1 1 3 3 1 1 3 1 2 1							
9	3	3	3	3	3	1	1	3	1	1	1	1
10	3	3	3	3	3	1	1	3	1	1	1	1
Sensor	Туре	Good traces*	May be traces*	No Good traces*	Note: N in the a	lumbers bove tai	1, 2, & 3 ble repre	under e sent 1: G	ach sens ood, 2: N	or (not fi Aaybe, a	nd 3:	in #) No
Strain g	gauge	12**	0	48	Good re	espectiv	ely. *:s	hows su	mmarized	l trace co	unts	for
LVDT		26	4	10	good, n each se	nay be, a msor tvi	and no g	ood trac 2 is the te	es from to tal of tw	he above o "I's" u	tabk tinder	e for
PC		20	0	0	Dyn9 a	nd other	r ten " l's	" under	Dyn12.	1997 - 1997 - 19	100 Million	

ſ.

Note: Sensor colors represent the status of a sensor based on QC results (Green: Good, Orange: Maybe, Red: No Good). The sensors with color combinations of more than one color represent status in combination. For example, if a sensor color is in a combination of green and orange then the status of the sensor is Good and Maybe.

Figure 29: Graphical Representation of QC Results by Sensor Type for Section 390102 J2C Test

PROFILE VIEW

(Not to Scale)

				J2D T	fest Jo	b QC	Result	S				
Run #	Dyn7	Dyn8	Dyn9	Dyn10	Dyn11	Dyn12	LVDT1	LVDT2	LVDT3	LVDT4	PC1	PC2
1	3	3	2	3	3	1	1	3	1	2	1	1
2	3	3	1	3	3	1	1	3	1	1	1	1
3	3	3	2	3	3	1	1	3	1	1	1	1
4	3	3	2	3	3	1	1	3	1	1	1	1
5	3	3	2	3	3	1	1	3	1	1	1	1
6	3	3	2	3	3	1	1	3	1	1	1	1
7	3	3	2	3	3	1	1	3	1	1	1	1
8	3	3	2	3	3	1	1	3	1	1	1	1
9	3	3	3	3	3	1	1	2	1	1	1	1
10	3	3	3	3	3	1	1	2	1	1	1	1
11	3	3	3	3	3	1	1	2	1	1	1	1
12	3	3	3	3	3	1	1	2	1	1	1	1
13	3	3	3	3	3	1	1	2	1	1	1	1
14	3	3	2	3	3	1	1	2	1	1	1	1
15	3	3	3	3	3	1	1	2	2	1	1	1
16	3	3	3	3	3	1	1	2	1	2	1	1
Sensor	Туре	Good traces*	May be traces*	No Good traces*	Note: N in the a	lumbers	1, 2, & 3 ble repre	under ea sent 1: G	ood, 2: N	or (not fi laybe, a	nd 3:	in #) No
Strain	gauge	17**	8	71	Good re	espectiv	ely. *: sh	nows sur	nmarized	trace co	unts i	tor
LVDT	1	45	11	8	each se	ensor ty	ne. **: 1	7 is the to	otal of on	e "1" un	der D	ovn9
PC		32	0	0	and oth	ner sixte	en "1's" u	inder Dy	n12.			

Note: Sensor colors represent the status of a sensor based on QC results (Green: Good, Orange: Maybe, Red: No Good). The sensors with color combinations of more than one color represent status in combination. For example, if a sensor color is in a combination of green and orange then the status of the sensor is Good and Maybe.

Figure 30: Graphical Representation of QC Results by Sensor Type for Section 390102 J2D Test

(Not to Scale)

PROFILE VIEW

	ST 12			J2E T	fest Jo	b QC	Result	s			,	
Run #	Dyn7	Dyn8	Dyn9	Dyn10	Dyn11	Dyn12	LVDT1	LVDT2	LVDT3	LVDT4	PC1	PC2
1	3	3	3	3	3	1	1	1	1	1	1	1
2	3	3	1	3	3	1	1	2	1	1	1	1
4	3	3	3	3	3	1	1	1	1	1	1	1
5	3	3	3	3	3	1	1	2	1	1	1	1
6	3	3	3	3	3	1	1	1	1	1	1	1
7	3	3	1	3	3	1	1	1	1	1	1	1
8	3	3	1	3	3	1	1	1	1	1	1	1
9	3	3	3	3	3	1	1	2	1	1	1	1
10	3	3	3	3	3	1	1	2	1	1	1	1
11	3	3	3	3	3	1	1	2	1	1	1	1
12	3	3	3	3	3	1	1	2	1	1	1	1
13	3	3	3	3	3	1	1	2	1	1	1	1
Senso	r Type	Good traces*	May be traces*	No Good traces*	Note: N in the a	lumbers	1, 2, & 3 ble repre	under e sent 1: C	ach sens bood, 2: N	or (not fi Aaybe, a	nd 3:	in #) No for
Strain	gauge	15**	0	57	good, r	nay be,	and no g	ood trac	es from t	he above	table	e for
LVDT		41	7	0	each se	ensor typ	pe. **: 1	5 is the to	otal of th	ree "1's"	unde	r
PC		24	0	0	Dyn9 a	nd othe	r twelve	"1's" und	ler Dyn1	2.		

Note: Sensor colors represent the status of a sensor based on QC results (Green: Good, Orange: Maybe, Red: No Good). The sensors with color combinations of more than one color represent status in combination. For example, if a sensor color is in a combination of green and orange then the status of the sensor is Good and Maybe.

Figure 31: Graphical Representation of QC Results by Sensor Type for Section 390102 J2E Test

PROFILE VIEW

	J2F Test Job QC Results 1# Dyn7 Dyn8 Dyn9 Dyn10 Dyn11 Dyn12 LVDT1 LVDT2 LVDT3 LVDT4 PC1 PC2 1 3 3 1 3 3 1 1 2 1 <														
Run #	J2F Test Job QC Results I Dyn7 Dyn8 Dyn9 Dyn10 Dyn11 Dyn12 LVDT1 LVDT2 LVDT3 LVDT4 PC1 PC2 I 3 3 1 3 3 1 1 2 1 <														
1	3	3	1	3	3	1	1	2	1	1	1	1			
2	3	3	1	3	3	1	1	1	1	1	1	1			
3	3	3	1	3	3	1	1	2	1	1	1	1			
4	3	3	1	3	3	1	1	1	1	1	1	1			
5	3	3	1	3											
6	3	3	1	3											
7	3	3	1	3	3	1	1	1	1	1	1	1			
8	3	3	1	3	3	1	1	1	1	1	1	1			
Senso	rtype	Good	May be	No Good	Note: N	lumbers	1, 2, & 3	under ea	ach sens	or (not fi	om ru	ın #)			
Senso	reype	traces*	traces*	traces*	in the a	bove tal	ble repre	sent 1: G	ood, 2: N	/laybe, a	nd 3:1	No			
Strain g	gauge	16**	0	32	Good respectively. *: shows summarized trace counts for										
LVDT		29	3	0	good, n each se	nay be, a msor tvi	and no g	ood trace 5 is the te	es from t otal of ei	he above ght "1's"	tabk unde	r			
PC		<u>16</u>	0	0	Dyn9 a	nd other	r eight " l	's" unde	r Dyn12						

Note: Sensor colors represent the status of a sensor based on QC results (Green: Good, Orange: Maybe, Red: No Good). The sensors with color combinations of more than one color represent status in combination. For example, if a sensor color is in a combination of green and orange then the status of the sensor is Good and Maybe.

Figure 32: Graphical Representation of QC Results by Sensor Type for Section 390102 J2F Test

PROFILE VIEW (Not to Scale)

				J2G	Fest Jo	b QC	Result	S				
Run #	Dyn7	Dyn8	Dyn9	Dyn10	Dyn11	Dyn12	LVDT1	LVDT2	LVDT3	LVDT4	PC1	PC2
1	3	3	2	3	3	1	1	2	1	1	1	1
2	3	3	2	3	3	1	1	2	1	1	1	1
3	3	3	2	3	3	1	1	2	1	1	1	1
- 4	3	3	2	3	3	1	1	2	1	1	1	1
5	3	3	2	3	3	1	1	2	1	1	1	1
6	3	3	2	3	3	1	1	1	1	1	1	1
7	3	3	2	3	3	1	1	2	1	1	1	1
8	3	3	1	3	3	1	1	2	1	1	1	1
9	3	3	1	3	3	1	1	2	1	1	1	1
10	3	3	1	3	3	1	1	2	1	1	1	1
11	3	3	1	3	3	1	1	2	1	1	1	1
12	3	3	2	3	3	1	1	1	1	1	1	1
Senso	r Type	Good traces*	May be traces*	No Good traces*	Note: N in the a	lumbers bove ta	1, 2, & 3 ble repre	under ea sent 1: G	ach sens ood, 2: N	or (not fi Aaybe, a	nd 3:	in #) No
Strain	gauge	16**	8	48	Good re	espectiv	ely. *: sl	nows sur	nmarized	trace co	unts	for
LVDT	8	38	10	0	each se	inay be, a	ne. **	16 is the	total of	four "1's	" und	ler
PC		24	0	0	Dyn9 a	nd othe	rtwelve	"1's" und	ler Dyn 1	2.	I -	

Note: Sensor colors represent the status of a sensor based on QC results (Green: Good, Orange: Maybe, Red: No Good). The sensors with color combinations of more than one color represent status in combination. For example, if a sensor color is in a combination of green and orange then the status of the sensor is Good and Maybe.

Figure 33: Graphical Representation of QC Results by Sensor Type for Section 390102 J2G Test

PLAN VIEW

PROFILE VIEW

J4A Test Job QC Results Dyn13 Dyn14 Dyn15 Dyn16 Dyn17 Dyn18 LVDT1 LVDT2 LVDT3 LVDT4 PC1 PC2 Dyn 12 Run # Dyn10 Dyn11 May be No Good Note: Numbers 1, 2, & 3 under each sensor (not from run #) in the above table Good Sensor type traces* traces* represent 1: Good, 2: Maybe, and 3: No Good respectively. *: shows summarized traces* Strain gauge 46** trace counts for good, may be, and no good traces from the above table for each LVDT sensor type. **: 46 is the total of sixteen "1's" under Dyn16, fourteen "1's" under Dyn17 and sixteen "1's" under Dyn 18. PC

Note: Sensor colors represent the status of a sensor based on QC results (Green: Good, Orange: Maybe, Red: No Good). The sensors with color combinations of more than one color represent status in combination. For example, if a sensor color is in a combination of green and orange then the status of the sensor is Good and Maybe.

Figure 34: Graphical Representation of QC Results by Sensor Type for Section 390104 J4A Test

Run #	Dyn10	Dyn11	Dyn 12	Dyn13	Dyn14	Dyn15	Dyn16	Dyn17	Dyn 18	LVDT1	LVDT2	LVDT3	LVDT4	PC1	PC2
14411 1	2,110	2	2 2	2	2 2	2	Djaro	Djan	Djalo	2.2.1	2.212	2.212	1	101	100
1		3	3	3	2	3	1	1			2	4	1		1
2	3	3	3	3	3	3	1	1	1	1	2	2	1	1	1
3	3	3	3	3	3	3	1	2	1	1	2	2	1	1	1
4	3	3	3	3	3	3	1	2	1	1	2	2	1	1	1
5	3	3	3	3	3	3	1	1	1	1	2	2	1	1	1
6	3	3	3	3	3	3	1	3	1	1	2	2	1	1	1
7	3	3	3	3	3	3	1	3	1	1	2	2	1	1	1
8	3	3	3	3	3	3	1	3	2	1	2	2	1	1	1
9	3	3	3	3	3	3	1	1	1	1	2	2	1	1	1
10	3	3	3	3	3	3	1	1	1	3	2	2	1	1	1
11	3	3	3	3	3	3	1	3	1	1	2	2	1	1	1
12	3	3	3	3	3	3	1	3	1	1	3	3	1	1	1
13	3	3	3	3	3	3	1	3	1	3	2	2	1	1	1
Sensor	type	Good traces*	May be traces*	No Good traces*	Note: N	umbers	1, 2, & : od 2: M	3 under	each ser	s or (not Good re	fromrun	t#)in th∉ by *:sho	e above	table	d
Strain	gauge	30**	5	82	trace co	ounts fo	rgood,	may be,	andno	good tra	ces from	the abov	e table f	orea	ch
LVDT		24	24	4	sensor	type. **	: 30 is th	he total	of thirte	en "1's"	under Dy	n 16, five	e " l's" ur	n der	
PC		26	0	0	Dyn17	and twe	lve "1's'	underl	Dyn18.						

Note: Sensor colors represent the status of a sensor based on QC results (Green: Good, Orange: Maybe, Red: No Good). The sensors with color combinations of more than one color represent status in combination. For example, if a sensor color is in a combination of green and orange then the status of the sensor is Good and Maybe.

Figure 35: Graphical Representation of QC Results by Sensor Type for Section 390104 J4B Test

PROFILE VIEW

					J4	C Test	Job Q	C Res	ults						
Run #	Dyn10	Dyn 11	Dyn 12	Dyn13	Dyn14	Dyn15	Dyn16	Dyn17	Dyn 18	LVDT1	LVDT2	LVDT3	LVDT4	PC1	PC2
1	1	3	2	3	2	3	1	3	1	1	2	2	1	1	1
2	3	3	3	2	3	3	1	3	1	1	2	2	1	1	1
3	3	3	3	2	3	3	1	3	1	1	2	2	1	1	1
4	3	3	2	2	3	3	1	3	1	1	2	1	1	1]
5	3	3	3	2	3	3	1	3	1	1	2	1	1	1	1
6	3	3	3	2	3	3	1	3	1	1	2	2	1	1	1
7	3	3	3	2	3	3	1	3	1	1	2	2	1	1	1
8	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3
Sensor	type	Good traces*	May be traces*	No Good traces*	Note: N	umbers	1, 2, & 1	3 under o	each ser	ns or (not Good re	fromrun	n#)in the hv.*:sho	e above t	table	ed
Strain	gauge	15**	9	48	trace counts for good, may be, and no good traces from the above table for each										
LVDT		16	12	4	sensor	type. **	:15 is th	he total	of one "	1" under	Dyn10,	seven "1	's" unde	r Dy n	16
PC		14	0	2	and sev	en "l's'	under	Dyn18.							

Note: Sensor colors represent the status of a sensor based on QC results (Green: Good, Orange: Maybe, Red: No Good). The sensors with color combinations of more than one color represent status in combination. For example, if a sensor color is in a combination of green and orange then the status of the sensor is Good and Maybe.

Figure 36: Graphical Representation of QC Results by Sensor Type for Section 390104 J4CTest

J4D Test Job QC Results Run # Dyn10 Dyn11 Dyn12 Dyn13 Dyn14 Dyn15 Dyn16 Dyn17 Dyn18 LVDT1 LVDT2 LVDT3 LVDT4 PC1 PC2 May be No Good Note: Numbers 1, 2, & 3 under each sensor (not from run #) in the above table Good Sensor type traces* traces* traces* represent 1: Good, 2: Maybe, and 3: No Good respectively. *: shows summarized Strain gauge 30** trace counts for good, may be, and no good traces from the above table for each LVDT sensor type. **: 30 is the total of fifteen "1's" under Dyn16, and fifteen "1's" under Dyn18 PC

Note: Sensor colors represent the status of a sensor based on QC results (Green: Good, Orange: Maybe, Red: No Good). The sensors with color combinations of more than one color represent status in combination. For example, if a sensor color is in a combination of green and orange then the status of the sensor is Good and Maybe.

Figure 37: Graphical Representation of QC Results by Sensor Type for Section 390104 J4D Test

					J4	E Test	Job Q	C Res	ults						
Run #	Dyn10	Dyn11	Dyn 12	Dyn13	Dyn14	Dyn15	Dyn16	Dyn17	Dyn 18	LVDT1	LVDT2	LVDT3	LVDT4	PC1	PC2
1	3	3	3	3	3	2	1	3	1	1	2	1	1	1	1
2	3	3	3	2	3	2	1	3	1	1	2	1	1	1	1
3	3	3	3	3	3	2	1	3	1	1	2	1	1	1	1
4	3	3	3	3	3	2	1	3	1	1	2	1	1	1	1
5	3	3	3	3	3	2	1	3	1	1	2	1	1	1	1
6	3	3	3	3	3	2	1	3	1	1	2	1	1	1	1
7	3	3	3	3	3	2	1	3	1	1	2	1	1	1	1
8	3	3	3	2	3	2	1	3	1	1	2	1	1	1	1
9	3	3	3	3	3	2	1	3	1	1	1	1	1	1	1
10	3	3	3	3	3	2	1	3	1	1	2	1	1	1	1
11	3	3	3	3	3	2	1	3	1	1	2	1	1	1	1
12	3	3	3	3	3	2	1	3	1	1	2	1	1	1	1
13	3	3	3	3	3	2	1	3	1	1	2	1	1	1	1
Sensor	type	Good traces*	May be traces*	No Good traces*	Note: N	umbers	1, 2, & : od. 2: M	3 under o	each sei ad 3: No	ns or (not Good re	fromrun	(#) in the hy.*:sho	e above	table	ed
Strain	gauge	26**	15	76	trace or	ounts fo	r good,	may be,	andno	good tra	ces from	the abov	e table f	orea	ch
LVDT		40	12	0	sensor	type. **	: 26 is th	ne total	of thirte	en "1's"	under Dy	n 16, and	l thirteen	" l's"	
PC		26	0	0	under I	Oyn 18.									

Note: Sensor colors represent the status of a sensor based on QC results (Green: Good, Orange: Maybe, Red: No Good). The sensors with color combinations of more than one color represent status in combination. For example, if a sensor color is in a combination of green and orange then the status of the sensor is Good and Maybe.

Figure 38: Graphical Representation of QC Results by Sensor Type for Section 390104 J4E Test

PLAN VIEW

PROFILE VIEW (Not to Scale)

					J4	FTest	Job Q	C Res	ults						
Run #	Dyn10	Dyn11	Dyn 12	Dyn13	Dyn14	Dyn15	Dyn16	Dyn17	Dyn 18	LVDT1	LVDT2	LVDT3	LVDT4	PC1	PC2
1	3	2	3	2	3	2	1	3	1	1	2	2	1	1	1
2	3	2	3	2	3	2	1	3	1	1	2	2	1	1	1
3	3	2	3	2	3	2	1	3	1	1	2	2	1	1	1
4	3	2	3	2	3	2	1	3	1	1	2	2	1	1	1
5	3	2	3	2	3	2	1	3	1	1	2	2	1	1	1
6	3	2	3	2	3	2	1	3	1	1	2	2	1	1	1
7	3	2	3	2	3	2	1	3	1	1	2	2	1	1	1
8	3	2	3	2	3	2	1	3	1	1	2	2	1	1	1
9	3	3	3	2	3	2	1	2	1	1	2	2	1	1	1
10	3	3	3	2	3	2	1	3	1	1	2	2	1	1	1
11	3	3	3	2	3	2	1	3	1	1	2	2	1	1	1
12	3	3	3	2	3	2	1	3	1	1	2	2	1	1	1
Sensor type		Good traces*	May be traces*	No Good traces*	Note: Numbers 1, 2, & 3 under each sensor (not from run #) in the above table									ed	
Strain gauge		24**	33	51	trace counts for good, may be, and no good traces from the above table for each										
LVDT	-	24	24	0	sensor	type. **	:24 is th	he total	of twelv	e "1's" u	nder Dyr	16, and	twelve "	l's" u	nder
PC		24	0	0	Dyn18.										

Note: Sensor colors represent the status of a sensor based on QC results (Green: Good, Orange: Maybe, Red: No Good). The sensors with color combinations of more than one color represent status in combination. For example, if a sensor color is in a combination of green and orange then the status of the sensor is Good and Maybe.

Figure 39: Graphical Representation of QC Results by Sensor Type for Section 390104 J4F Test

PROFILE VIEW (Not to Scale)

					J4	G Test	t Job (C Res	sults						
Run #	Dyn10	Dyn 11	Dyn 12	Dyn13	Dyn14	Dyn15	Dyn16	Dyn17	Dyn 18	LVDTI	LVDT2	LVDT3	LVDT4	PCI	PC2
1	3	3	3	3	3	2	1	3	1	1	2	2	1	1	1
2	3	3	3	3	3	2	1	3	1	1	2	2	1	1	1
3	3	3	3	3	3	2	1	3	1	1	2	2	1	1	1
4	3	3	3	3	3	2	1	3	1	1	2	2	1	1	1
5	3	3	3	3	3	2	1	3	1	1	2	2	1	1	1
6	3	3	3	3	3	2	1	3	1	1	2	2	1	1	ĩ đ
7	3	3	3	3	3	2	1	3	1	1	2	2	1	1	1
8	3	3	3	3	3	3	1	3	1	1	2	2	1	1	1
9	3	3	3	3	3	3	1	3	1	1	2	2	1	1	0 1
10	3	3	3	3	3	3	1	3	1	1	2	2	1	1	1
11	3	3	3	3	3	3	1	3	1	1	2	2	1	1	1
12	3	3	3	3	3	3	1	3	1	1	2	2	1	1	1
Sensor type		Good traces*	May be traces*	No Good traces*	Note: N	umbers	1, 2, & . od. 2: M	3 under o	each ser ad 3: No	s or (not Good re	fromrun	(#) in the	e above i	table	d
Strain gauge		24**	7	77	trace counts for good, may be, and no good traces from the above table for each							h			
LVDT		24	24	0	sensor type. **: 24 is the total of twelve "I's" under Dyn16, and twelve "I's" under									nder	
PC		24	0	0	Dyn18.										

Note: Sensor colors represent the status of a sensor based on QC results (Green: Good, Orange: Maybe, Red: No Good). The sensors with color combinations of more than one color represent status in combination. For example, if a sensor color is in a combination of green and orange then the status of the sensor is Good and Maybe.

Figure 40: Graphical Representation of QC Results by Sensor Type for Section 390104 J4G Test

1	2	1	3	1	2	1	3	3	2	2	1	2	1	1	1
2	2	1	3	1	2	1	3	3	2	2	1	2	2	1	1
3	2	1	3	1	2	1	3	3	2	2	1	2	2	1	1
4	2	1	3	1	2	1	3	3	2	2	1	2	1	1	1
5	2	1	3	1	2	1	3	3	2	2	1	2	2	2	1
6	2	1	3	1	2	1	3	3	2	2	1	1	1	1	1
7	2	1	3	1	2	1	3	3	2	2	1	2	1	1	1
8	2	1	3	1	2	1	3	3	2	2	2	2	1	1	1
9	2	1	3	1	2	1	3	3	2	2	2	2	2	1	1
10	2	1	3	1	2	1	3	3	2	2	1	2	1	1	1
11	2	1	3	1	2	1	3	3	2	2	2	2	2	1	1
12	2	1	3	1	2	1	3	3	2	2	2	2	2	1	1
13	2	1	3	1	2	1	3	3	2	1	1	1	1	1	1
14	2	1	3	1	2	1	3	3	2	2	2	2	2	1	1
15	2	1	3	1	2	1	3	3	2	2	1	2	2	1	1
16	2	1	3	1	2	1	3	3	2	2	1	2	2	1	1
Sensor type		Good traces*	May be traces*	No Good traces*	Note: Nu	mbers 1 it 1: Good	, 2, & 3 1 1, 2: Ma	under eac	h senso 3: No Go	r (not fro	mrun #)	in the al	oove ta	ble	d
Strain g	gauge	48* *	48	48	trace con	ints for	good, m	ay be, an	d no goo	od traces	from the	above t	able for	reach	h
LVDT		21	43	0	sensor t	ype. **:	48 is the	total of	sixteen "	l's" un de	er Dyn11	, sixteen	"1's" u	mder	
PC		31	1	0	Dyn13 a	nd sixtee	en "1's" i	under Dy	n 15.						

Note: Sensor colors represent the status of a sensor based on QC results (Green: Good, Orange: Maybe, Red: No Good). The sensors with color combinations of more than one color represent status in combination. For example, if a sensor color is in a combination of green and orange then the status of the sensor is Good and Maybe.

Figure 41: Graphical Representation of QC Results by Sensor Type for Section 390108 J8A Test

PROFILE VIEW

J8D Test Job QC Results Run # Dyn10 Dyn11 Dyn12 Dyn13 Dyn14 Dyn15 Dyn16 Dyn17 Dyn18 LVDT1 LVDT2 LVDT3 LVDT4 PC1 PC2 Good May be No Good Note: Numbers 1, 2, & 3 under each sensor (not from run #) in the above table Sensor type traces* traces* races represent 1: Good, 2: Maybe, and 3: No Good respectively. *: shows summarized Strain gauge 45** trace counts for good, may be, and no good traces from the above table for each LVDT sensor type. **: 45 is the total of fifteen "I's" under Dyn11, fifteen "I's" under Dyn13 and fifteen "1's" under Dyn15. PC

Note: Sensor colors represent the status of a sensor based on QC results (Green: Good, Orange: Maybe, Red: No Good). The sensors with color combinations of more than one color represent status in combination. For example, if a sensor color is in a combination of green and orange then the status of the sensor is Good and Maybe.

Figure 42: Graphical Representation of QC Results by Sensor Type for Section 390108 J8D Test Job

PROFILE VIEW

(Not to Scale)

					J8	E Test	Job Q	C Res	ults						
Run #	Dyn10	Dyn11	Dyn12	Dyn13	Dyn14	Dyn15	Dyn16	Dyn17	Dyn 18	LVDT1	LVDT2	LVDT3	LVDT4	PC1	PC2
1	2	1	2	1	2	1	3	3	2	2	2	2	1	1	1
2	2	1	2	1	2	1	3	3	2	2	2	2	1	1	1
3	2	1	2	1	2	1	3	3	2	2	2	1	1	1	1
4	2	1	2	1	2	1	3	3	2	2	2	1	1	1	1
5	2	1	2	1	2	1	3	3	2	2	2	1	1	1	1
6	2	1	3	1	2	1	3	3	2	2	2	1	1	1	1
7	2	1	3	1	2	1	3	3	2	2	2	1	1	1	1
8	2	1	3	1	2	1	3	3	2	2	2	1	1	1	1
9	2	1	3	1	2	1	3	3	2	2	2	1	1	1	1
10	2	1	3	1	2	1	3	3	2	2	2	2	1	1	1
11	2	1	3	1	2	1	3	3	2	2	2	1	1	1	1
12	2	1	3	1	2	1	3	3	2	2	2	2	1	1	1
13	2	1	3	1	2	1	3	3	2	2	1	1	1	1	1
Sensor	type	Good traces*	May be traces*	No Good traces*	Note: N	lumbers	1, 2, & 1 od. 2: M	3 under a	each ser	is or (not Good re	fromrun	(#) in the by *: sho	e above	table	ed.
Strain	gauge	39* *	44	34	trace co	ounts fo	r good,	may be,	andno	good trad	ces from	the abov	e table f	oread	h
LVDT		23	29	0	sensor type. **: 39 is the total of thirteen "1's" under Dyn 11, thirteen "1's" under										
PC		26	0	0	Dyn13 and thirteen "I's" under Dyn15.										

Note: Sensor colors represent the status of a sensor based on QC results (Green: Good, Orange: Maybe, Red: No Good). The sensors with color combinations of more than one color represent status in combination. For example, if a sensor color is in a combination of green and orange then the status of the sensor is Good and Maybe.

Figure 43: Graphical Representation of QC Results by Sensor Type for Section 390108 J8E Test

Job

PROFILE VIEW (Not to Scale)

					J8	G Test	t Job Q	C Res	sults						
Run #	Dyn10	Dyn 11	Dyn 12	Dyn13	Dyn14	Dyn15	Dyn16	Dyn17	Dyn 18	LVDT1	LVDT2	LVDT3	LVDT4	PCI	PC2
1	2	1	2	1	2	1	3	3	2	2	1	1	1	1	1
2	2	1	3	1	2	1	3	3	2	2	1	1	1	1	1
3	2	1	3	1	2	1	3	3	2	2	1	1	1	1	1
4	2	1	3	1	2	1	3	3	2	2	1	1	1	1	1
5	2	1	3	1	2	1	3	3	2	2	1	1	1	1	1
6	2	1	3	1	2	1	3	3	2	2	1	1	1	1	1
7	2	1	3	1	2	1	3	3	2	2	1	1	1	1	1
8	2	1	3	1	2	1	3	3	2	2	1	1	1	1	1
9	2	1	3	1	2	1	3	3	2	2	1	1	1	1	1
10	2	1	3	1	2	1	3	3	2	2	1	1	1	1	1
11	2	1	3	1	2	1	3	3	2	2	1	1	1	1	1
12	2	1	3	1	2	1	3	3	2	2	1	1	1	1	1
Sensor	r type	Good traces*	May be traces*	No Good traces*	Note: N	umbers	1, 2, & 3 od. 2: M	3 under o	each ser nd 3: No	is or (not Good re	fromrun	#) in the by. *: sho	e above ows sum	table mariz	ed
Strain	gauge	36**	37	35	trace co	ounts fo	r good, i	may be,	andno	good trad	ces from	the abov	e table f	orea	ch
LVDT		36	12	0	sensor	type. **	: 36 is th	ne total	of twelv	e "1's" u	nder Dyr	11, twel	ve "1's"	un der	
PC		24	0	0	Dyn13	and twe	lve "1's"	underl	Dyn15.						

Note: Sensor colors represent the status of a sensor based on QC results (Green: Good, Orange: Maybe, Red: No Good). The sensors with color combinations of more than one color represent status in combination. For example, if a sensor color is in a combination of green and orange then the status of the sensor is Good and Maybe.

Figure 44: Graphical Representation of QC Results by Sensor Type for SPS-1 J8G Test Job

PROFILE VIEW

J10A Test Job QC Results Run # Dyn10 Dyn11 Dyn12 Dyn13 Dyn14 Dyn15 Dyn16 Dyn17 Dyn18 LVDT1 LVDT2 LVDT3 LVDT4 PC1 PC2 ï

May be No Good Good Sensor type Note: Numbers 1, 2, & 3 under each sensor (not from run #) in the above table races* traces* traces* represent 1: Good, 2: Maybe, and 3: No Good respectively. *: shows summarized Strain gauge 15** trace counts for good, may be, and no good traces from the above table for each LVDT sensor type. **: 15 is the total of fifteen "1's" under Dyn18. PC

Note: Sensor colors represent the status of a sensor based on QC results (Green: Good, Orange: Maybe, Red: No Good). The sensors with color combinations of more than one color represent status in combination. For example, if a sensor color is in a combination of green and orange then the status of the sensor is Good and Maybe.

Figure 45: Graphical Representation of QC Results by Sensor Type for Section 390110 J10A Test Job

PROFILE VIEW (Not to Scale)

					J10	C Tes	t Job (QC Re	sults						
Run #	Dyn10	Dyn 11	Dyn 12	Dyn13	Dyn14	Dyn15	Dyn16	Dyn17	Dyn 18	LVDTI	LVDT2	LVDT3	LVDT4	PC1	PC2
1	3	3	3	3	3	3	3	3	1	3	3	3	3	1	1
2	3	3	3	3	3	3	3	3	1	2	1	2	3	1	1
3	3	3	3	3	3	3	3	3	1	2	1	2	3	1	1
4	3	3	3	3	3	3	3	3	1	2	3	2	3	1	1
5	3	3	3	3	3	3	3	3	1	2	1	2	3	1	1
6	3	3	3	3	3	3	3	3	1	2	3	2	3	1	1
7	3	3	3	3	3	3	3	3	1	2	2	2	3	1	1
8	3	3	3	3	3	3	3	3	1	2	1	2	3	1	1
9	3	3	3	3	3	3	3	3	1	2	1	2	3	1	1
10	3	3	3	3	3	3	3	3	1	2	1	2	3	1	1
Sensor	type	Good traces*	May be traces*	No Good traces*	Note: N	Note: Numbers 1, 2, & 3 un				ns or (not	fromrun	#) in the	e above t	able	
Strain	gauge	10**	0	80	represe	nt 1: Go	od, 2: M	aybe, ar	1d 3: No	Good re	spective	ly. *: sho	ws sum	nanze	d
LVDT		6	9	15	sensor	type **	10 is t	may be, he total	and no j	good trai	r Dvn18	me abov	e table i	oreac	'n
PC		20	0	0	501301	die.		ie rotary	or with 1	o ande	e bymro.				

Note: Sensor colors represent the status of a sensor based on QC results (Green: Good, Orange: Maybe, Red: No Good). The sensors with color combinations of more than one color represent status in combination. For example, if a sensor color is in a combination of green and orange then the status of the sensor is Good and Maybe.

Figure 46: Graphical Representation of QC Results by Sensor Type for Section 390110 J10C

Test Job

J10D Test Job QC Results Run # Dyn10 Dyn11 Dyn12 Dyn13 Dyn14 Dyn15 Dyn16 Dyn17 Dyn18 LVDT1 LVDT2 LVDT3 LVDT4 PC1 PC2 Good May be No Good Note: Numbers 1, 2, & 3 under each sensor (not from run #) in the above table Sensor type traces* traces* races* represent 1: Good, 2: Maybe, and 3: No Good respectively. *: shows summarized Strain gauge 19* * trace counts for good, may be, and no good traces from the above table for each LVDT sensor type. **: 19 is the total of three "I's" under Dyn10, and sixteen "I's" under Dyn18. PC

Note: Sensor colors represent the status of a sensor based on QC results (Green: Good, Orange: Maybe, Red: No Good). The sensors with color combinations of more than one color represent status in combination. For example, if a sensor color is in a combination of green and orange then the status of the sensor is Good and Maybe.

Figure 47: Graphical Representation of QC Results by Sensor Type for Section 390110 J10D Test Job

PROFILE VIEW (Not to Scale)

					J10	E Tes	t Job (¿C Re	sults						
Run #	Dyn10	Dyn 11	Dyn 12	Dyn13	Dyn14	Dyn15	Dyn16	Dyn17	Dyn 18	LVDT1	LVDT2	LVDT3	LVDT4	PC1	PC2
1	3	3	3	3	3	3	3	3	1	2	1	2	2	1	1
2	2	3	2	3	2	3	3	3	1	2	1	1	3	1	1
3	2	3	2	3	2	3	3	3	1	1	1	1	3	1	1
4	2	3	2	3	2	3	3	3	1	1	1	1	3	1	1
5	3	3	3	3	3	3	3	3	1	2	1	2	2	1)
6	3	3	3	3	3	3	3	3	1	2	1	1	2	1	1
7	2	3	2	3	2	3	3	3	1	1	1	1	3	1	1
8	3	3	3	3	3	3	3	3	1	2	1	1	2	- 1	1
9	3	3	3	3	3	3	3	3	1	2	1	2	2	1	1
10	2	3	3	3	2	3	3	3	1	1	1	1	3	1	1
11	3	3	3	3	3	3	3	3	1	1	1	1	2	1	1
12	2	3	2	3	2	3	3	3	1	1	1	1	3	1	1
Sensor	type	Good traces*	May be traces*	No Good traces*	d Note: Numbers 1, 2, & 3 under each sensor (not from run #) in the above table							table			
Strain g	gauge	12**	17	79	represe	nt 1: Go	od, 2: M	aybe, a	1d 3: No	Good re	spective	ly.*:sho	ows sum	manz	ad .
LVDT		27	15	6	sensor	type *!	r good, 1 12 is th	nay be,	andno	good tra	nder Dur	me aboy	e table i	oread	'n
PC		24	0	0	sensor	type.	.12 6 1	ie totali	or twelv	U 15 U	nuci Dyi	110.			

Note: Sensor colors represent the status of a sensor based on QC results (Green: Good, Orange: Maybe, Red: No Good). The sensors with color combinations of more than one color represent status in combination. For example, if a sensor color is in a combination of green and orange then the status of the sensor is Good and Maybe.

Figure 48: Graphical Representation of QC Results by Sensor Type for Section 390110 J10E Test Job

101

PROFILE VIEW

(Not to Scale)

					J10	F Tes	t Job (C Res	sults						
Run #	Dyn10	Dyn11	Dyn 12	Dyn13	Dyn14	Dyn15	Dyn16	Dyn17	Dyn 18	LVDTI	LVDT2	LVDT3	LVDT4	PCI	PC2
1	2	1	2	1	2	1	3	3	1	2	1	2	3	1	1
2	1	1	1	1	1	1	3	3	1	2	1	2	3	1	1
3	1	1	1	1	1	1	3	3	1	2	1	2	3	1	1
4	1	1	1	1	1	1	3	3	1	2	1	1	3	1	1
5	1	1	1	1	3	1	3	3	1	2	1	1	2	1	1
6	1	1	1	1	3	1	3	3	1	2	1	2	2	- 1	1
7	3	1	3	1	3	1	3	3	1	1	1	2	3	1	1
8	1	1	1	1	. 3	1	3	3	1	2	1	1	1	1	1
9	2	1	3	1	3	1	3	3	1	2	1	1	1	1	1
10	3	1	3	2	3	1	3	3	1	1	1	1	1	1	1
11	1	1	2	2	3	2	3	3	1	2	1	1	1	1	1
12	3	1	3	2	3	2	3	3	1	1	1	1	1	1	1
13	3	1	3	2	3	2	3	3	1	1	1	1	1	1	1
Sensor	r type	Good traces*	May be traces*	No Good traces*	Note: N represe	lumbers nt 1: Go	1, 2, & : od, 2: M	8 under 6 aybe, ar	each ser nd 3: No	nsor (not Good re	from run spective	(#)in the hy.*:sho	e above t ows sum	table mariz	ed
Strain	gauge	61**	12	44	trace co	ounts fo	r good, i	may be,	andno	good tra	es from	the abov	e tab le f	orea	ch
LVDT		31	16	5	sensor	type. **	: 61 is th	ne total o	of seven	"l's" ur " under	ider Dyn Dyn 13 ti	10, thirte	en "I's" " under l	unde	r 4
PC		26	0	0	ten "I's" under Dyn15 and thireen "I's" under Dyn18,										

Note: Sensor colors represent the status of a sensor based on QC results (Green: Good, Orange: Maybe, Red: No Good). The sensors with color combinations of more than one color represent status in combination. For example, if a sensor color is in a combination of green and orange then the status of the sensor is Good and Maybe.

Figure 49: Graphical Representation of QC Results by Sensor Type for Section 390110 J10F

Test Job

PROFILE VIEW (Not to Scale)

					J100	G Test	Job Q	C Res	ults						
Run #	Dyn10	Dyn11	Dyn12	Dyn13	Dyn14	Dyn15	Dyn16	Dyn17	Dyn18	LVDT1	LVDT2	LVDT3	LVDT4	PC1	PC2
1	2	2	3	2	3	2	3	3	1	2	1	2	1	1	1
2	3	2	3	2	3	2	3	3	1	2	1	2	2	1	1
3	3	2	3	2	3	2	3	3	1	2	1	1	1	1	1
4	3	2	3	2	3	2	3	3	1	2	1	2	1	1	1
5	3	2	3	2	3	2	3	3	. 1	2	1	2	1	1	1
6	3	2	3	2	3	2	3	3	1	2	1	1	1	1	1
7	3	2	3	2	3	2	3	3	1	1	1	2	1	1	1
8	3	2	3	2	3	2	3	3	1	1	1	1	1	1	1
9	3	2	3	2	3	2	3	3	1	1	1	1	1	1	1
10	3	2	3	2	3	3	3	3	1	1	1	1	1	1	1
11	3	2	3	2	3	3	3	3	1	1	1	1	1	1	1
12	3	2	3	2	3	3	3	3	1	1	1	1	1	1	1
Senso	r ty pe	Good traces*	May be traces*	No Good traces*	Note: N	lumbers	1, 2, & 3	3 un der o	each ser	nsor (not	from run	(#) in th	e above i	table	5
Strain	gauge	12**	34	62	represe	nt l: Go	od, 2: M	aybe, a	nd 3: No	Good re	spective	ly. *: sho	ows sum	mariz	2d
LVDT		36	12	0	censor	tune **	r good, i	may be,	and no	good trac	es nom	the abov	e table i	oread	'n
PC		24	0	0	501501	type.	, 14 IS U	ie cotari	or twelv	v 15 u	inter Dy I	110.			

Note: Sensor colors represent the status of a sensor based on QC results (Green: Good, Orange: Maybe, Red: No Good). The sensors with color combinations of more than one color represent status in combination. For example, if a sensor color is in a combination of green and orange then the status of the sensor is Good and Maybe.

Figure 50: Graphical Representation of QC Results by Sensor Type for Section 390110 J10G Test Job

APPENDIX C: Sensor Layout in the Ohio SPS-2 DLR Sections

J1A Profile View Section B-B (Not to Scale)

Figure 51: Graphical Representation of QC Results by Sensor Type for Section 390201 J1A Test Job

J1B Profile View Section B-B (Not to Scale)

Figure 52: Graphical Representation of QC Results by Sensor Type for Section 390201 J1B Test Job

J1C Profile View Section B-B (Not to Scale)

Figure 53: Graphical Representation of QC Results by Sensor Type for Section 390201 J1C Test Job

J5A Profile View Section B-B (Not to Scale)

LVDT2

LVDT4

Figure 54: Graphical Representation of QC Results by Sensor Type for Section 390205 J5A Test Job

J5B Profile View Section B-B (Not to Scale)

Figure 55: Graphical Representation of QC Results by Sensor Type for Section 390205 J5B Test Job

J5C Profile View Section B-B (Not to Scale)

Note: Sensor colors represent the status of a sensor based on QC results (Green: Good, Orange: Maybe, Red: No Good). The sensors with color combinations of more than one color represent status in combination. For example, if a sensor color is in a combination of green and orange then the status of the sensor is Good and Maybe.
Figure 56: Graphical Representation of QC Results by Sensor Type for Section 390205 J5C Test

J5J1M Profile View Section B-B (Not to Scale)

J5J1N Profile View Section B-B (Not to Scale)

Figure 58: Graphical Representation of QC Results by Sensor Type for Section 390205 J5J1N Test Job

J5J1O Profile View Section B-B (Not to Scale)

Figure 59: Graphical Representation of QC Results by Sensor Type for Section 390205 J5J1O

Test Job

J5J1P Profile View Section B-B (Not to Scale)

Figure 60: Graphical Representation of QC Results by Sensor Type for Section 390205 J5J1P Test Job

J8A Profile View Section B-B (Not to Scale)

Figure 61: Graphical Representation of QC Results by Sensor Type for Section 390208 J8A Test Job

J8B Profile View Section B-B (Not to Scale)

Figure 62: Graphical Representation of QC Results by Sensor Type for Section 390208 J8B Test Job

J8C Profile View Section B-B (Not to Scale)

Figure 63: Graphical Representation of QC Results by Sensor Type for Section 390208 J8C Test Job

J8S3M Profile View Section B-B (Not to Scale)

Figure 64: Graphical Representation of QC Results by Sensor Type for Section 390208 J8S3M Test Job

J8S3N Profile View Section B-B (Not to Scale)

Figure 65: Graphical Representation of QC Results by Sensor Type for Section 390208 J8S3N Test Job

J8S3O Profile View Section B-B (Not to Scale)

Figure 66: Graphical Representation of QC Results by Sensor Type for Section 390208 J8S3O Test Job

J8S3P Profile View Section B-B (Not to Scale)

Figure 67: Graphical Representation of QC Results by Sensor Type for Section 390208 J8S3P Test Job

J12A Profile View Section B-B (Not to Scale)

Figure 68: Graphical Representation of QC Results by Sensor Type for Section 390212 J12A Test Job

J12B Profile View Section B-B (Not to Scale)

Figure 69: Graphical Representation of QC Results by Sensor Type for Section 390212 J12B Test Job

J12C Profile View Section B-B (Not to Scale)

Figure 70: Graphical Representation of QC Results by Sensor Type for Section 390212 J12C Test Job

J12J10M Profile View Section B-B (Not to Scale)

Figure 71: Graphical Representation of QC Results by Sensor Type for Section 390212 J12J10M Test Job

J12J10N Profile View Section B-B (Not to Scale)

Figure 72: Graphical Representation of QC Results by Sensor Type for Section 390212 J12J10N Test Job

Figure 73: Graphical Representation of QC Results by Sensor Type for Section 390212 J12J100 Test Job

J12J10P Profile View Section B-B (Not to Scale)

Figure 74: Graphical Representation of QC Results by Sensor Type for Section 390212 J12J10P Test Job

APPENDIX D: Sensor Status of the 24 Ohio SPS-2 DLR Test Jobs

Truck-Ayle	Run#	LVDT1	LVDT2		LVDT4		LVDT8	LVDT9	LVDT10	LVDT11	LVDT12	LVDT13	LVDT14	LVDT15	LVDT16	DYN1	DYN4	DYN5	DYN8
2	1	1	1	3	3	3	3	3	2,2110	3	3	3	3	3	212110	1	1	1	1
3	2	1	1	2	3	3	3	3	3	3	3	3	3	3	2	1	1	1	1
2	3	1	1	1	3	3	3	3	1	3	3	3	3	2	1	1	1	1	1
3	4	1	3	2	3	3	3	3	3	3	3	3	3	3	3	1	1	1	1
2	5	1	1	1	3	3	3	3	1	3	3	3	3	2	1	1	1	1	1
3	6	1	1	1	3	3	3	3	3	3	3	3	3	3	3	1	1	1	1
2	7	1	1	1	3	3	3	3	1	3	3	3	3	1	1	1	1	1	1
3	8	1	3	1	3	3	3	3	3	3	3	3	3	3	3	1	1	1	1
2	9	1	1	1	3	3	3	3	1	3	3	3	3	1	1	1	1	1	1
3	10	1	3	1	3	3	3	3	3	3	3	3	3	3	3	1	1	1	1
2	11	1	1	1	3	3	3	3	1	3	3	3	3	1	1	1	1	1	1
3	12	1	3	1	3	3	3	3	3	3	3	3	3	3	3	1	1	1	1
2	13	1	1	1	3	3	3	3	1	3	3	3	3	1	1	1	1	1	1
3	14	1	3	1	3	3	3	3	3	3	3	3	3	3	1	1	1	1	1
2	15	1	1	1	3	3	3	3	1	3	3	3	3	1	1	1	1	1	1
3	16	1	3	1	3	3	3	3	3	3	3	3	3	3	3	1	1	1	1
2	17	1	1	1	3	3	3	3	1	3	3	3	3	1	1	1	1	1	1
3	18	1	. 3	1	3	3	3	3	3	3	3	3	3	3	3	1	1	1	1
2	19	1	1	1	3	3	3	3	1	3	3	3	3	1	1	1	1	1	1
3	20	1	3	1	3	3	3	3	3	3	3	3	3	3	3	1	1	1	1
2	21	1	1	1	3	3	3	3	1	3	3	3	3	1	1	1	1	1	1
3	22	1	3	1	3	3	3	3	3	3	3	3	3	3	3	1	1	1	1
2	23	1	1	1	3	3	3	3	1	3	3	3	3	1	1	1	1	1	1
3	24	1	3	1	3	3	3	3	3	3	3	3	3	3	3	1	1	1	1
2	25	1	1	1	3	3	3	3	1	3	3	3	3	1	1	1	1	1	1
3	26	1	3	1	3	3	3	3	3	3	3	3	3	3	3	1	1	1	1
3	27	1	3	1	3	3	3	3	3	3	3	3	3	3	3	1	1	1	1
3	28	1	3	1	3	3	3	3	3	3	3	3	3	3	3	1	1	1	1
	GOOD	28	15	25	0	0	0	0	12	0	0	0	0	10	13	28	28	28	28
QC	MAYBE	0	0 0	2	0	0	0	0	1	0	0	0	0	2	2	0	0	0	0
	NO GOOD	0	13	1	28	28	28	28	15	28	28	28	28	16	13	0	0	0	0

Table 26: Summarized QC Results for Smoothed Traces in Section 390201 J1A Test Job

Note: Numbers 1, 2, and 3 under each sensor column (not from run# column) in the above table represent 1: Good, 2: Maybe, and 3: No Good traces respectively. Numbers 2 and 3 under Truck- Axle column represent 2: two axle truck and 3: three axle truck.
Truck-Axle	Run#	LVDT1	LVDT2	LVDT3	LVDT4	LVDT7	LVDT8	LVDT9	LVDT10	LVDT11	LVDT12	LVDT13	LVDT14	LVDT15	LVDT16	DYN1	DYN4	DYN5	DYN8
2	1	1	1	2	3	3	3	3	3	3	3	3	3	3	3	1	1	1	1
3	2	1	3	1	3	3	3	3	3	3	3	3	3	3	3	1	1	1	1
2	3	1	1	1	3	3	3	3	2	3	3	3	3	3	1	1	1	1	1
3	4	1	3	1	3	3	3	3	3	3	3	3	3	3	3	1	1	1	1
2	5	1	1	1	3	3	3	3	2	2	3	3	3	2	1	1	1	1	1
3	6	3	3	3	3	3	3	3	3	3	3	3	3	3	3	1	1	1	1
2	7	3	3	3	3	3	3	3	2	3	3	3	3	2	2	1	1	1	1
3	8	3	3	3	3	3	3	3	3	3	3	3	3	3	3	1	1	1	1
2	9	3	3	3	3	3	3	3	3	2	3	3	3	2	2	1	1	1	1
3	10	3	3	3	3	3	3	3	3	3	3	3	3	3	3	1	1	1	1
2	11	3	3	3	3	3	3	3	2	2	3	3	3	2	3	1	1	1	1
3	12	3	3	3	3	3	3	3	3	3	3	3	3	3	3	1	1	1	1
2	13	3	3	3	3	3	3	3	3	2	3	3	3	2	2	1	1	1	1
3	14	3	3	3	3	3	3	3	3	3	3	3	3	3	3	1	1	1	1
2	15	3	3	3	3	3	3	3	2	2	3	3	3	2	2	1	1	1	1
3	16	3	3	3	3	3	3	3	2	3	3	3	3	3	3	1	1	1	1
2	17	3	3	3	3	3	3	3	2	2	3	3	3	3	3	1	1	1	1
3	18	3	3	3	3	3	3	3	3	3	3	3	3	3	3	1	1	1	1
2	19	1	1	1	3	3	3	3	3	1	3	3	3	3	1	1	1	1	1
2	20	1	1	1	3	3	3	3	3	1	3	3	3	2	1	1	1	1	1
2	23	3	3	3	3	3	3	3	3	2	3	3	3	2	3	1	1	1	1
3	24	1	3	1	3	3	3	3	3	3	3	3	3	3	3	1	1	1	1
3	25	1	3	1	3	3	3	3	3	3	3	3	3	3	2	1	1	1	1
3	26	1	3	1	3	3	3	3	3	3	3	3	3	3	3	1	1	1	1
	GOOD	10	5	9	0	0	0	0	0	2	0	0	0	0	4	24	24	24	24
QC	MAYBE	0	0	1	0	0	0	0	7	7	0	0	0	8	5	0	0	0	0
	NO GOOD	14	19	14	24	24	24	24	17	15	24	24	24	16	15	0	0	0	0

Table 27: Summarized QC Results for Smoothed Traces in Section 390201 J1B Test Job

Truck-Axle	Run#	LVDT1	LVDT2	LVDT3	LVDT4	LVDT7	LVDT8	LVDT9	LVDT10	LVDT11	LVDT12	LVDT13	LVDT14	LVDT15	LVDT16	DYN1	DYN2	DYN7	DYN8
2	1	1	1	2	3	3	3	3	2	2	3	3	3	3	2	1	1	1	1
2	2	1	1	1	3	3	3	3	1	2	3	3	3	3	1	1	1	1	1
2	3	1	1	1	3	3	3	3	1	2	3	3	3	3	1	1	1	1	1
2	4	1	1	1	3	3	3	3	1	2	3	3	3	3	2	1	1	1	1
2	5	1	1	1	3	3	3	3	2	2	3	3	3	3	2	1	1	1	1
2	6	1	1	1	3	3	3	3	2	2	. 3	3	3	3	2	1	1	1	1
2	7	1	1	1	3	3	2	3	2	2	3	3	3	3	2	1	1	1	1
2	8	1	1	1	3	3	2	3	2	2	3	3	3	3	1	1	1	1	1
2	9	1	1	1	3	3	3	3	2	2	3	3	3	3	1	1	1	1	1
2	10	1	1	1	3	3	3	3	2	2	3	3	3	3	2	1	1	1	1
2	11	1	1	1	3	3	2	3	2	2	3	3	3	3	1	1	1	1	1
2	12	1	1	1	3	3	3	3	2	2	3	3	3	3	1	1	1	1	1
2	13	1	1	1	3	3	3	3	2	2	3	3	3	3	1	1	1	1	1
2	14	1	1	1	3	3	2	3	1	1	3	3	3	1	1	1	1	1	1
	GOOD	14	14	13	0	0	0	0	4	1	0	0	0	1	8	14	14	14	14
QC	MAYBE	0	0	1	0	0	4	0	10	13	0	0	0	0	6	0	0	0	0
	NO GOOD	0	0	0	14	14	10	14	0	0	14	14	14	13	0	0	0	0	0

Table 28: Summarized QC Results for Smoothed Traces in Section 390201 J1C Test Job

Truck-Axle	Run#	LVDT1	LVDT2	LVDT3	LVDT4	LVDT7	LVDT8	LVDT9	LVDT10	LVDT11	LVDT12	LVDT13	LVDT14	LVDT15	LVDT16	DYN1	DYN4	DYN5	DYN8
2	1	3	1	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3
3	2	3	2	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3
2	3	3	1	1	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3
3	4	3	3	2	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3
2	5	3	1	1	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3
3	6	3	3	2	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3
2	7	3	1	1	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3
3	8	3	3	1	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3
2	9	3	1	1	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3
3	10	3	1	1	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3
2	11	3	1	1	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3
3	12	3	3	1	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3
2	13	3	1	1	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3
3	14	3	3	1	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3
2	15	3	3	1	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3
3	16	3	3	1	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3
2	17	3	1	1	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3
3	18	3	3	1	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3
2	19	3	1	1	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3
3	20	3	3	1	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3
2	21	3	3	1	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3
3	22	3	3	1	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3
2	23	3	1	1	3	3	3	3	1	3	3	3	3	3	3	3	3	3	3
3	24	3	3	1	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3
2	25	3	1	1	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3
3	26	3	3	1	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3
3	27	3	3	1	3	3	3	3	3	3	3	3	3	3	3	1	1	3	1
3	28	3	3	1	3	3	3	3	3	3	3	3	3	3	3	1	1	3	1
2	29	3	1	3	3	1	1	1	1	1	2	1	3	1	3	1	1	3	1
	GOOD	0	13	24	0	1	1	1	2	1	0	1	0	1	0	3	3	0	3
QC	MAYBE	0	1	2	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
	NO GOOD	29	15	3	29	28	28	28	27	28	28	28	29	28	29	26	26	29	26

Table 29: Summarized QC Results for Smoothed Traces in Section 390205 J5A Test Job

Truck-Axle	Run#	LVDT1	LVDT2	LVDT3	LVDT4	LVDT7	LVDT8	LVDT9	LVDT10	LVDT11	LVDT12	LVDT13	LVDT14	LVDT15	LVDT16	DYN1	DYN2	DYN7	DYN8
2	1	3	1	3	3	3	3	3	3	3	3	3	3	3	3	1	3	1	1
3	2	3	3	3	3	3	3	3	3	3	3	3	3	3	3	1	3	1	1
2	3	3	3	1	3	3	3	3	2	3	3	3	3	2	3	1	3	1	1
3	4	3	3	2	3	3	3	3	2	3	3	3	3	3	3	1	3	1	1
2	5	3	3	3	3	3	2	3	2	2	3	1	3	1	3	1	3	1	1
3	6	3	3	3	3	3	3	3	3	3	3	3	3	3	3	1	3	1	1
2	7	3	1	3	3	3	2	3	1	1	3	1	3	1	3	1	3	1	1
3	8	3	3	3	3	3	3	3	3	3	3	3	3	3	3	1	3	1	1
2	9	3	1	3	3	3	2	3	2	2	3	1	3	1	3	1	3	1	1
3	10	3	3	3	3	3	3	3	3	3	3	3	3	3	3	1	3	1	1
2	11	3	1	3	3	3	2	3	1	1	3	1	3	1	3	1	3	1	1
3	12	3	3	3	3	3	3	3	3	3	3	3	3	3	3	1	3	1	1
2	13	3	1	3	3	3	2	3	1	1	3	1	3	1	3	1	3	1	1
3	14	3	3	3	3	3	3	3	3	3	3	3	3	3	3	1	3	1	1
2	15	3	1	3	3	3	2	3	1	1	3	1	3	1	3	1	3	1	1
3	16	3	3	3	3	3	3	3	3	3	3	3	3	3	3	1	3	1	1
2	17	3	3	3	3	3	2	3	1	1	3	1	3	1	3	1	3	1	1
3	18	3	3	3	3	3	3	3	3	3	3	3	3	3	3	1	3	1	1
2	19	3	3	1	3	3	3	3	3	3	3	3	3	3	3	1	3	1	1
2	20	3	1	1	3	3	3	3	3	3	3	1	3	1	3	1	3	1	1
2	21	3	3	3	3	3	2	3	1	2	3	1	3	1	3	1	3	1	1
2	23	3	3	3	3	3	2	3	1	1	3	1	3	1	3	1	3	1	1
3	24	3	3	1	3	3	3	3	3	3	3	3	3	3	3	1	3	1	1
3	25	3	3	1	3	3	3	3	3	3	3	3	3	3	3	1	3	1	1
3	26	3	3	1	3	3	3	3	3	3	3	3	3	3	3	1	3	1	1
	GOOD	0	7	6	0	0	0	0	7	6	0	10	0	10	0	25	0	25	25
QC	MAYBE	0	0	1	0	0	9	0	4	3	0	0	0	1	0	0	0	0	0
	NO GOOD	25	18	18	25	25	16	25	14	16	25	15	25	14	25	0	25	0	0

Table 30: Summarized QC Results for Smoothed Traces in Section 390205 J5B Test Job

Truck-Axle	Run#	LVDT1	LVDT2	LVDT3	LVDT4	LVDT7	LVDT8	LVDT9	LVDT10	LVDT11	LVDT12	LVDT13	LVDT14	LVDT15	LVDT16	DYN1	DYN2	DYN7	DYN8
2	1	3	1	3	3	3	3	3	3	3	3	3	3	3	3	1	3	1	1
2	2	3	1	2	3	3	3	3	3	3	3	3	3	3	3	1	3	1	1
2	3	3	1	1	3	3	3	3	3	3	3	3	3	3	3	1	3	1	1
2	4	3	1	1	3	3	3	3	3	3	3	3	3	3	3	1	3	1	1
2	5	3	1	2	3	3	3	3	3	3	3	3	3	3	3	1	3	1	1
2	6	3	1	2	3	3	3	3	3	3	3	3	3	3	3	1	3	1	1
2	7	3	1	2	3	3	3	3	3	3	3	3	3	3	3	1	3	1	1
2	8	3	1	1	3	3	3	3	3	3	3	3	3	2	3	1	3	1	1
2	9	3	1	1	3	3	3	3	3	3	3	3	3	3	3	1	3	1	1
2	10	3	1	1	3	3	3	3	3	3	3	3	3	3	3	1	3	1	1
2	11	3	1	1	3	3	3	3	3	3	3	2	3	2	3	1	3	1	1
2	12	3	1	1	3	3	3	3	3	3	3	2	3	2	3	1	3	1	1
2	13	3	1	1	3	3	3	3	3	3	3	2	3	2	3	1	3	1	1
2	14	3	1	1	3	3	3	3	3	3	3	2	3	3	3	1	3	1	1
	GOOD	0	14	9	0	0	0	0	0	0	0	0	0	0	0	14	0	14	14
QC	MAYBE	0	0	4	0	0	0	0	0	0	0	4	0	4	0	0	0	0	0
	NO GOOD	14	0	1	14	14	14	14	14	14	14	10	14	10	14	0	14	0	0

Table 31: Summarized QC Results for Smoothed Traces in Section 390205 J5C Test Job

Truck-Axle	Run#	LVDT1	LVDT2	LVDT3	LVDT4	LVDT7	LVDT8	LVDT9	LVDT10	LVDT11	LVDT12	LVDT13	LVDT14	LVDT15	LVDT16	DYN1	DYN2	DYN7	DYN8
2	1	3	3	2	3	3	1	3	3	3	3	3	3	3	3	1	1	1	1
3	2	3	3	1	3	3	3	3	3	3	3	3	3	3	3	1	1	1	1
2	3	1	1	1	1	2	1	3	1	1	3	3	3	2	1	1	1	1	1
3	4	3	3	1	3	3	3	3	3	3	3	3	3	3	3	1	1	1	1
2	5	1	1	1	1	1	1	3	1	1	1	3	3	3	1	1	1	1	1
3	6	2	3	1	3	3	3	3	3	3	3	3	3	3	3	1	1	1	1
2	7	1	3	1	1	3	1	3	1	1	3	3	3	3	3	1	1	1	1
3	8	3	3	3	3	3	3	3	3	3	3	3	3	3	3	1	1	1	1
2	9	1	1	1	1	1	1	3	1	1	2	3	3	1	1	1	1	1	1
3	10	3	3	3	3	3	3	3	3	3	3	3	3	3	3	1	1	1	1
2	11	1	1	1	1	2	1	3	1	1	2	3	3	3	3	1	1	1	1
3	12	3	3	3	3	3	3	3	3	3	3	3	3	3	3	1	1	1	1
2	13	1	1	1	1	2	1	3	1	1	3	3	3	3	3	1	1	1	1
3	14	3	3	3	3	3	3	3	3	3	3	3	3	3	3	1	1	1	1
2	15	1	3	1	1	1	1	3	1	1	1	3	3	3	3	1	1	1	1
3	16	3	3	3	3	3	3	3	3	3	3	3	3	3	3	1	1	1	1
2	17	1	3	1	1	1	1	3	1	1	3	3	3	3	3	1	1	1	1
3	18	3	3	3	3	3	3	3	3	3	3	3	3	3	3	1	1	1	1
	GOOD	8	5	11	8	4	9	0	8	8	2	0	0	1	3	18	18	18	18
	MAYBE	1	0	1	0	3	0	0	0	0	2	0	0	1	0	0	0	0	0
QC	NO GOOD	9	13	6	10	11	9	18	10	10	14	18	18	16	15	0	0	0	0

Table 32: Summarized QC Results for Smoothed Traces in Section 390205 J5J1M Test Job

Truck-Axle	Run#	LVDT1	LVDT2	LVDT3	LVDT4	LVDT7	LVDT8	LVDT9	LVDT10	LVDT11	LVDT12	LVDT13	LVDT14	LVDT15	LVDT16	DYN1	DYN2	DYN7	DYN8
2	1	3	1	1	1	3	3	3	2	2	3	3	3	3	3	1	1	1	1
3	2	2	3	1	3	3	3	3	3	3	3	3	3	3	3	1	1	1	1
2	3	1	3	1	1	3	3	3	1	1	3	3	3	1	3	1	1	1	1
3	4	2	3	1	3	3	3	3	3	3	3	3	3	3	3	1	1	1	1
2	5	1	1	1	1	3	3	3	1	1	3	3	3	1	1	1	1	1	1
3	6	2	3	1	3	3	3	3	3	3	3	3	3	3	3	1	1	1	1
2	7	1	3	1	1	2	3	3	1	1	3	3	3	3	3	1	1	1	1
3	8	3	3	3	3	3	3	3	3	3	3	3	3	3	3	1	1	1	1
2	9	1	3	1	1	3	3	3	1	1	3	3	3	3	2	1	1	1	1
3	10	3	3	3	3	3	3	3	3	3	3	3	3	3	3	1	1	1	1
2	11	1	3	1	1	1	3	3	1	1	3	3	3	3	3	1	1	1	1
3	12	3	3	3	3	3	3	3	3	3	3	3	3	3	3	1	1	1	1
2	13	1	3	1	3	2	3	3	1	1	3	3	3	3	3	1	1	1	1
3	14	3	3	3	3	3	3	3	3	3	3	3	3	3	3	1	1	1	1
2	15	1	3	1	1	1	3	3	1	1	3	3	3	3	3	1	1	1	1
3	16	3	3	3	3	3	3	3	3	3	3	3	3	3	3	1	1	1	1
2	17	1	3	1	1	1	3	3	1	1	3	3	3	3	3	1	1	1	1
3	18	3	3	3	3	3	3	3	3	3	3	3	3	3	3	1	1	1	1
	GOOD	8	2	12	8	3	0	0	8	8	0	0	0	2	1	18	18	18	18
QC	MAYBE	3	0	0	0	2	0	0	1	1	0	0	0	0	1	0	0	0	0
	NO GOOD	7	16	6	10	13	18	18	9	9	18	18	18	16	16	0	0	0	0

Table 33: Summarized QC Results for Smoothed Traces in Section 390205 J5J1N Test Job

Truck-Axle	Run#	LVDT1	LVDT2	LVDT3	LVDT4	LVDT7	LVDT8	LVDT9	LVDT10	LVDT11	LVDT12	LVDT13	LVDT14	LVDT15	LVDT16	DYN1	DYN2	DYN7	DYN8
2	1	2	1	1	1	3	1	3	1	1	3	3	3	3	3	2	1	3	3
3	2	3	3	3	3	3	3	3	3	3	3	3	3	3	3	1	1	1	3
2	3	1	1	1	1	1	1	3	1	1	2	3	3	3	1	1	1	1	3
3	4	1	3	1	3	3	3	3	3	3	3	3	3	3	3	1	1	1	3
2	5	1	1	1	1	1	1	3	1	1	2	3	3	3	3	1	1	1	3
3	6	3	3	3	3	3	3	3	3	3	3	3	3	3	3	1	1	1	3
2	7	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3
3	8	3	3	3	3	3	3	3	3	3	3	3	3	3	3	1	1	1	3
2	9	1	3	1	3	1	1	3	1	1	1	3	3	3	3	1	1	1	3
3	10	3	3	3	3	3	3	3	3	3	3	3	3	3	3	1	1	1	3
2	11	1	3	1	3	1	1	3	1	1	2	3	3	3	3	1	1	1	3
3	12	3	3	3	3	3	3	3	3	3	3	3	3	3	3	1	1	1	3
2	13	1	3	1	3	1	3	3	1	1	1	3	3	3	3	1	1	1	2
3	14	3	3	3	3	3	3	3	3	3	3	3	3	3	3	1	1	1	3
2	15	1	3	1	3	1	3	3	1	1	1	3	3	3	3	1	1	1	2
3	16	3	3	3	3	3	3	3	3	3	3	3	3	3	3	1	1	1	3
2	17	1	3	1	3	1	2	3	1	1	1	3	3	3	3	1	1	1	3
3	18	1	3	1	3	3	3	3	3	3	3	3	3	3	3	1	1	1	3
	GOOD	9	3	10	3	7	5	0	8	8	4	0	0	0	1	16	17	16	0
QC	MAYBE	1	0	0	0	0	1	0	0	0	3	0	0	0	0	1	0	0	2
	NO GOOD	8	15	8	15	11	12	18	10	10	11	18	18	18	17	1	1	2	16

Table 34: Summarized QC Results for Smoothed Traces in Section 390205 J5J1O Test Job

Truck-Axle	Run#	LVDT1	LVDT2	LVDT3	LVDT4	LVDT7	LVDT8	LVDT9	LVDT10	LVDT11	LVDT12	LVDT13	LVDT14	LVDT15	LVDT16	DYN1	DYN2	DYN7	DYN8
3	1	3	3	3	3	3	3	3	3	3	3	3	3	3	3	1	1	1	1
2	2	2	3	3	3	3	3	1	1	1	3	3	3	1	1	1	1	1	1
3	3	3	3	3	3	3	3	3	2	3	3	3	3	3	3	1	1	1	1
2	4	1	3	3	3	3	3	1	1	1	3	3	3	1	1	1	1	1	1
3	5	3	3	3	3	3	3	3	2	3	3	3	3	3	3	1	1	1	1
2	6	1	3	3	3	3	3	1	1	1	3	3	3	1	1	1	1	1	1
3	7	3	3	3	3	3	3	3	3	3	3	3	3	3	3	1	1	1	1
2	8	1	3	3	3	3	3	1	1	1	3	3	3	3	1	1	1	1	1
3	9	3	3	3	3	3	3	3	3	3	3	3	3	3	3	1	1	1	1
2	10	1	3	3	3	3	3	1	1	1	3	3	3	1	1	1	1	1	1
3	11	3	3	3	3	3	3	3	3	3	3	3	3	3	3	1	1	1	3
2	12	1	3	2	3	3	3	1	1	1	3	3	3	1	1	1	1	1	3
3	13	3	3	3	3	3	3	3	3	3	3	3	3	3	3	1	1	1	3
2	14	1	3	2	3	3	3	1	1	1	3	3	3	1	1	1	1	1	3
3	15	3	3	3	3	3	3	3	3	3	3	3	3	3	3	1	1	1	3
2	16	1	3	1	3	3	3	1	1	1	3	3	3	1	1	1	1	1	3
3	17	3	3	3	3	3	3	3	3	3	3	3	3	3	3	1	1	1	3
2	18	3	3	1	3	3	3	1	1	1	3	3	3	1	1	1	1	1	3
	GOOD	7	0	2	0	0	0	9	9	9	0	0	0	8	9	18	18	18	10
QC	MAYBE	1	0	2	0	0	0	0	2	0	0	0	0	0	0	0	0	0	0
	NO GOOD	10	18	14	18	18	18	9	7	9	18	18	18	10	9	0	0	0	8

Table 35: Summarized QC Results for Smoothed Traces in Section 390205 J5J1P Test Job

Truck-Axle	Run#	LVDT1	LVDT2	LVDT3	LVDT4	LVDT7	LVDT8	LVDT9	LVDT10	LVDT11	LVDT12	LVDT13	LVDT14	LVDT15	LVDT16	DYN1	DYN4	DYN5	DYN8
2	1	3	2	3	1	3	3	3	3	3	3	3	3	3	3	1	1	1	3
3	2	3	2	3	2	3	3	3	3	3	3	3	3	3	3	1	1	1	3
2	3	2	1	2	1	3	3	3	3	3	3	3	3	3	3	1	1	1	3
3	4	2	3	2	2	3	3	3	3	3	3	3	3	3	3	1	1	1	3
2	5	1	1	1	1	3	3	3	3	2	3	3	3	3	3	1	1	1	3
3	6	2	2	1	1	3	3	3	3	3	3	3	3	3	3	1	1	1	3
2	7	1	1	1	1	3	3	3	3	3	3	3	3	3	3	1	1	1	3
3	8	2	3	1	1	3	3	3	3	3	3	3	3	3	3	1	1	1	3
2	9	1	1	1	1	3	3	3	3	2	3	3	3	3	3	1	1	1	3
3	10	1	3	1	1	3	3	3	3	3	3	3	3	3	3	1	1	1	3
2	11	1	1	1	1	3	3	3	3	3	3	3	3	3	3	1	1	1	3
3	12	3	3	1	3	3	3	3	3	3	3	3	3	3	3	1	1	1	3
2	13	1	1	1	1	3	3	3	3	3	3	3	3	3	3	1	1	1	3
3	14	1	3	1	3	3	3	3	3	3	3	3	3	3	3	1	1	1	3
2	15	1	1	1	1	3	3	3	3	3	3	3	3	3	3	1	1	1	3
3	16	3	3	1	3	3	3	3	3	3	3	3	3	3	3	1	1	1	3
2	17	1	1	1	1	3	3	3	3	3	3	3	3	3	3	1	1	1	3
3	18	1	3	1	3	3	3	3	3	3	3	3	3	3	3	1	1	1	3
2	19	1	1	1	1	3	3	3	3	3	3	3	3	3	3	1	1	1	3
3	20	1	3	1	3	3	3	3	3	3	3	3	3	3	3	1	1	1	3
2	21	1	1	1	1	3	3	3	3	3	3	3	3	3	3	1	1	1	3
3	22	1	3	1	3	3	3	3	3	3	3	3	3	3	3	1	1	1	3
2	23	1	1	1	1	3	3	3	3	3	3	3	3	3	3	1	1	1	3
3	24	1	3	1	3	3	3	3	3	3	3	3	3	3	3	1	1	1	3
2	25	1	1	1	1	3	3	3	3	3	3	3	3	3	3	1	1	1	3
3	26	1	3	1	3	3	3	3	3	3	3	3	3	3	3	1	1	1	3
	GOOD	18	12	22	16	0	0	0	0	0	0	0	0	0	0	26	26	26	0
QC	MAYBE	4	3	2	2	0	0	0	0	2	0	0	0	0	0	0	0	0	0
	NO GOOD	4	11	2	8	26	26	26	26	24	26	26	26	26	26	0	0	0	26

Table 36: Summarized QC Results for Smoothed Traces in Section 390208 J8A Test Job

Truck-Axle	Run#	LVDT1	LVDT2	LVDT3	LVDT4	LVDT7	LVDT8	LVDT9	LVDT10	LVDT11	LVDT12	LVDT13	LVDT14	LVDT15	LVDT16	DYN1	DYN2	DYN7	DYN8
2	1	3	2	3	1	3	3	3	3	3	3	3	3	3	3	1	1	1	3
3	2	3	1	3	1	3	3	3	3	3	3	3	3	3	3	1	1	1	3
2	3	1	1	1	1	3	3	3	3	3	3	2	3	3	3	1	1	1	1
3	4	1	1	1	1	3	3	3	3	3	3	3	3	3	3	1	1	1	3
2	5	1	1	1	1	3	3	3	3	3	3	3	3	3	3	1	1	1	3
3	6	1	3	1	3	3	3	3	3	3	3	3	3	3	3	1	1	1	1
2	7	1	1	1	1	3	3	3	3	3	3	3	3	3	3	1	1	1	3
3	8	1	3	1	3	3	3	3	3	3	3	3	3	3	3	1	1	1	3
2	9	1	1	1	1	3	3	3	3	3	3	3	3	3	3	1	1	1	3
3	10	1	3	1	3	3	3	3	3	3	3	3	3	3	3	1	1	1	3
2	11	1	1	1	1	3	3	3	3	3	3	3	3	3	3	1	1	1	3
3	12	1	3	1	3	3	3	3	3	3	3	3	3	3	3	1	1	1	1
2	13	1	1	1	1	3	3	3	3	3	3	3	3	3	3	1	1	1	3
3	14	1	3	1	3	3	3	3	3	3	3	3	3	3	3	1	1	1	3
2	15	1	1	1	1	3	3	3	3	3	3	3	3	3	3	1	1	1	3
3	16	1	3	1	3	3	3	3	3	3	3	3	3	3	3	1	1	1	1
2	17	1	1	1	1	3	3	3	3	3	3	3	3	3	3	1	1	1	1
3	18	1	1	2	1	3	3	3	3	3	3	3	3	3	3	1	1	1	3
2	19	1	1	1	1	3	3	3	3	3	3	3	3	3	3	1	1	1	1
2	20	1	1	1	1	3	3	3	3	3	3	3	3	3	3	1	1	1	1
2	21	1	1	1	1	3	3	3	3	3	3	3	3	3	3	1	1	1	1
3	22	1	2	3	1	3	3	3	3	3	3	3	3	3	3	1	1	1	3
3	24	1	3	3	3	3	3	3	3	3	3	3	3	3	3	1	1	1	3
3	25	1	3	3	3	3	3	3	3	3	3	3	3	3	3	1	1	1	1
3	26	2	3	3	3	3	3	3	3	3	3	3	3	3	3	1	1	1	3
3	27	2	3	3	3	3	3	3	3	3	3	3	3	3	3	1	1	1	3
	GOOD	22	14	18	16	0	0	0	0	0	0	0	0	0	0	26	26	26	9
QC	MAYBE	2	2	1	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0
	NO GOOD	2	10	7	10	26	26	26	26	26	26	25	26	26	26	0	0	0	17

Table 37: Summarized QC Results for Smoothed Traces in Section 390208 J8B Test Job

Truck-Axle	Run#	LVDT1	LVDT2	LVDT3	LVDT4	LVDT7	LVDT8	LVDT9	LVDT10	LVDT11	LVDT12	LVDT13	LVDT14	LVDT15	LVDT16	DYN1	DYN2	DYN7	DYN8
2	1	3	3	3	1	3	3	3	3	3	3	2	3	3	3	1	1	1	3
2	2	3	3	3	1	3	3	3	3	3	3	2	3	3	3	1	1	1	3
2	3	2	3	3	1	3	3	3	3	3	3	1	3	3	3	1	1	1	3
2	4	1	3	2	1	3	3	3	3	3	3	2	3	3	3	1	1	1	3
2	5	1	3	1	1	3	3	3	3	3	3	2	3	3	3	1	1	1	3
2	6	1	3	2	1	3	3	3	3	3	3	2	3	3	3	1	1	1	3
2	7	1	3	2	1	3	3	3	3	3	3	1	3	3	3	1	1	1	3
2	8	1	3	1	1	3	3	3	3	3	3	1	3	3	3	1	1	1	3
2	9	1	3	1	1	3	3	3	3	3	3	1	3	3	3	1	1	1	3
2	10	1	3	1	1	3	3	3	3	1	3	1	3	3	3	1	1	1	3
2	11	1	3	2	1	3	3	3	3	1	1	1	3	3	3	1	1	1	3
2	12	1	3	1	1	3	3	3	3	3	1	1	3	3	3	1	1	1	3
2	13	1	3	1	1	3	3	3	3	3	3	1	3	3	3	1	1	1	3
2	14	1	3	1	1	3	3	3	3	3	3	1	3	3	3	1	1	1	3
2	15	1	3	1	1	3	3	3	3	3	3	2	3	3	3	1	1	1	1
2	16	1	3	1	1	3	3	3	3	3	1	2	3	3	3	1	1	1	3
2	17	1	3	1	1	3	3	3	3	3	3	3	3	3	3	1	1	1	3
	GOOD	14	0	10	17	0	0	0	0	2	3	9	0	0	0	17	17	17	1
QC	MAYBE	1	0	4	0	0	0	0	0	0	0	7	0	0	0	0	0	0	0
	NO GOOD	2	17	3	0	17	17	17	17	15	14	1	17	17	17	0	0	0	16

Table 38: Summarized QC Results for Smoothed Traces in Section 390208 J8C Test Job

Truck-Axle	Run#	LVDT1	LVDT2	LVDT3	LVDT4	LVDT7	LVDT8	LVDT9	LVDT10	LVDT11	LVDT12	LVDT13	LVDT14	LVDT15	LVDT16	DYN1	DYN2	DYN7	DYN8
2	1	3	3	3	3	3	3	3	3	3	3	3	3	2	2	3	3	1	3
3	2	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	1	3
2	3	2	3	3	3	3	2	3	3	3	3	2	3	3	3	3	3	1	3
3	4	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	1	3
2	5	1	1	3	3	3	1	3	3	3	3	2	3	1	2	3	3	1	3
3	6	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	1	3
2	7	1	3	3	3	3	3	3	3	3	3	3	3	3	1	3	3	1	3
3	8	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	1	3
2	9	1	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	1	3
3	10	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	1	3
2	11	1	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	1	3
3	12	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	1	3
2	13	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3
3	14	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	1	3
2	15	1	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3
3	16	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	1	3
2	17	1	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	1	3
3	18	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	1	3
	GOOD	6	1	0	0	0	1	0	0	0	0	0	0	1	1	0	0	16	0
QC	MAYBE	1	0	0	0	0	1	0	0	0	0	2	0	1	2	0	0	0	0
	NO GOOD	11	17	18	18	18	16	18	18	18	18	16	18	16	15	18	18	2	18

Table 39: Summarized QC Results for Smoothed Traces in Section 390208 J8S3M Test Job

Truck-Axle	Run#	LVDT1	LVDT2	LVDT3	LVDT4	LVDT7	LVDT8	LVDT9	LVDT10	LVDT11	LVDT12	LVDT13	LVDT14	LVDT15	LVDT16	DYN1	DYN2	DYN7	DYN8
2	1	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	1	2
3	2	3	3	3	1	3	3	3	3	3	3	3	3	3	3	3	3	1	2
2	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	1	2
3	4	3	3	3	3	3	3	3	3	3	3	1	3	3	3	3	3	1	2
2	5	3	2	3	2	3	2	3	3	3	3	3	3	2	2	3	3	1	1
3	6	3	3	3	1	3	3	3	3	3	3	3	3	3	3	3	3	1	2
2	7	3	3	3	3	3	3	3	3	3	3	3	3	2	2	3	3	1	1
3	8	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	1	2
2	9	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	1	2
3	10	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	1	2
2	11	3	3	3	3	3	3	3	3	3	3	3	3	3	2	3	3	1	2
3	12	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	1	3
2	13	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	1	3
3	14	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	1	3
2	15	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	1	3
3	16	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	1	3
2	17	2	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	1	3
3	18	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	1	3
	GOOD	0	0	0	2	0	0	0	0	0	0	1	0	0	0	0	0	18	2
QC	MAYBE	1	1	0	1	0	1	0	0	0	0	0	0	2	3	0	0	0	9
	NO GOOD	17	17	18	15	18	17	18	18	18	18	17	18	16	15	18	18	0	7

Table 40: Summarized QC Results for Smoothed Traces in Section 390208 J8S3N Test Job

Truck-Axle	Run#	LVDT1	LVDT2	LVDT3	LVDT4	LVDT7	LVDT8	LVDT9	LVDT10	LVDT11	LVDT12	LVDT13	LVDT14	LVDT15	LVDT16	DYN1	DYN2	DYN7	DYN8
2	1	3	3	3	2	3	3	3	3	3	3	3	3	3	3	3	3	1	3
3	2	3	3	3	1	3	3	3	3	3	3	3	3	3	3	3	3	1	3
2	3	2	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	1	3
3	4	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	1	3
2	5	1	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	1	3
3	6	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	1	3
2	7	1	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	1	3
3	8	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	1	3
2	9	1	3	3	3	1	1	3	3	3	3	3	3	3	3	3	3	1	3
3	10	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	1	3
2	11	1	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	2	3
3	12	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	1	3
2	13	1	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	1	3
3	14	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	1	3
2	15	1	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	1	3
3	16	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	1	3
2	17	1	3	3	3	1	3	3	3	3	3	1	3	3	3	3	3	1	3
3	18	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	1	3
	GOOD	7	0	0	1	2	1	0	0	0	0	1	0	0	0	0	0	17	0
QC	MAYBE	1	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	1	0
	NO GOOD	10	18	18	16	16	17	18	18	18	18	17	18	18	18	18	18	0	18

Table 41: Summarized QC Results for Smoothed Traces in Section 390208 J8S3O Test Job

Truck-Axle	Run#	LVDT1	LVDT2	LVDT3	LVDT4	LVDT7	LVDT8	LVDT9	LVDT10	LVDT11	LVDT12	LVDT13	LVDT14	LVDT15	LVDT16	DYN1	DYN2	DYN7	DYN8
3	1	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3
2	2	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	2	3
3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	1	3
2	4	3	3	3	3	3	3	3	3	3	3	3	3	2	2	3	3	1	3
3	5	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	1	3
2	6	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	1	3
3	7	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	1	3
2	8	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	1	3
3	9	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	1	3
2	10	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	1	3
3	11	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	2	3
2	12	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	1	3
3	13	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	1	3
2	14	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	1	3
3	15	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	1	3
2	16	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	1	3
3	17	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	1	3
2	18	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	1	3
	GOOD	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	15	0
QC	MAYBE	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	2	0
	NO GOOD	18	18	18	18	18	18	18	18	18	18	18	18	17	17	18	18	1	18

Table 42: Summarized QC Results for Smoothed Traces in Section 390208 J8S3P Test Job

Truck-Axle	Run#	LVDT1	LVDT2	LVDT3	LVDT4	LVDT7	LVDT8	LVDT9	LVDT10	LVDT11	LVDT12	LVDT13	LVDT14	LVDT15	LVDT16	DYN1	DYN4	DYN5	DYN8
2	1	1	3	1	1	3	3	3	3	2	3	3	3	3	3	1	1	1	1
3	2	1	3	1	2	3	3	3	3	2	3	3	3	3	3	1	1	1	1
2	3	1	3	1	2	3	3	3	3	1	3	3	3	3	3	1	1	1	1
3	4	1	3	2	3	3	3	3	3	3	3	3	3	3	3	1	1	1	1
	GOOD	4	0	3	1	0	0	0	0	1	0	0	0	0	0	4	4	4	4
QC	MAYBE	0	0	1	2	0	0	0	0	2	0	0	0	0	0	0	0	0	0
	NO GOOD	0	4	0	1	4	4	4	4	1	4	4	4	4	4	0	0	0	0

Table 43: Summarized QC Results for Smoothed Traces in Ohio SPS-2 J12A Test Job

Truck-Axle	Run#	LVDT1	LVDT2	LVDT3	LVDT4	LVDT7	LVDT8	LVDT9	LVDT10	LVDT11	LVDT12	LVDT13	LVDT14	LVDT15	LVDT16	DYN1	DYN2	DYN7	DYN8
2	1	1	3	1	1	3	3	3	3	3	3	3	3	3	3	1	1	1	1
3	2	1	1	1	3	3	3	3	3	3	3	3	3	3	3	1	1	1	1
2	3	1	1	1	1	3	3	3	3	3	3	3	3	3	3	1	1	1	1
3	4	1	3	1	3	3	3	3	3	3	3	3	3	3	3	1	1	1	1
2	5	1	2	1	1	3	3	3	3	3	3	3	3	3	3	1	1	1	1
3	6	2	3	1	3	3	3	3	3	3	3	3	3	3	3	2	1	1	2
2	7	1	1	1	1	3	3	3	3	3	3	3	3	3	3	1	1	1	1
3	8	1	3	1	3	3	3	3	3	3	3	3	3	3	3	1	1	1	1
2	9	1	3	1	1	3	3	3	3	3	3	3	3	3	3	1	1	1	1
3	10	1	3	1	3	3	3	3	3	3	3	3	3	3	3	1	1	1	1
2	11	1	2	1	1	3	3	3	3	2	3	3	3	3	3	1	1	1	1
3	12	2	3	1	3	3	3	3	3	3	3	3	3	3	3	1	1	1	1
2	13	1	1	1	1	3	3	3	3	2	3	3	3	3	3	1	1	1	1
3	14	1	3	1	3	3	3	3	3	3	3	3	3	3	3	1	1	1	1
2	15	1	2	1	1	3	3	3	3	2	3	3	3	3	3	1	1	1	1
3	16	1	3	1	3	3	3	3	3	3	3	3	3	3	3	1	1	1	1
2	17	1	1	1	1	3	3	3	3	1	3	3	3	3	3	1	1	1	1
3	18	1	3	1	3	3	3	3	3	2	3	3	3	3	3	1	1	1	1
2	19	1	1	1	1	3	3	3	3	1	3	3	3	3	3	1	1	1	1
2	20	1	1	1	1	3	3	3	3	1	3	3	3	3	3	1	1	1	1
2	21	1	1	1	1	3	3	3	3	1	3	3	3	3	3	1	1	1	1
3	22	1	3	1	3	3	3	3	3	2	3	3	3	3	3	1	1	1	1
3	24	1	3	1	3	3	3	3	3	3	3	3	3	3	3	1	1	1	1
3	25	1	1	3	3	3	3	3	3	3	3	3	3	3	3	1	1	1	1
3	26	1	1	1	3	3	3	3	3	3	3	3	3	3	3	1	1	1	1
3	27	1	3	1	3	3	3	3	3	3	3	3	3	3	3	1	1	1	1
	GOOD	24	10	25	12	0	0	0	0	4	0	0	0	0	0	25	26	26	25
QC	MAYBE	2	3	0	0	0	0	0	0	5	0	0	0	0	0	1	0	0	1
	NO GOOD	0	13	1	14	26	26	26	26	17	26	26	26	26	26	0	0	0	0

Table 44: Summarized QC Results for Smoothed Traces in Section 390212 J12B Test Job

Truck-Axle	Run#	LVDT1	LVDT2	LVDT3	LVDT4	LVDT7	LVDT8	LVDT9	LVDT10	LVDT11	LVDT12	LVDT13	LVDT14	LVDT15	LVDT16	DYN1	DYN2	DYN7	DYN8
2	1	2	1	2	1	3	3	3	3	2	3	3	3	3	3	1	1	1	1
2	2	1	1	1	1	3	3	3	3	1	3	3	3	3	3	1	1	1	1
2	3	1	1	1	1	3	3	3	3	1	3	3	3	3	3	1	2	1	1
2	4	1	1	1	1	3	3	3	3	1	3	3	3	3	3	1	3	1	1
2	5	1	1	1	1	3	3	3	3	1	3	3	3	3	3	1	1	1	1
2	6	1	1	1	1	3	3	3	3	1	3	3	3	3	3	1	1	1	1
2	7	1	1	1	1	3	3	3	3	1	3	3	3	3	3	1	2	1	1
2	8	1	1	1	1	3	3	3	3	1	3	3	3	3	3	1	1	1	1
2	9	1	1	1	1	3	3	3	3	1	3	3	3	3	3	1	1	1	1
2	10	1	1	1	1	3	3	3	3	1	3	3	3	3	3	1	1	1	3
2	11	1	1	1	1	3	3	3	3	1	3	3	3	3	3	1	1	1	1
2	12	1	1	1	1	3	3	3	3	1	3	3	3	3	3	1	2	1	1
2	13	1	1	1	1	3	3	3	3	1	3	3	3	3	3	1	1	1	1
2	14	1	1	1	1	3	3	3	3	1	3	3	3	3	1	1	1	1	1
	GOOD	13	14	13	14	0	0	0	0	13	0	0	0	0	1	14	10	14	13
QC	MAYBE	1	0	1	0	0	0	0	0	1	0	0	0	0	0	0	3	0	0
	NO GOOD	0	0	0	0	14	14	14	14	0	14	14	14	14	13	0	1	0	1

Table 45: Summarized QC Results for Smoothed Traces in Section 390212 J12C Test Job

Truck-Axle	Run#	LVDT1	LVDT2	LVDT3	LVDT4	LVDT7	LVDT8	LVDT9	LVDT10	LVDT11	LVDT12	LVDT13	LVDT14	LVDT15	LVDT16	DYN1	DYN2	DYN7	DYN8
2	1	3	2	2	1	3	3	3	2	2	3	3	3	2	2	3	3	3	3
3	2	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	2	3
2	3	1	2	1	1	3	3	3	2	2	3	3	3	2	2	3	3	3	3
3	4	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3
2	5	1	3	1	1	3	3	3	1	1	3	3	3	1	1	3	3	3	3
3	6	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3
2	7	1	3	1	3	3	3	3	3	3	3	3	3	3	2	3	2	3	3
3	8	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	2	3	3
2	9	1	3	1	3	3	3	3	3	3	3	3	3	3	3	3	2	3	3
3	10	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	2	3	3
2	11	1	3	1	1	3	3	3	2	2	3	3	3	2	2	3	2	3	3
3	12	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	2	3	3
2	13	1	3	1	3	3	3	3	2	2	3	3	3	3	2	3	2	3	3
3	14	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	2	3	3
2	15	1	3	1	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3
3	16	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	2	3	3
2	17	1	3	1	3	3	3	3	3	3	3	3	3	3	2	3	3	3	3
3	18	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	2	3	3
	GOOD	8	0	8	4	0	0	0	1	1	0	0	0	1	1	0	0	0	0
QC	MAYBE	0	2	1	0	0	0	0	4	4	0	0	0	3	6	0	10	1	0
	NO GOOD	10	16	9	14	18	18	18	13	13	18	18	18	14	11	18	8	17	18

Table 46: Summarized QC Results for Smoothed Traces in Section 390212 J12J10M Test Job

Truck-Axle	Run#	LVDT1	LVDT2	LVDT3	LVDT4	LVDT7	LVDT8	LVDT9	LVDT10	LVDT11	LVDT12	LVDT13	LVDT14	LVDT15	LVDT16	DYN1	DYN2	DYN7	DYN8
2	1	2	3	2	3	3	3	3	3	3	3	3	3	3	3	1	3	3	3
3	2	3	3	3	1	3	3	3	3	3	3	3	3	3	3	1	3	3	3
2	3	1	3	1	3	3	3	3	3	3	3	3	3	3	3	1	3	3	3
3	4	3	3	3	2	3	3	3	3	3	3	3	3	3	3	1	3	3	3
2	5	1	3	1	3	3	3	3	3	3	3	3	3	3	3	1	3	3	3
3	6	3	3	1	1	3	3	3	3	3	3	3	3	3	3	1	3	3	3
2	7	1	3	1	3	3	3	3	3	3	3	3	3	3	3	1	3	3	3
3	8	3	3	3	3	3	3	3	3	3	3	3	3	3	3	1	3	3	3
2	9	1	3	1	3	3	3	3	3	3	3	3	3	3	3	1	3	3	3
3	10	3	3	3	3	3	3	3	3	3	3	3	3	3	3	1	3	3	3
2	11	2	3	1	3	3	3	3	3	2	3	3	3	3	3	1	3	3	3
3	12	3	3	3	3	3	3	3	3	3	3	3	3	3	3	2	3	3	3
2	13	1	3	2	3	3	3	3	3	3	3	3	3	3	3	2	3	3	3
3	14	3	3	3	3	3	3	3	3	3	3	3	3	3	3	2	3	3	3
2	15	1	3	2	3	3	3	3	3	2	3	3	3	3	3	2	3	3	3
3	16	3	3	3	3	3	3	3	3	3	3	3	3	3	3	2	3	3	3
2	17	1	3	2	3	3	3	3	3	3	3	3	3	3	3	2	3	3	3
3	18	3	3	3	3	3	3	3	3	3	3	3	3	3	3	2	3	3	3
	GOOD	7	0	6	2	0	0	0	0	0	0	0	0	0	0	11	0	0	0
QC	MAYBE	2	0	4	1	0	0	0	0	2	0	0	0	0	0	7	0	0	0
	NO GOOD	9	18	8	15	18	18	18	18	16	18	18	18	18	18	0	18	18	18

Table 47: Summarized QC Results for Smoothed Traces in Section 390212 J12J10N Test Job

Truck-Axle	Run#	LVDT1	LVDT2	LVDT3	LVDT4	LVDT7	LVDT8	LVDT9	LVDT10	LVDT11	LVDT12	LVDT13	LVDT14	LVDT15	LVDT16	DYN1	DYN2	DYN7	DYN8
2	1	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3
3	2	3	3	3	3	3	3	3	3	3	3	3	3	3	3	1	3	3	3
2	3	1	3	1	3	3	3	3	3	3	3	3	3	3	3	1	3	3	3
3	4	2	3	3	3	3	3	3	3	3	3	3	3	3	3	1	3	3	3
2	5	1	3	1	3	3	3	3	3	1	3	3	3	3	3	1	3	3	3
3	6	3	3	3	3	3	3	3	3	3	3	3	3	3	3	1	3	3	3
2	7	1	3	1	3	3	3	3	3	1	3	3	3	3	3	1	2	3	3
3	8	3	3	3	3	3	3	3	3	3	3	3	3	3	3	1	2	2	3
2	9	1	3	1	3	3	3	3	3	3	3	3	3	3	3	2	3	2	3
3	10	3	3	3	3	3	3	3	3	3	3	3	3	3	3	1	3	2	3
2	11	1	3	1	3	3	3	3	3	1	3	3	3	3	3	2	3	2	3
3	12	3	3	3	3	3	3	3	3	3	3	3	3	3	3	2	3	2	3
2	13	1	3	1	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3
3	14	3	3	3	3	3	3	3	3	3	3	3	3	3	3	1	3	2	3
2	15	1	3	1	3	3	3	3	3	1	3	3	3	3	3	2	3	3	3
3	16	3	3	3	3	3	3	3	3	3	3	3	3	3	3	2	3	3	3
2	17	1	3	1	3	3	3	3	3	1	3	3	3	3	3	2	3	3	3
3	18	3	3	2	3	3	3	3	3	3	3	3	3	3	3	2	3	3	3
	GOOD	8	0	8	0	0	0	0	0	5	0	0	0	0	0	9	0	0	0
QC	MAYBE	1	0	1	0	0	0	0	0	0	0	0	0	0	0	7	2	6	0
	NO GOOD	9	18	9	18	18	18	18	18	13	18	18	18	18	18	2	16	12	18

Table 48: Summarized QC Results for Smoothed Traces in Section 390212 J12J100 Test Job

Truck-Ayle	Bun#	I VDT1	I VDT2	I VDT3	I VDT4	I VDT7	I VDT8	I VDTO	I VDT10	I VDT11	I VDT12	I VDT13	I VDT14	I VDT15	I VDT16	DVN1	DVN2	DVN7	DVN
	Κιμη																		
3	1	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	
2	2	2	1	2	1	3	1	3	2	1	3	2	3	3	2	3	3	3	
3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	
2	4	2	1	2	1	3	1	3	2	1	3	2	3	2	2	3	3	3	
3	5	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	
2	6	2	1	1	1	3	2	3	2	2	3	2	3	2	2	3	3	3	
3	7	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	
2	8	2	2	2	1	3	2	3	2	2	3	2	3	2	2	3	3	3	
3	9	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	
2	10	2	1	2	1	3	2	3	2	2	3	2	3	2	2	3	3	3	
3	11	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	
2	12	2	1	1	1	3	2	3	2	2	3	2	3	2	2	3	3	3	
3	13	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	
2	14	1	1	1	1	3	3	3	2	2	3	2	3	2	2	3	3	3	
3	15	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	1
2	16	1	1	1	1	3	3	3	3	2	3	3	3	2	2	3	3	3	
3	17	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	
	GOOD	2	7	4	8	0	2	0	0 0	2	0	0	0	0	0	0	0	0	į
QC	MAYBE	6	1	4	0	0 0	4	0	7	6	0	7	0	7	8	0	0	0	į
	NO GOOD	9	9	9	9	17	11	17	10	9	17	10	17	10	9	17	17	17	1

Table 49: Summarized QC Results for Smoothed Traces in Section 390212 J12J10P Test Job