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FOREWORD 

This report documents research that applied Long-Term Pavement Performance Data to develop 

an improved approach to calibrating the American Association of State Highway and 

Transportation Officials’ (AASHTO) AASHTOWare® Pavement ME Design performance 

models.(1) Whereas the current AASHTO guidelines used in the Pavement ME Design software 

for calibration of the performance prediction models to local conditions (e.g., materials, traffic, 

and climate) relies on single-objective minimization of bias and standard error (STE), this report 

investigates the use of multi-objective optimization to enhance the calibration of the performance 

models. 

The multi-objective optimization results in a final pool of tradeoff solutions where none of the 

viable sets of calibration factors are prematurely eliminated. This report also demonstrates the 

application of engineering judgment and qualitative criteria to select reasonable calibration 

coefficients from the final pool of solutions that result from the multi-objective optimization. 

More reasonable calibration factors result in a more justifiable pavement design when 

considering multiple aspects of pavement performance. This investigation revealed that simply 

evaluating the bias and STE is not adequate for a comprehensive evaluation of performance 

prediction models. This report is intended for pavement engineers and State transportation 

departments. 
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1 

EXECUTIVE SUMMARY 

The American Association of State Highway and Transportation Officials (AASHTO) has 

published guidelines to calibrate the pavement performance prediction models used in the 

AASHTOWare® Pavement Mechanistic–Empirical Design software to local materials–traffic–

climate conditions.(1) The AASHTO recommended calibration process consists of several steps 

to increase accuracy and precision of the calibrated models through single-objective 

minimization of bias and standard deviation of error. This research project investigated the 

application of multi-objective optimization to enhance the calibration of the performance models 

within the Guide for Mechanistic–Empirical Design of New and Rehabilitated Pavement 

Structures (MEPDG).(2)  

Using a multi-objective optimization approach enables researchers to escape preconception, 

avoid excessive concentration on only one aspect of the problem, and combine multiple sources 

of information in an objective manner. This research project devised two scenarios for 

application of multi-objective optimization to enhance calibration of MEPDG performance 

models. In the primary multi-objective scenario, mean and standard deviation of prediction error 

are simultaneously minimized to increase accuracy and precision at the same time. In this 

manner, the information from a single calibration run is fully implemented, and an additional 

round of computationally intensive calibration is avoided. In the second scenario, model 

prediction error on data from Federal Highway Administration’s Long-Term Pavement 

Performance test sections and error on available accelerated pavement testing (APT) data are 

treated as independent objective functions to be minimized simultaneously. As a result, the 

multiple sources of data with different materials–traffic–climate conditions and disparate 

measurement protocols are combined in an objective manner.  

Using this multi-objective calibration approach results in a final pool of tradeoff solutions. This 

way, none of the viable sets of calibration factors are eliminated prematurely, and all of the 

nondominated solutions are included in the final tradeoff front. Exploring the final front might 

reveal unknown aspects of this calibration problem and result in more reasonable calibration 

coefficients that could not be identified using single-objective approaches. This study 

demonstrates the application of engineering judgment and qualitative criteria to select reasonable 

calibration coefficients from the final pool of solutions that result from the multi-objective 

optimization. More reasonable calibration factors result in a more justifiable pavement design 

considering multiple aspects of pavement performance. 

Although there was no fundamental way to prove whether there was a theoretical conflict 

between the selected objective functions, the shape of the final nondominated front indicated that 

the selected objective functions conflicted with one another, and therefore, the application of a 

multi-objective optimization approach was justified. In the first multi-objective calibration 

scenario, the simultaneous minimization of bias and standard error (STE) resulted in calibrated 

models that had higher precision (lower STE) and higher generalization capability (lower 

difference in bias between calibration and validation data) compared to the single-objective 

calibration. While this scenario was more successful in the calibration of rutting models for 

overlaid pavements on Florida Specific Pavement Studies (SPS)-5 data, it did not result in 

desirable accuracy levels for rutting models on new pavements using Florida SPS-1 data. The 
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results of the second multi-objective scenario demonstrated that incorporation of the disparate 

source of performance data (Florida Department of Transportation APT data) as a separate 

objective function has significantly improved the prediction accuracy, precision, and 

generalization capability of the calibrated rutting model on SPS-1 data.  

The qualitative comparison of the calibrated models showed that using the multi-objective 

approach has resulted in predicted rutting distributions that are more similar in flatness (kurtosis) 

to the measured rutting distributions. However, the same was not true about skewness. The low 

goodness-of-fit indicator for scatterplots of predicted versus measured rutting in the case of all 

calibration approaches reveals that the MEPDG rutting models have an inherent lack of precision 

that might not be addressed with the calibration process. This is perhaps because the variability 

in pavement materials has not been captured in these models. The final selected calibration 

factors for rutting in unbound pavement layers (base and subgrade) were more reasonable in the 

multi-objective approach, compared to insignificant values achieved through single-objective 

calibration. Once again, this possibility of applying engineering judgment demonstrates the value 

of the multi-objective calibration in providing a final pool of solutions from which to choose. 

To combine the quantitative and qualitative success metrics of a performance prediction model, 

the measured and predicted rutting deterioration trends were examined. While the two-objective 

calibration on SPS-5 data had significantly improved the prediction of rutting deterioration rates 

compared to the single-objective calibration, the multi-objective calibration results on SPS-1 did 

not exhibit the same quality. This investigation revealed that simply evaluating the bias and STE 

is not adequate for a comprehensive evaluation of performance prediction models. Therefore, it 

is recommended that the comprehensive comparison framework presented in this study be used 

when selecting suitable performance prediction models. 
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CHAPTER 1. INTRODUCTION  

BACKGROUND 

The Guide for Mechanistic–Empirical Design of New and Rehabilitated Pavement Structures 

(MEPDG) was developed under the National Cooperative Highway Research Program (NCHRP) 

Project 1-37A.(2) This pavement design methodology is based on various performance prediction 

models that relate mechanistically calculated pavement responses to empirically measured field 

performance. The performance models in the current American Association of State Highway 

and Transportation Officials (AASHTO) AASHTOWare® Pavement ME Design software were 

calibrated based on Federal Highway Administration’s (FHWA’s) Long-Term Pavement 

Performance (LTPP) data from all North American regions with various material characteristics, 

traffic patterns, and climatic conditions.(1)  

Numerous State agencies have adopted the AASHTO recommended calibration procedure 

developed in NCHRP Project 1-40B for their State or regional conditions.(3,4) This calibration 

approach minimizes the sum of squared errors (SSE) between measured and predicted pavement 

performance. Different States have reported calibration results with varying levels of success 

depending on the performance models. In this single-objective optimization approach to 

calibration, the SSE and, if needed, the standard deviation of error, is minimized in two separate 

steps. 

Using a multi-objective optimization approach enables researchers to escape preconception, 

avoid excessive concentration on only one aspect of the problem, and combine multiple sources 

of information in an objective manner. In this study, application of a multi-objective 

optimization approach to enhance calibration of the AASHTOWare® Pavement ME Design 

software performance models is investigated. To demonstrate the multi-objective approach, a 

subset of the LTPP data from Florida is selected for calibration of MEPDG permanent 

deformation (rutting) prediction models for new and rehabilitated flexible pavements. In addition 

to the LTPP data, some accelerated pavement testing (APT) data were received from the Florida 

Department of Transportation (FDOT) State Materials Office. This project was awarded by 

FHWA as a result of a proposal in response to the FHWA Broad Agency Announcement (BAA) 

on analysis of LTPP data. 

RESEARCH OBJECTIVES AND OUTCOMES 

The proposed research is aimed at calibration and validation of pavement performance prediction 

models, which was considered as an objective (research area d.i) in the BAA. Employing LTPP 

data, this research effort will support strategic objective number 5, “Development of Pavement 

Response and Performance Models Applicable to Pavement Design and Performance 

Prediction,” of the current LTPP Strategic Plan for LTPP Data Analysis. Through application of 

alternative computational tools, calibration of pavement performance models is enhanced. The 

following enhancements are anticipated as a result of this research effort: 
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• Increase utilization of the available information in each iteration of the computationally 

intensive calibration process by simultaneously increasing accuracy and precision 

(minimizing mean and standard deviation of error) of the performance models. 

• Combine multiple disparate sources of data into the calibration process in an objective 

manner. 

• Provide engineering judgment and qualitative criteria to select reasonable calibration 

coefficients from the final pool of solutions that result from a multi-objective 

optimization. 

Using this multi-objective calibration approach, multiple sources of information are incorporated 

in an objective manner, resulting in a final set of tradeoff solutions. This way, none of the viable 

sets of calibration factors are eliminated prematurely, and all of the nondominated solutions are 

included in the final tradeoff front. Exploring the final front might reveal unknown aspects of 

this calibration problem and result in more reasonable calibration coefficients that could not be 

identified using single-objective approaches. 

If successful, a superior calibration of the ME software performance models is realized using 

multi-objective optimization compared to conventional single-objective methods. Of particular 

value, this study demonstrates how State and local agencies can adopt this multi-objective 

approach to determine more reasonable calibration factors for their pavement networks at all age 

and distress levels. This contribution can result in more economical and justifiable pavement 

design considering multiple aspects of pavement performance. 

REPORT ORGANIZATION 

Following an overview of the corresponding literature in chapter 2, this report discusses the 

extraction of relevant LTPP and APT data and generating the ME software input files in chapter 

3. Chapter 4 explains the programming approach to single-objective (according to AASHTO 

guidelines) and multi-objective calibration. Chapter 5 presents the calibration results and 

discusses a comprehensive comparison of the final performance models calibrated through the 

single-objective and multi-objective approaches. Finally, chapter 6 concludes with insights from 

the discussion of results and provides some recommendations for future implementation of this 

multi-objective calibration approach and further research to enhance the methodology. 
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CHAPTER 2. REVIEW OF LITERATURE ON CALIBRATING THE MECHANISTIC–

EMPIRICAL PAVEMENT PERFORMANCE MODELS 

INTRODUCTION 

The first step in the proposed research study was a comprehensive literature review regarding 

calibration of the pavement performance models in the AASHTOWare® Pavement ME Design 

software. The literature review also included multi-objective model calibration studies in 

research areas other than pavement engineering. The major objective of this literature review was 

to identify important sources of information for model calibration and to formulate 

corresponding objective functions. The review also enabled researchers to base their selection of 

range and precision of possible calibration factors on previous calibration studies.  

Results of previous calibration efforts indicated little to no problem in calibration of thermal 

(transverse) cracking and smoothness prediction models. Therefore, the existing single-objective 

calibration procedure seems to be sufficient for these two models.(3) There seem to be difficulties 

in calibration of the longitudinal cracking model associated with the lack of fit of the global 

model.(5) These difficulties require reconsideration of the formulation for the longitudinal 

cracking model, and therefore, this model is not considered for this research project.  

The permanent deformation model has been reported to consistently overpredict measured 

pavement rutting. On the other hand, the fatigue cracking model has been reported to 

underpredict actual pavement distress in most studies. A more sophisticated calibration 

procedure could address these consistent deviations of model predictions from measured 

pavement performance. This research project was therefore originally focused on local 

calibration of prediction models for rutting and fatigue cracking in flexible pavements. Hence, 

the following literature review includes information regarding both models. However, due to 

limitations in the resources and schedule of this project, only the permanent deformation models 

were considered to demonstrate the proof of concept for multi-objective calibration.  

MECHANISTIC–EMPIRICAL PAVEMENT PERFORMANCE MODELS 

The amount of total permanent deformation in flexible pavements is calculated as the sum of 

plastic deformations in each of the hot-mix asphalt (HMA), base, and subgrade layers. The 

model for predicting rutting (permanent deformation) in HMA layers (inches)1 of flexible 

pavements has the form of equation 1:(1)  

    (1) 

Where: 

Δp = predicted rutting (inches). 

hHMA = thickness of the HMA layer (inches). 

εp = plastic strain in the layer (inch/inch). 

                                                 
1For consistency with how measurements are recorded in the LTPP database, all layer thickness measurements 

are presented in inches in this report. These measurements can be converted to centimeters: 1 inch = 2.54 cm. 

∆𝑝(𝐻𝑀𝐴)= ℎ𝐻𝑀𝐴𝜀𝑝(𝐻𝑀𝐴) = ℎ𝐻𝑀𝐴𝜀𝑟(𝐻𝑀𝐴)𝛽𝑟1𝑘𝑍10𝑘1𝑇𝑘2𝛽𝑟2𝑁𝑘3𝛽𝑟3  
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εr = resilient (recoverable) strain in the layer (inch/inch). 

T = layer temperature. 

N = number of load repetitions. 

k1, k2, k3 = global field calibration parameters (from NCHRP 1-40D Recalibration,  

k1 = –3.35412, k2 = 1.5606, k3 = 0.4791).  

βr1, βr2, βr3 = local or mixture field calibration factors; these factors were all set to 1.0 for the 

global calibration. 

kz = depth confinement factor, which is calculated through equation 2: 

  (2) 

Where: 

D = depth below the surface 

C1 and C2 = coefficients to calculate the depth confinement factor; these coefficients are 

calculated according to equations 3 and 4: 

   (3) 

  (4) 

The model for predicting rutting in unbound (base, subbase, and subgrade soil) layers (inches) of 

flexible pavements has the form of equation 5:(1) 

  (5) 

Where: 

hsoil = thickness of the unbound layer/sublayer (inches). 

k1 = global calibration coefficient; k1 = 2.03 for granular materials, and k1 = 1.35 for fine-

grained materials. 

βs1 = local calibration factor; this factor was set to 1.0 for the global calibration; it is also 

called βGB for unbound base layers and βSG for subgrade layers. 

εv = average vertical resilient or elastic strain in the layer (inch/inch) calculated by the 

structural response model. 

ε0 = strain intercept (inch/inch) determined from laboratory repeated-load permanent 

deformation tests. 

εr = resilient (recoverable) strain (inch/inch) imposed in laboratory test to obtain material 

properties. 

= strain ratio that is calculated using equation 6:  

    (6)  

β and ρ are material properties that are calculated according to equations 7 and 8: 

 

𝑘𝑍 =  𝐶1 + 𝐶2𝐷 × 0.328196𝐷  

𝐶1 =  −0.1039 × ℎ𝐻𝑀𝐴
2 + 2.4868 × ℎ𝐻𝑀𝐴 − 17.324 

𝐶2 =  0.0172 × ℎ𝐻𝑀𝐴
2 − 1.7331 × ℎ𝐻𝑀𝐴 + 27.4280 

∆𝑝(𝑠𝑜𝑖𝑙 )= ℎ𝑠𝑜𝑖𝑙 𝜀𝑝(𝑠𝑜𝑖𝑙 ) = ℎ𝑠𝑜𝑖𝑙𝛽𝑠1𝑘1𝜀𝑣  
𝜀0

𝜀𝑟
 𝑒− 

𝜌
𝑁
 
𝛽

 

𝜀0

𝜀𝑟
 

𝑙𝑜𝑔  
𝜀0

𝜀𝑟
 =

 𝑒 𝜌 𝛽 . 𝑎1𝑀𝑟
𝑏1 +  𝑒 𝜌/109 

𝛽

. 𝑎9𝑀𝑟
𝑏9 

2
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  (7) 

  (8) 

Where Wc is water content (%) that is calculated using equation 9: 

 

    (9) 

Where: 

GWT = depth of ground water table (ft). 

C0 = factor depending on the material resilient modulus and is calculated through 

equation 10: 

  (10) 

Where: 

Mr = resilient modulus of the unbound layer/sublayer (psi). 

a1, a9, b1, b9 = regression constants; a1 = 0.15, a9 = 20.0, b1 = 0.0, and b9 = 0.0. 

The prediction model for fatigue (bottom–up or alligator) cracking (percent of total lane area) in 

flexible pavements has the form of equation 11:(1) 

   (11) 

Where: 

FCBottom–up = bottom–up alligator cracking. 

C*
1 and C*

2 are coefficients that can be calculated using equations 12 and 13: 

  (12) 

  (13) 

Where 

hHMA = total HMA thickness. 

DIbottom–up = damage index that is calculated using equation 14: 

  (14) 

 

log 𝛽 = −0.61119 − 0.017638 𝑊𝑐  

𝜌 =  109  
𝐶0

 1 −  109 𝛽 
 

1
𝛽

 

𝑊𝑐 = 51.712   
𝑀𝑟

2555
 

1
0.64

 

−0.3586.𝐺𝑊𝑇0.1192

 

𝐶0 = 𝐿𝑛  
𝑎1𝑀𝑟

𝑏1

𝑎9𝑀𝑟
𝑏9 = 0.0075 

𝐹𝐶𝐵𝑜𝑡𝑡𝑜𝑚 −𝑢𝑝 =  
6000

1 + 𝑒 𝐶1×𝐶1
∗+𝐶2×𝐶2

∗𝐿𝑜𝑔 100×𝐷𝐼𝑏𝑜𝑡𝑡𝑜𝑚 −𝑢𝑝   
 ×  

1

60
  

𝐶1
∗ = −2 × 𝐶2

∗   

𝐶2
∗ = −2.40874 − 39.748 1 + ℎ𝐻𝑀𝐴 

−2.856  

 𝐷𝐼𝑏𝑜𝑡𝑡𝑜𝑚 −𝑢𝑝 =   ∆𝐷𝐼 𝑗 ,𝑚 ,𝑙 ,𝑝 ,𝑇 =   
𝑁

𝑁𝑓−𝐻𝑀𝐴
 
𝑗 ,𝑚 ,𝑙 ,𝑝 ,𝑇

 



 

8 

Where: 

∆DI = incremental damage index. 

N = actual number of axle load applications within a specific period. 

j = axle load interval. 

m = axle load type (single, tandem, tridem, quad, or special axle configuration). 

l = truck type using the truck classification groups included in the MEPDG. 

p = month. 

T = median temperature for the five temperature intervals used to subdivide each month. 

Nf – HMA = allowable number of axle load applications for a flexible pavement to fatigue 

cracking, and it is calculated using equation 15: 

  (15) 

Where: 

εt = tensile strain at the critical location. 

E = dynamic modulus measured in compression. 

kf1, kf2, kf3 = global field calibration parameters (from NCHRP 1-40D Recalibration,  

kf1 = 0.007566, kf2 = –3.9492, kf3 = –1.281).(6) 

βf1, βf2, βf3 = local or mixture field calibration factors; these factors were all set to 1.0 for the 

global calibration. 

C = constant depending on mix properties and calculated using equations 16 and 17: 

  (16) 

  (17) 

Where: 

Va = air voids at the time the roadway is opened to traffic (%). 

Vbe = effective asphalt content by volume of the mix placed on the roadway (%). 

Ch = thickness correction term, and it is calculated using equation 18: 

  (18) 

The local calibration procedure is aimed at determining the calibration factors that minimize the 

difference between measured and predicted pavement performance. This process includes 

reducing bias through minimization of average prediction error and lessening error variation 

through reduction of the standard deviation of error. Table 1 lists the calibration factors or 

coefficients that need to be determined in the model calibration process for rutting and fatigue 

cracking in flexible pavements.  

𝑁𝑓−𝐻𝑀𝐴 = 𝑘𝑓1 𝐶  𝐶ℎ 𝛽𝑓1 𝜀𝑡 
𝑘𝑓2𝛽𝑓2 𝐸 𝑘𝑓3𝛽𝑓3  

𝐶 = 10𝑀 

𝑀 = 4.84  
𝑉𝑏𝑒

𝑉𝑎 + 𝑉𝑏𝑒
− 0.69  

𝐶ℎ =
1

0.000398 +
0.003602

1 + 𝑒 11.02−3.49×ℎ𝐻𝑀𝐴  
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Table 1. Calibration factors in prediction models for rutting and fatigue cracking in 

flexible pavements.(3)  

Performance Model 

Calibration Objective: 

Reduce Bias 

Calibration Objective: 

Reduce STE 

Permanent deformation k1, βr1, βGB, and/or βSG k2, k3 and βr2, βr3 

Fatigue cracking C2 or βf1 βf2, βf3 and C1 

STE = standard error. 

Based on the NCHRP Project 1-40B, the corresponding calibration factors in table 1 were found 

to be contributing to bias and standard error (STE).(4) The current single-objective calibration 

procedure determines the calibration factors in two steps corresponding to “eliminating” bias and 

reducing STE, respectively.(3) However, the multi-objective calibration approach in this research 

project will involve the determination of optimum values for all calibration factors to reduce bias 

and STE at the same time. 

INPUT VARIABLES 

A very important task in calibration and implementation of AASHTOWare® Pavement ME 

Design software is selection of accurate values for input variables. Three main categories of 

pavement structure, climate, and traffic variables require ample efforts to determine 

corresponding values for every design project. By the same token, many State agencies have 

sponsored research efforts to characterize local pavement materials, determine local climatic 

data, and classify local traffic patterns. In fact, several State agencies have developed databases 

or software that specify corresponding values for each input variable to be used in the 

implementation of AASHTOWare®.(7,8) 

The majority of the States have used LTPP data in combination with their State pavement 

management system (PMS) database to develop their MEPDG calibration database.(9,10) 

Differences in distress identification protocols between LTPP and State PMS surveys are a 

source of concern regarding the combination of these data sources to be used in model 

calibration efforts. Some States have addressed this issue by interpreting their distress data 

according to the Distress Identification Manual for the Long-Term Pavement Performance 

Program and using the transformed data.(11) 

There are three levels of data precision (hierarchical input levels) for MEPDG input variables. 

Level 1 input values are site-specific data based on laboratory or field measurements that are the 

most accurate values. Level 2 values are derived based on correlations with other locally 

measured parameters or available historical data that were not necessarily measured at the 

specific site. Level 3 data are the default values that were established based on national averages, 

correlations, or both. Depending on the sensitivity of the predicted output to each input variable, 

it is important to use level 1 data when available. 

Regarding asphalt material characterization in the MEPDG performance models, the most 

important (influential) input variable is the dynamic modulus of HMA. FHWA has developed 

software based on Artificial Neural Network (ANN) models to populate the LTPP database with 

dynamic modulus data.(12) Several State departments of transportation (DOTs) have also 

conducted HMA material characterization studies to determine asphalt binder and mixture 



 

10 

properties to be used as level 1 (agency-specific) input values in AASHTOWare® Pavement ME 

Design software.(13) One of the key efforts in these studies was an evaluation of the Witczak 

model for calculation of dynamic modulus. Most of these studies found the Witczak model to 

produce reasonable predictions for dynamic modulus of HMA with conventional binders and 

mixtures. However, further modifications were required for binders with higher performance 

grades (PGs) and nonconventional mixtures, such as high recycled asphalt pavement (RAP) 

content, stone-matrix asphalt, cold-recycled asphalt, and warm-mix asphalt mixtures. 

Most of the studies on characterization of unbound materials in flexible pavements have focused 

on determining resilient modulus values for typical granular aggregate base materials and local 

subgrade soils.(13) Several studies have also developed a resilient modulus prediction model 

based on soil parameters. In addition, falling weight deflectometer (FWD) and other 

nondestructive test results have been implemented to determine the resilient modulus values. The 

LTPP database contains repeated load resilient modulus test results, and FWD measured 

deflections that could be utilized in this regard. 

The LTPP database contains extensive climatic data either measured at LTPP sites or estimated 

from adjacent weather stations. The impact of climatic and environmental parameters on material 

properties of unbound pavement layers is captured using the Enhanced Integrated Climatic 

Model (EICM) in MEPDG. Several studies have evaluated the predictions of EICM with test 

data.(13) Change in resilient modulus values due to seasonal variations and behavior of 

unsaturated soils is another topic currently under research in this area. 

Traffic data inputs for the AASHTOWare® Pavement ME Design software have been calculated 

and are accessible for LTPP sites. LTPP data have been utilized to establish level 3 traffic inputs 

for the MEPDG. Several States have developed agency-specific traffic data and axle load 

spectra.(13) Some have also developed customized software to calculate MEPDG traffic inputs 

from weigh-in-motion (WIM) data. 

SENSITIVITY ANALYSIS OF MEPDG PERFORMANCE MODELS  

Sensitivity analysis of performance prediction models is a qualitative assessment that can be 

implemented for multiple purposes, such as the following: 

• For evaluation of the appropriate range of input variables and model parameters. The 

sensitive range is determined as the range within which a change in variables or 

parameters will result in a significant change in model output. Only the values within this 

sensitive range are used for model calibration and subsequent performance predictions. 

• For a qualitative assessment of model function. The reasonableness of model behavior in 

terms of its response to increasing or decreasing input variables is evaluated against 

engineering principles. Model behavior can be used in the comparison of different 

prediction models. 

This research project will include a sensitivity analysis on the final calibrated models for the 

second purpose. The majority of sensitivity analyses conducted on MEPDG performance models 

in the literature correspond to the first purpose and have been carried out before calibration. In 
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this project, the results of the previous studies will be utilized to determine the suitable range of 

input variables and calibration factors. The following are two types of sensitivity analyses on 

MEPDG performance models in the literature: 

• Sensitivity analysis of model predictions to changes in input variables. 

• Sensitivity analysis of model output to variations in calibration factors. 

Sensitivity to Input Variables 

The most comprehensive sensitivity analysis of MEPDG performance models to changes in input 

variables was carried out in the NCHRP Project 01-47, and the results provide valuable 

information regarding range and precision of input values to be considered for calibration of each 

model.(14) The adopted sensitivity metric was a Normalized Sensitivity Index (NSI), which 

represents percent change in predicted performance from its design limit value, normalized to a 

percentage change in an input variable.  

This study comprised extensive one-at-a-time (OAT) sensitivity analyses in addition to 

comprehensive global sensitivity analysis (GSA). In contrast to the OAT analyses, the GSA 

varied all design inputs simultaneously across the entire problem domain. General agreements 

between OAT and GSA rankings of sensitivity to various input variables suggest that there were 

no significant interactions among design inputs. Therefore, the OAT analyses, which are 

computationally less demanding, could be adequate for sensitivity analysis of MEPDG 

performance models.  

Multivariate linear regression and ANNs were utilized to fit response surface models (RSMs) to 

the GSA results, allowing for evaluation of sensitivities to design input variables. The ANN 

resulted in more accurate and robust representations of the compound relations between input 

design variables and output performance values. Based on frequency distributions and summary 

statistics generated using the ANN RSM, a “mean plus/minus two standard deviations” (± ) 

normalized sensitivity metric (NSI±) was derived, which incorporates the mean sensitivity and 

the variability of the sensitivity across the problem domain. This metric was used to develop the 

following sensitivity categories: 

• Hypersensitive—NSI± 

• Very Sensitive—1 < NSI± 

• Sensitive—0.1 < NSI± 

• Nonsensitive—NSI± 

The hypersensitive, very sensitive, and sensitive design inputs for rutting and fatigue cracking 

models are listed in table 2. As indicated in this table, the performance predictions are most 

sensitive to the dynamic modulus (E*) of HMA layers. Poisson’s ratio and thickness of the HMA 

layer and the surface shortwave absorptivity are also important input variables to which these 

models have shown high sensitivity. 

The extreme sensitivity of performance models to the lower and upper shelves of HMA dynamic 

modulus master curve (alpha and delta parameters) is a questionable behavior. Nevertheless, this 

calls for careful characterization of dynamic modulus using mix-specific laboratory 
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measurements. In addition, accurate representation is required for thickness and Poisson’s ratio 

values. The most challenging insight from this sensitivity analysis is that the performance models 

are very sensitive to several uncertain variables, such as the surface shortwave absorptivity for 

HMA, thermal conductivity, and heat capacity of stabilized bases, that cannot be readily 

measured. 

Table 2. Sensitive design inputs for rutting and fatigue cracking models.(14) NSI±values 

are given in parentheses.  

Distress 

Input 

Category Hypersensitive Very Sensitive Sensitive 
Fatigue 

cracking 

HMA properties E* alpha (–15.9) 

E* delta (–13.2) 

Thickness (–7.5) 

Air voids (+3.4) 

Effective binder volume  

(–2.9) 

Surface shortwave 

absorptivity (+1.3) 

Poisson’s ratio (–1.0) 

Unit weight (+1.0) 

Heat capacity (–0.6) 

High-temperature PG (–0.5) 

Thermal conductivity (–0.4) 

Fatigue 

cracking 

Base properties — Resilient modulus (–2.7) 

Thickness (–1.0) 

Poisson’s ratio (+0.9) 

Fatigue 

cracking 

Subgrade 

properties 
— Resilient modulus (–3.4) Liquid limit (–0.8) 

Percent passing no. 200 (–0.7) 

Poisson’s ratio (–0.6) 

Groundwater depth (–0.2) 

Plasticity index (+0.1) 

Fatigue 

cracking 

Other properties — Traffic volume (+3.9) Operating speed (–0.8) 

AC rutting HMA properties E* alpha (–24.4) 

E* delta (–24.4) 

 

Surface shortwave 

absorptivity (+4.6) 

Poisson’s ratio (–4.3) 

Thickness (–4.2) 

Unit weight (–0.9) 

Heat capacity (–0.8) 

High-temperature PG (–0.7) 

Low-temperature PG (+0.2) 

Thermal conductivity (+0.2) 

AC rutting Base properties — — Thickness (+0.2) 

Poisson’s ratio (–0.2) 

Resilient modulus (+0.1) 

AC rutting Subgrade 

properties 
— — Percent passing no. 200 (–0.1) 

Liquid limit (–0.1) 

AC rutting Other properties — Traffic volume (+1.9) 

Operating speed (–1.1) 

 

Total 

rutting 

HMA properties E* alpha (–9.0) 

E* delta (–9.0) 

Surface shortwave 

absorptivity (+1.7) 

Thickness (–1.6) 

Poisson’s ratio (–1.5) 

Unit weight (–0.3) 

Heat capacity (–0.3) 

High-temperature PG (–0.2) 

Total 

rutting 

Base properties — — Resilient modulus (–0.2) 

Total 

rutting 

Subgrade 

properties 
— — Resilient modulus (–0.3) 

Percent passing no. 200 (–0.1) 

Total 

rutting 

Other properties — — Traffic volume (+0.7) 

Operating speed (–0.4) 

—No input variable is in this sensitivity category for this performance model; AC = asphalt concrete; E* = dynamic 

modulus of the HMA layer. 
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Sensitivity to Calibration Factors 

Li et al. (2009) introduced another kind of sensitivity analysis, which is used to determine range 

and precision of calibration factors.(15) This study on calibration of MEPDG flexible pavement 

models for Washington DOT examines sensitivity of distress output to the change in each 

calibration factor. This sensitivity is represented by a metric called elasticity, which was 

calculated as in equation 19:(15)  

  (19) 

Where: 

 = the elasticity of calibration factor Ci for the associated distress condition. 

(distress) = change in distress. 

distress = initial distress. 

 is calculated as the ratio of normalized change in predicted distress divided by the 

normalized change in calibration factor. A positive value means that the predicted distress 

increases as the calibration factor increases, and a negative value implies that the predicted 

distress decreases as the calibration factor increases. Based on typical pavement structure, traffic, 

and climatic data in the Washington DOT PMS database, table 3 indicates elasticity values for 

calibration factors in MEPDG rutting and fatigue cracking models.(15)  

Table 3. Elasticity of MEPDG calibration factors in rutting and fatigue cracking models for 

Washington State DOT flexible pavements.(15) 

Distress Calibration Factor Elasticity Related Input Variables 

Fatigue 

cracking 
βf1 –3.3 Effective binder content, air voids, AC thickness 

Fatigue 

cracking 
βf2 –40 Tensile strain 

Fatigue 

cracking 
βf3 20 Material stiffness 

Fatigue 

cracking 

C1 1 AC thickness 

Fatigue 

cracking 

C2 0 Fatigue damage, AC thickness 

Fatigue 

cracking 

C3 ≈0 No related variable 

Rutting βr1 0.6 Layer thickness, layer resilient strain 

Rutting βr2 20.6 Temperature 

Rutting βr3 8.9 Number of load repetitions 

AC = asphalt concrete. 

The higher absolute values of elasticity for βf2, βf3, βr2, and βr3 indicate that model predictions are 

more sensitive to these calibration factors. As a result, successful calibration requires a higher 

degree of precision for these factors compared to the others in the optimization procedure. It 

𝐸𝑑𝑖𝑠𝑡𝑟𝑒𝑠𝑠
𝐶𝑖 =

𝜕 𝑑𝑖𝑠𝑡𝑟𝑒𝑠𝑠 
𝑑𝑖𝑠𝑡𝑟𝑒𝑠𝑠

 

𝜕 𝐶𝑖 
𝐶𝑖

 
 

𝐸𝑑𝑖𝑠𝑡𝑟𝑒𝑠𝑠
𝐶𝑖  

𝐸𝑑𝑖𝑠𝑡𝑟𝑒𝑠𝑠
𝐶𝑖  
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should be noted that increasing the precision of calibration factors requires higher computational 

cost of the optimization procedure. Therefore, the selected precision for each factor should be 

commensurate with its corresponding elasticity. 

It should also be noted that the elasticity metric needs to be identified according to the local 

pavement structure, climate, and traffic data. In another study on calibration of AASHTOWare® 

Pavement ME Design software for Iowa, Ceylan et al. used a similar sensitivity metric to 

calculate the change in performance prediction caused by change in calibration factors.(16) 

STATE CALIBRATIONS OF MEPDG PERFORMANCE MODELS  

Global calibration and validation of MEPDG performance models were completed using a subset 

of LTPP data based on national averages.(2) Ever since, numerous State DOTs have been in the 

process of calibrating these models to their own regional materials–traffic–climate conditions. 

Two important studies of NCHRP 9-30 and NCHRP 1-40B have provided guidelines in this 

regard.(17,4) The NCHRP Synthesis 457 provides a comprehensive report on the pavement design 

practices and MEPDG implementation status in various States across the country.(10) This report 

also includes agency implementation challenges and details case examples of the MEPDG 

implementation process in three States.  

NCHRP 1-40B provides the following 11-step procedure for verification, calibration, and 

validation of the MEPDG models for local conditions, which has been adopted by AASHTO:(3) 

1. Select hierarchical input level. 

2. Develop experimental plan and sampling template. 

3. Estimate sample size. 

4. Select roadway segments. 

5. Evaluate project and distress data. 

6. Conduct field testing and forensic investigation. 

7. Assess local bias. 

8. Eliminate local bias. 

9. Assess STE of the estimate. 

10. Reduce STE of the estimate. 

11. Interpret the results. 

Statistical significance testing is recommended at various steps to determine if the models need 

further calibration. At the seventh step, the significance of the bias (the average difference 

between predicted and measured performance) is tested. If there is a significant bias in prediction 

of pavement performance measures, the first round of calibration is conducted at the eighth step 

to eliminate bias. For example, during this step for the rutting models, the SSE is minimized by 

adjusting the βr1, βGB, and βSG calibration factors.  

At the ninth step, the STE (standard deviation of error among the calibration dataset) is evaluated 

by comparing it to the STE from the national global calibration. If there is a significant STE, the 

second round of calibration at the 10th step tries to reduce the STE by adjusting the βr2 and βr3 

calibration factors. A final validation step checks for the reasonableness of performance 
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predictions. The flowcharts depicted in figure 1 and figure 2 demonstrate this calibration 

process.(3) 

 
Reprinted from Guide for the Local Calibration of the Mechanistic–Empirical Pavement Design Guide, 2010, 

by the American Association of State Highway and Transportation Officials, Washington, DC. Used by 

permission. 

Figure 1. Flowchart. The AASHTO recommended procedure for local calibration of 

MEPDG performance models, steps 1 through 5.(3) 
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Reprinted from Guide for the Local Calibration of the Mechanistic–Empirical Pavement Design Guide, 2010,  

by the American Association of State Highway and Transportation Officials, Washington, DC. Used by 

permission. 

Figure 2. Flowchart. The AASHTO recommended procedure for local calibration of 

MEPDG performance models, steps 6 through 11.(3) 
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The most recent literature review on calibration of MEPDG in different States was conducted as 

part of a study for Georgia DOT.(13) Results of this literature review and other similar studies 

have been compiled to provide a summary of the State calibration efforts in table 4 and a list of 

reported calibration factors for flexible pavement fatigue cracking and rutting models in table 5. 

Most of the past calibration studies suggest that the MEPDG rutting prediction models 

overpredict rutting in unbound pavement layers. However, the rutting predicted in asphalt 

concrete (AC) layers seems to be easily calibrated. The fatigue (alligator) cracking model seems 

to underpredict actual pavement distress and has high variation in the predicted values. There 

seems to be little to no problem in calibration of transverse cracking and smoothness prediction 

models. There seems to be no specific trend for the flexible pavement longitudinal cracking 

model, and none of the studies reported a successful calibration of it. The MEPDG longitudinal 

cracking model is not considered in the scope of this study because several past studies have 

expressed concern on the lack of fit of this model.(18) Difficulty in differentiating longitudinal 

cracks in the wheelpath from alligator cracking patterns might have contributed to errors in 

measured longitudinal cracking values.  

Differences among various distress identification protocols (e.g., LTPP versus State PMS) and 

the subjective nature of identifying distress type and severity have been noted as sources of 

measurement error that cause significant challenges in calibration of mechanistic models to field-

measured performance data.(19,20) 
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Table 4. Major State efforts for calibration of MEPDG performance models. 

Study Scope Major Findings 

NCHRP 1-37A(2) National calibration of MEPDG models National calibration of MEPDG models 

NCHRP 9-30(17) Calibration of flexible pavement 

performance models for structural and 

mix design 

Procedures for adjusting global coefficients 

according to lab data 

NCHRP  

1-40A(21) 

Independent review of the MEPDG Rutting is overpredicted in unbound pavement 

layers. 

NCHRP 1-40B(4) 11-step recommended calibration 

procedure 

11-step recommended calibration procedure 

NCHRP 1-40D(6) National recalibration of MEPDG 

models 

National recalibration of MEPDG models 

Von Quintus and 

Moulthrop 2007(5) 

Calibration of MEPDG flexible 

pavement performance models for 

Montana 

Lack of fit for the longitudinal flexible pavement 

cracking model 

Kang et al. 2007(7) Midwest regional pavement 

performance database for MEPDG 

calibration 

Database creation is very labor intensive and 

unreliable. 

Von Quintus 

2008(18) 

Overview of selected studies on local 

calibration of MEPDG 

Summary of flexible pavement local calibration 

factors from national and local calibrations 

Muthadi and Kim 

2008(22) 

Calibration of MEPDG flexible 

pavement performance models for North 

Carolina 

Calibration factors for rutting and fatigue 

cracking models. MEPDG models underpredict 

fatigue cracking. 

Banerjee et al. 

2009(23) 

Calibration of MEPDG flexible 

pavement performance models for 

Texas 

Regional and local calibration factors for rutting 

Li et al. 2009(15) Calibration of MEPDG flexible 

pavement performance models for 

Washington 

The important calibration factors were identified 

according to the sensitivity of the models to them. 

Titus-Glover and 

Mallela 2009(24) 

Calibration of MEPDG performance 

models for Ohio 

Calibration of MEPDG performance models for 

Ohio 

Souliman et al. 

2010(25) 

Calibration of MEPDG flexible 

pavement performance models for 

Arizona 

Calibration of MEPDG flexible pavement 

performance models for Arizona 

Hoegh et al. 

2010(26) 

Calibration of MEPDG rutting models 

for Minnesota 

Modified rutting model based on MnROAD data 

Hall et al. 2011(27) Calibration of MEPDG flexible 

pavement performance models for 

Arkansas 

Variation in predicted fatigue cracking remains 

high and is not improved by calibration. 

Williams and 

Shaidur 2013(28) 

Calibration of MEPDG performance 

models for Oregon 

Calibration of MEPDG performance models for 

Oregon 

Ceylan et al. 

2013(16) 

Calibration of MEPDG performance 

models for Iowa 

Nationally calibrated rutting model provides 

acceptable predictions for Iowa. 

Mallela et al. 

2013(29) 

Calibration of MEPDG performance 

models for Colorado 

Calibration of MEPDG performance models for 

Colorado 

MnROAD = Minnesota Department of Transportation pavement test track. 



 

 

Table 5. Local calibration factors for MEPDG fatigue cracking and rutting prediction models. 

Performance 

Model 

HMA 

Fatigue 

HMA 

Fatigue 

HMA 

Fatigue 

Bottom–

Up 

Cracking 

Bottom–

Up 

Cracking 

HMA 

Rutting 

HMA 

Rutting 

HMA 

Rutting 

Base 

Rutting 

Subgrade 

Rutting 

Coefficient βf1 βf2 βf3 C1 C2 βr1 βr2 βr3 βGB βSG 

National 1 1 1 1 1 1 1 1 1 1 

AR 1 1 1 0.688 0.294 1.2 1 0.8 1 0.5 

AZ* 0.729 0.8 0.8 0.732 0.732 3.63 1.1 0.7 0.111 1.38 

CO^ 130.367 1 1.2178 0.07 2.35 1.34 1 1 0.4 0.84 

IA 1 1 1 1 1 1 1.15 1 0 0 

MO 1 1 1 1 1 1.07 1 1 0.01 0.4375 

MT 13.21 1 1.25 1 1 7 1.13 0.7 1 0.3 

NC* 1.41 –2.82 –6.67 0.4372 0.15049 1.0175 1 1 1.5803 1.10491 

OH 1 1 1 1 1 0.51 1 1 0.32 0.33 

OR 1 1 1 0.56 0.225 1.48 1 0.9 0 0 

UT 1 1 1 1 1 0.56 1 1 0.604 0.4 

WA* 0.96 0.97 1.03 1.071 1 1.05 1.109 1.1  0 

WI* 1 1.2 1.5 1 1 1.0157 1 1 0.01 0.5731 

WY^ 1 1 1 0.4951 1.469 1.0896 1 1 0.9475 0.6897 

Midwest 1 1.2 1.5 1 1 1 1 1 1 1 

Average” 2.1190 0.6682 0.4009 0.8488 0.7638 1.7757 1.0445 0.9273 0.4039 0.4569 

Range” 
0.729 to 

13.21 

–2.82 to 

1.2 

–6.67 to 

1.5 

0.4372 to 

1.071 

0.15049 to 

1.469 
0.51 to 7 1 to 1.15 0.7 to 1.1 

0.0 to 

1.5803 
0.0 to 1.38 

COV (%)” 174 174 588 27 47 108 6 15 139 97 

*Calibration factors reported by Von Quintus et al. (2013) were different from the ones found in this literature search (references in table 4).(5) 

^These values are not final. 

”These statistics exclude CO and WY values. 

COV = coefficient of variation. 

1
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Table 5 shows significant variance among the States in terms of the βf1, βf2, βf3, βr1, βGB, and βSG 

calibration factors as indicated by their corresponding high coefficients of variation. Therefore, it 

is important that the optimum coefficients be determined for these calibration factors to ensure 

compliance to local pavement performance. In addition, C1 and C2 also show some variation 

among different calibration efforts. The number of calibration factors determined to be equal to 1 

(1.0), which are the global calibration values, are more for the fatigue cracking model compared 

to the permanent deformation model. This could be interpreted as a superior global model having 

been developed for fatigue cracking compared to rutting. 

OTHER MEPDG CALIBRATION EFFORTS 

The measurement error in the performance data records is known to be greatly undermining 

precision of calibrated MEPDG models.(18) Therefore, Hall et al. suggested a new output format 

for the performance models to predict ranges of distress instead of an exact value.(27) 

To account for the effect of maintenance or rehabilitation activities, Li et al. suggested 

developing piecewise performance models for Washington State.(30) Pavement serviceable life 

was divided into three time periods of early age, rehabilitation, and overdistressed situations. 

They used regression to develop models for each time period. 

In addition to the national research studies conducted to determine the global calibration factors 

for permanent deformation model, some States have conducted their own laboratory tests in this 

regard.(31) For example, Jadoun and Kim used results of the triaxial repeated load permanent 

deformation test to determine the global k factors for 12 different HMA mixtures.(32) 

The majority of these studies used exhaustive search methods such as the generalized reduced 

gradient (GRG) method to minimize SSE between measured and predicted performance. These 

methods are local optimization techniques that are dependent on seed values and typically get 

stuck at a local minimum of error. Jadoun and Kim compared a genetic algorithm (GA) to the 

GRG method for calibration of rutting and fatigue cracking models for North Carolina.(32) They 

demonstrated that the GA method provides a more global minimum of SSE compared to the 

GRG method in predicting rutting. However, this superior optimization does not result in a 

reasonable match between predicted and measured fatigue cracking.  

It should be noted that the applied GA code is highly sensitive to the control parameters used to 

manipulate the evolutionary process of optimization. Therefore, there might be variants of this 

GA code that perform better, and the best set of control parameters needs to be determined for 

each optimization problem. Several evolution strategies (ESs) have been developed in the 

evolutionary computation literature that evolve and adapt control parameters along with 

optimization solutions and with respect to the objective function space. Application of these ESs 

would result in a more robust optimization. 

MULTI-OBJECTIVE CALIBRATION STUDIES 

All of the MEPDG calibration studies focus on minimization of a single-objective function 

(SSE) for all distress severity levels and all pavement ages in the considered network. 

Incorporating multiple sources of information might reveal unknown aspects of this calibration 

problem and result in more reasonable calibration coefficients. Multi-objective evolutionary 
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algorithms (MOEAs) are derivative-free, global optimization heuristics that provide a set of 

tradeoff solutions independent of seed values.(33) 

MOEAs have been used in pavement management studies to optimize the allocation of resources 

to various treatment alternatives considering multiple criteria.(34–36) They have also been vastly 

implemented in water resources research to design long-term groundwater monitoring schemes 

and to calibrate hydrologic models.(37,38) The multi-criteria framework provided by this kind of 

calibration has enabled recognition and handling of errors and uncertainties and detection of 

prominent behavioral solutions with acceptable tradeoffs in hydrologic modeling efforts within 

the past decade.(39) 

INSIGHTS AND OBSERVATIONS FROM THE LITERATURE REVIEW 

The following are the key observations drawn from this literature review: 

• Different data sources are being incorporated in the MEPDG calibration process, but 

attention should be paid to the differences in performance measurement protocols. 

• The sensitivity of performance models to the HMA dynamic modulus, thickness, and 

Poisson’s ratio calls for careful characterization of these values. MEPDG performance 

models are very sensitive to several uncertain variables, such as the surface shortwave 

absorptivity for HMA, thermal conductivity, and heat capacity of stabilized bases, that 

cannot be readily measured. 

• Model predictions are more sensitive to some local calibration factors compared to 

others. Therefore, the selected precision for each factor should be commensurate with its 

corresponding elasticity. 

• MEPDG rutting and fatigue cracking models have been reported to overpredict and 

underpredict actual pavement distresses, respectively. The local values calculated for the 

calibration factors, βf1, βf2, and βf3 for fatigue cracking model and βr1, βGB, and βSG for 

rutting model, seem to be significantly different among various reviewed calibration 

efforts. 

• Differences among various distress identification protocols (e.g., LTPP versus State 

PMS) and the subjective nature of identifying distress type and severity have been noted 

as sources of measurement error that cause significant challenges in calibration of 

mechanistic models to field-measured performance data. 

• Due to the challenge posed by distress measurement errors, some researchers have 

proposed conducting model calibration using ranges of distress instead of exact values. 

Furthermore, to account for different pavement behavior during its various life stages, it 

has been suggested that model calibration be carried out separately across different 

periods of pavement service life. 
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• Global heuristic optimization methods, such as evolutionary algorithms (EAs), could 

possibly identify a more optimum set of calibration coefficients compared to the local 

exhaustive search methods. 

• The multi-criteria calibration framework provided by MOEAs has enabled recognition 

and handling of errors and uncertainties and detection of prominent behavioral solutions 

with acceptable tradeoffs in hydrologic modeling efforts. 

IMPACT ON RESEARCH APPROACH  

Based on the findings of this literature review, the following considerations corresponding to the 

above observations were recommended for the research approach: 

• This study should be performed using LTPP data for flexible pavements within a specific 

region comprising one or more States with similar climatic and subgrade conditions. In 

addition to LTPP data for the selected region, utilization of another source of data, such 

as State PMS or APT data, should be considered.  

• Careful characterization of the HMA dynamic modulus, thickness, and Poisson’s ratio is 

necessary for the success of this project. In this regard, the results of ANNs for Asphalt 

Concrete Dynamic Modulus Prediction (ANNACAP) software for LTPP test sections 

should be implemented. This software could be used for non-LTPP data sources when 

applicable. 

• The selected precision for each factor in the optimization procedure should be 

commensurate with the corresponding sensitivity of the performance model to that 

calibration factor. This is an important consideration because the precision of these 

unknown variables directly relates to the computational cost of the optimization problem. 

• This research project will focus on local calibration of prediction models for rutting on 

new and overlaid flexible pavements. 

• The multi-objective calibration approach could incorporate the different data 

characteristics (performance measurement protocols) of different data sources in an 

objective manner. 

• Using a multi-objective calibration approach and by simultaneously minimizing the error 

in predicting pavement performance from disparate data sources, the calibration 

coefficients that provide a tradeoff among pavement behavior during different 

experiments will be determined. 

• In this study, MOEAs will be implemented. These global optimization heuristics have 

good global search ability, are less dependent on seed values (techniques such as 

restarting have been shown to significantly decrease dependence on seed values), and do 

not require the mathematical formula (to find the derivative) of the objective functions.(37) 
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• Using MOEA, multiple sources of information can be incorporated in an objective 

manner, resulting in a final set of tradeoff solutions. This way, none of the possible sets 

of calibration factors will be eliminated prematurely, and all of the nondominated 

solutions will be included in the final tradeoff front. Exploring the final front might 

reveal unknown aspects of this calibration problem and result in more reasonable 

calibration coefficients that could not be identified using single-objective approaches. 

Several scenarios can be devised for multi-objective formulation of calibration, all of which 

could overcome cognitive challenges and add to the knowledge of this problem. More than one 

set of multiple objectives will be considered to explore new aspects of the calibration problem. 

The idea is to optimize multiple objectives simultaneously. The following are the proposed sets 

of objectives up to this stage of the study: 

• Statistical outcomes (increasing accuracy and precision simultaneously). 

i. Minimize average error (bias). 

ii. Minimize error standard deviation. 

• Data sources (an objective approach to incorporate different sources of data). 

i. Minimize error on LTPP data. 

ii. Minimize error on APT data. 

In the primary multi-objective scenario, mean and standard deviation of prediction error are 

simultaneously minimized to reduce the bias and STE at the same time. In this manner, the 

information from a single calibration run is fully implemented, and an additional round of 

computationally intensive calibration is avoided.  

In the second multi-objective scenario for calibration of MEPDG performance models, the error 

in predicting the performance of pavements within different performance data sources will be 

used as separate objective functions to be minimized simultaneously. In addition to LTPP test 

sections, data from State PMS or APT facilities in the same region can be considered for this 

scenario. This scenario comprises an objective approach to incorporate different sources of data. 

Finally, a combination of two or more of the above scenarios could also be considered for the 

multi-objective calibration approach. 
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CHAPTER 3. PREPARATION OF MEPDG INPUTS FROM LTPP DATA 

INTRODUCTION 

To demonstrate the multi-objective approach, a subset of the LTPP data from a specific region 

was selected for calibration of MEPDG permanent deformation (rutting) prediction models for 

new and rehabilitated flexible pavements. 

This chapter discusses the extraction of relevant LTPP data, calculation of the necessary 

parameters, and selection of other necessary values for generating the AASHTOWare® 

Pavement ME Design software input files. Following the discussion of the region selection 

process according to data availability, the LTPP data extraction and calculation of the required 

general, performance, traffic, climate, and structure/materials values are discussed. 

LTPP DATA AVAILABILITY 

The following steps demonstrate the process used to narrow the search for a suitable set of 

LTPP sections to collect calibration data. The LTPP InfoPaveTM website has been very useful 

in filtering the relevant test sections and identifying the availability of the required data.(40) 

1. The 1,746 LTPP test sections with AC surface were selected.  

2. The relevant LTPP flexible pavement experiments were identified to be the following 

1,019 sections: 

i. General Pavement Studies (GPS)-1. 

ii. GPS-2. 

iii. GPS-6. 

iv. Specific Pavement Studies (SPS)-1. 

v. SPS-5. 

vi. SPS-8. 

vii. SPS-9N, SPS-9O. 

3. The LTPP sections with at least one rutting measurement were selected: 1,014 sections. 

4. Considering coarse- and fine-grained subgrade soils and the four LTPP climatic 

regions, table 6 provides the number of available sections in each category.  

Table 6. Available number of test sections for each LTPP climatic region and subgrade 

type. 

Coarse-Grained Subgrade Sections Fine-Grained Subgrade Sections 

Dry, freeze 100 Dry, freeze 39 

Dry, no freeze 122 Dry, no freeze 28 

Wet, freeze 143 Wet, freeze 132 

Wet, no freeze 259 Wet, no freeze 191 
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There are more options among sections on coarse-grained subgrade soils (624 test sections) 

than fine-grained subgrade soils (390) and within the wet climatic regions (725) compared to 

dry regions (289). Based on the number of test sections in table 6, the search was narrowed to 

sections in the wet, no freeze climatic region.  

The InfoPaveTM map in figure 3 indicates the distribution of the 259 sections within the wet, no 

freeze climate and on coarse subgrades.(40) Most of these test sections are in Florida, Texas, 

Oklahoma, Georgia, and Alabama. The highest recorded amount of measured rut depth is 

between 22 and 28 mm (as indicated on the map).  

The InfoPaveTM map in figure 4 shows the distribution of the 191 sections within the wet, no 

freeze climate and on fine subgrades.(40) The majority of these test sections are located in 

Texas, Maryland, Mississippi, and Virginia, in that order. The highest recorded amount of 

measured rut depth is between 15 and 21 mm (as indicated on the map). 

From the InfoPaveTM maps, it seems Florida has the highest number (52) of eligible test 

sections to be used for this study.(40) In addition to the results of this preliminary evaluation 

being in favor of selecting the Florida region for this project, FDOT has offered the flexible 

pavement data collected at their APT facility to be used in this study. The eligible LTPP test 

sections in Florida and the corresponding general information are listed in table 7. The LTPP 

Standard Data Release (SDR) number 29.0 was used for identifying the available data for this 

study.(40) The LTPP Information Management System (IMS) User Guide was used to identify 

the relevant sources (tables and fields) of data.(41) 
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Source: FHWA. 

Figure 3. Screenshot. Location of sections within the wet, no freeze climate and on coarse 

subgrades from InfoPaveTM. 
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Source: FHWA. 

Figure 4. Screenshot. Location of sections within the wet, no freeze climate and on fine 

subgrades from InfoPaveTM. 

Table 7. General information on the 52 flexible test sections on coarse subgrade soils in 

Florida.  

# 
STATE

_CODE 

SHRP_ 

ID 
Highway Direction 

EXPERIMENT

_ TYPE 

CONST_ 

DATE 
OL_DATE END_DATE 

NEW_OR_ 

OVERLAY 

BASE 

TYPE 

1 12 0101 US-27 South SPS-1 3/8/1995 N/A 7/13/2012 New GB 

2 12 0102 US-27 South SPS-1 3/7/1995 N/A 7/13/2012 New GB 

3 12 0103 US-27 South SPS-1 3/7/1995 N/A 7/13/2012 New ATB 

4 12 0104 US-27 South SPS-1 3/7/1995 N/A 7/13/2012 New ATB 

5 12 0105 US-27 South SPS-1 3/7/1995 N/A 7/13/2012 New GB 

6 12 0106 US-27 South SPS-1 
11/20/199

5 
N/A 7/13/2012 New GB 

7 12 0107 US-27 South SPS-1 5/1/1995 N/A 7/13/2012 New GB 

8 12 0108 US-27 South SPS-1 5/2/1995 N/A 7/13/2012 New GB 

9 12 0109 US-27 South SPS-1 3/7/1995 N/A 7/13/2012 New GB 

10 12 0110 US-27 South SPS-1 
11/20/199

5 
N/A 7/13/2012 New ATB 

11 12 0111 US-27 South SPS-1 
11/20/199

5 
N/A 7/13/2012 New ATB 
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# 
STATE

_CODE 

SHRP_ 

ID 
Highway Direction 

EXPERIMENT

_ TYPE 

CONST_ 

DATE 
OL_DATE END_DATE 

NEW_OR_ 

OVERLAY 

BASE 

TYPE 

12 12 0112 US-27 South SPS-1 11/28/199

5 

N/A 7/13/2012 New ATB 

13 12 0161 US-27 South SPS-1 3/3/1995 N/A 7/13/2012 New GB 

14 12 0502 US-1 South SPS-5 to GPS-6S 4/1/1971 4/18/1995 7/24/2014 Overlay GB 

15 12 0503 US-1 South SPS-5 to GPS-6S 4/1/1971 4/18/1995 7/24/2014 Overlay GB 

16 12 0504 US-1 South SPS-5 to GPS-6S 4/1/1971 4/18/1995 7/24/2014 Overlay GB 

17 12 0505 US-1 South SPS-5 to GPS-6S 4/1/1971 4/18/1995 7/24/2014 Overlay GB 

18 12 0506 US-1 South SPS-5 to GPS-6S 4/1/1971 4/18/1995 7/24/2014 Overlay GB 

19 12 0507 US-1 South SPS-5 to GPS-6S 4/1/1971 4/18/1995 7/24/2014 Overlay GB 

20 12 0508 US-1 South SPS-5 to GPS-6S 4/1/1971 4/18/1995 7/24/2014 Overlay GB 

21 12 0509 US-1 South SPS-5 to GPS-6S 4/1/1971 4/18/1995 7/24/2014 Overlay GB 

22 12 0561 US-1 South SPS-5 to GPS-6S 4/1/1971 4/18/1995 7/24/2014 Overlay GB 

23 12 0562 US-1 South SPS-5 to GPS-6S 4/1/1971 4/18/1995 7/24/2014 Overlay GB 

24 12 0563 US-1 South SPS-5 to GPS-6S 4/1/1971 4/18/1995 7/24/2014 Overlay GB 

25 12 0564 US-1 South SPS-5 to GPS-6S 4/1/1971 4/18/1995 7/24/2014 Overlay GB 

26 12 0565 US-1 South SPS-5 to GPS-6S 4/1/1971 4/18/1995 7/24/2014 Overlay GB 

27 12 0566 US-1 South SPS-5 to GPS-6S 4/1/1971 4/18/1995 7/24/2014 Overlay GB 

28 12 0901 I-10 East SPS-9O 6/1/1963 7/23/1996 5/15/2008 Overlay GB 

29 12 0902 I-10 East SPS-9O 6/1/1963 7/24/1996 5/15/2008 Overlay GB 

30 12 0903 I-10 East SPS-9O 6/1/1963 7/23/1996 5/15/2008 Overlay GB 

31 12 0959 I-10 East SPS-9O 6/1/1963 7/24/1996 5/15/2008 Overlay GB 

32 12 1030 US-1 South GPS-1 to 6S 4/1/1971 N/A 7/24/2014 N/A GB 

33 12 1060 SH-878 West GPS-1 10/1/1979 N/A 3/7/2003 N/A GB 

34 12 1370 SH-407 North GPS-1 to 6S 6/1/1973 8/15/2000 4/24/2015 Overlay GB 

35 12 3995 I-95 North GPS-1 12/1/1975 N/A 4/17/1997 N/A GB 

36 12 3996 US-19 North GPS-1 4/1/1974 N/A 6/1/1998 N/A GB 

37 12 3997 US-17 South GPS-1 to 6S 6/1/1974 2/7/1995 7/13/1999 Overlay GB 

38 12 4096 SH-20 West GPS-2 to GPS-

6C 

5/1/1974 2/21/2003 N/A Overlay ATB 

39 12 4097 I-10 East GPS-2 1/1/1986 N/A 1/15/2005 N/A CTB 

40 12 4099 SH-884 West GPS-1 6/1/1976 N/A 6/29/1992 N/A GB 

41 12 4100 SH-85 North GPS-2 to GPS-

6S 

8/1/1976 8/29/2002 8/12/2012 Overlay ATB 

42 12 4101 SH-528 East GPS-1 to 6B 5/1/1967 7/31/1991 8/28/1996 Overlay GB 

43 12 4103 SH-836 West GPS-1 6/1/1982 N/A 6/22/2000 N/A GB 

44 12 4105 SH-9A North GPS-1 12/1/1984 N/A 6/3/1993 N/A GB 

45 12 4106 I-95 North GPS-1 to 6S 8/1/1987 11/15/2003 11/24/2009 Overlay GB 

46 12 4107 SH-70 West GPS-1 10/1/1983 N/A 5/4/1998 N/A GB 

47 12 4108 SH-30 West GPS-2 6/1/1986 N/A 10/25/1996 N/A ATB 

48 12 4135 US-27 North GPS-1 to 6B 2/1/1971 2/15/1992 6/12/2006 Overlay GB 

49 12 4136 US-27 North GPS-1 to 6B 2/1/1971 2/15/1992 6/12/2006 Overlay GB 

50 12 4137 US-27 North GPS-1 to 6B 12/1/1970 2/15/1992 6/12/2006 Overlay GB 

51 12 4154 SH-442 East GPS-1 6/1/1970 N/A 3/31/1998 N/A GB 

52 12 9054 SH-200 West GPS-1 10/1/1974 N/A 9/26/1997 N/A GB 

SHRP_ID = Strategic Highway Research Program identification number; CONST_DATE = construction date; 

OL_DATE = overlay date; N/A = no adequate data; GB = granular base; ATB = asphalt-treated base; CTB = 

cement-treated base.  
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The field named NEW_OR_OVERLAY in table 7 shows which test sections (13 sections total) 

were found most suitable for calibration of rutting prediction models for new pavements and 

which sections (27 sections total) were deemed more appropriate for calibration of rutting 

models for overlaid pavements. These selections were made based on the availability of 

monitoring data after original pavement construction or after overlay construction. In 12 test 

sections marked as N/A, there were not adequate data on maintenance and rehabilitation 

history before the sections were assigned to the LTPP program and monitored. Therefore, 

using the data from these 12 test sections is not recommended for the calibration process. 

These test sections have adequate climatic data to be used. The AASHTOWare® Pavement 

ME Design software uses historical climate data (HCD) files, and each one of the LTPP 

sections do have a corresponding climate station in that database, which can be downloaded 

from the http://me-design.com/MEDesign/ClimaticData.html Web location. Recently, the 

LTPP program has also made Modern-Era Retrospective Analysis for Research and 

Applications (MERRA) data available since the SDR 29.0 and through the InfoPaveTM 

website.(40) In this research study, the original HCD files downloaded from the 

AASHTOWare® website were used as inputs. The next steps are exploring the amount of 

available traffic and structure data. 

Table 8 shows the LTPP source tables and amount of available traffic data for the 52 test 

sections that met the selection criteria in Florida. The LTPP traffic (TRF) module contains 

tables that start with the TRF_MEPDG_ prefix. These tables contain traffic data estimated for 

input into the MEPDG software based on test sites that have more than 210 d of monitored data 

per year. However, for other site-years where the total number of accepted monitoring data was 

less than 210 d in that year, traffic data can still be found in the tables starting with the 

TRF_MONITOR_ prefix. As table 8 demonstrates, the majority of the test sections have some 

(for some years) traffic data available to be used in this study. The details of input data 

extraction and calculations are explained later in this chapter. 

Table 9 shows the amount of available LTPP data for the most important structural factors. It 

was assumed that the material properties for one SPS section could be applied to other sections 

with the same material source within the same SPS site. The LTPP data field 

PROJECT_LAYER_NO in the tables starting with the TST prefix (the testing module, which 

contains the results of materials testing conducted under the LTPP program) was used to 

decide whether test results from one test section could be applied to other test sections within 

an SPS project site. It is noted that, due to construction variability, this might not be an 

accurate estimation, but it will be more representative of the field materials when compared to 

the MEPDG default values. The details of input data extraction and calculations are explained 

later in this chapter. 
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Table 8. Source and availability of traffic data for the selected 52 flexible sections in 

Florida. 

Data Item LTPP Source Tables 

Number of Sections 

With Available Data 

AADTT TRF_MEPDG_AADTT_LTPP_LN 49 

AADTT TRF_MONITOR_LTPP_LN 52 

AADTT TRF_HIST_EST_ESAL  

 

15 

AADTT TRF_MON_EST_ESAL 52 

Axle load distributions TRF_MEPDG_AX_DIST_ANL 31 

Axle load distributions TRF_MONITOR_AXLE_DISTRIB 52 

Number of axles per truck Estimated based on data from 

TRF_MONITOR_LTPP_LN 

52 

Vehicle class distributions TRF_MEPDG_VEH_CLASS_DIST 

 

49 

 

Vehicle class distributions TRF_MONITOR_LTPP_LN 52 

Monthly adjustment factors TRF_MEPDG_MONTH_ADJ_FACTR 49 

Hourly adjustment factors TRF_MEPDG_HOURLY_DISTRIB 28 

Traffic growth factor Estimated based on data from 

TRF_MONITOR_LTPP_LN 

52 

Traffic growth function Not available, assumed compound growth N/A 

LTPP lane, direction, and lane width INV_GENERAL 

 

39 

 

LTPP lane, direction, and lane width SPS_ID 13 

Lane and directional distribution Not directly available, both assumed to be 

1.0 for calibration purposes 

N/A 

Operational speed SECTION_GENERAL, not available for 

Florida sections 

N/A 

Tire pressure Not available, MEPDG defaults N/A 

Axle configuration, wheelbase, and 

wheel location 

Not available, MEPDG defaults N/A 

Truck wander Not available, MEPDG defaults N/A 

AADTT = average annual daily truck traffic; N/A = no adequate data. 
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Table 9. Source and availability of structure data for the selected 52 flexible sections in 

Florida. 

Data Item LTPP Source Tables Sections 

Thickness of all layers TST_L05B 52 

Poisson’s ratio for all layers Not available MEPDG defaults 

AC dynamic modulus TST_AC07 

 

34 

 

AC dynamic modulus TST_ESTAR estimated values 40 

AC air voids For SPS-9: TST_SP02 

 

4 

AC air voids Other than SPS-9: TST_AC02 + 

TST_AC03 

37 

AC effective binder volume For SPS-9: TST_SP02 

 

4 

AC effective binder volume Other than SPS-9: TST_AC03 + 

TST_AC04 + TST_AG01 + TST_AG02 

23 to 37 

AC shortwave absorptivity Not available MEPDG defaults 

AC PG grading LTPP Bind Online 43 

AC heat capacity Not available MEPDG defaults 

AC thermal conductivity Not available MEPDG defaults 

Base resilient modulus TST_UG07_SS07_WKSHT_SUM 38 

Subgrade resilient modulus TST_UG07_SS07_WKSHT_SUM 38 

Subgrade percent passing no. 200 TST_SS01_UG01_UG02 39 

Subgrade Atterberg limits TST_UG04_SS03 39 

In this section, it was determined that there are adequate structure–climate–traffic data in the 

LTPP database for some of the selected test sections to be used in calibration of rutting 

prediction models for the new and rehabilitated flexible pavements. However, the final data 

element is the performance monitoring data. Table shows the availability of the rutting 

measurements for the selected LTPP test sections in Florida. This table shows the rutting data 

only for the 40 test sections that were assigned to calibration of new (13 sections) or 

rehabilitated (27 sections) performance models in table 7.  
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Table 10. Availability of rutting data for the selected LTPP flexible pavements in Florida. 

# 

STATE_

CODE 

SHRP_

ID 

EXPERIMENT_ 

TYPE 

NEW_OR_ 

OVERLAY 

BASE_ 

TYPE 

FIRST_RUT_ 

DATE 

LAST_RUT_ 

DATE 

NUMBER_RUT_ 

MEASUREMENT 

1 12 0101 SPS-1 New GB 2/9/2000 3/29/2011 12 

2 12 0102 SPS-1 New GB 2/9/2000 3/29/2011 12 

3 12 0103 SPS-1 New ATB 2/9/2000 3/29/2011 12 

4 12 0104 SPS-1 New ATB 2/9/2000 3/30/2011 12 

5 12 0105 SPS-1 New GB 2/9/2000 3/29/2011 12 

6 12 0106 SPS-1 New GB 2/9/2000 4/4/2011 12 

7 12 0107 SPS-1 New GB 2/9/2000 4/4/2011 12 

8 12 0108 SPS-1 New GB 2/9/2000 4/4/2011 12 

9 12 0109 SPS-1 New GB 2/9/2000 3/30/2011 12 

10 12 0110 SPS-1 New ATB 2/9/2000 4/4/2011 12 

11 12 0111 SPS-1 New ATB 2/9/2000 3/30/2011 12 

12 12 0112 SPS-1 New ATB 2/9/2000 3/30/2011 12 

13 12 0161 SPS-1 New GB 2/9/2000 11/3/2006 10 

14 12 0502 SPS-5 to GPS-6S Overlay GB 1/21/1996 10/1/2013 16 

15 12 0503 SPS-5 to GPS-6S Overlay GB 1/21/1996 10/1/2013 16 

16 12 0504 SPS-5 to GPS-6S Overlay GB 1/21/1996 4/1/2011 15 

17 12 0505 SPS-5 to GPS-6S Overlay GB 1/21/1996 10/3/2013 16 

18 12 0506 SPS-5 to GPS-6S Overlay GB 1/21/1996 10/2/2013 16 

19 12 0507 SPS-5 to GPS-6S Overlay GB 1/21/1996 10/2/2013 16 

20 12 0508 SPS-5 to GPS-6S Overlay GB 1/21/1996 10/1/2013 16 

21 12 0509 SPS-5 to GPS-6S Overlay GB 1/21/1996 10/1/2013 16 

22 12 0561 SPS-5 to GPS-6S Overlay GB 1/21/1996 10/1/2013 14 

23 12 0562 SPS-5 to GPS-6S Overlay GB 1/21/1996 10/2/2013 14 

24 12 0563 SPS-5 to GPS-6S Overlay GB 1/21/1996 10/2/2013 14 

25 12 0564 SPS-5 to GPS-6S Overlay GB 1/21/1996 10/3/2013 14 

26 12 0565 SPS-5 to GPS-6S Overlay GB 1/21/1996 10/1/2013 14 

27 12 0566 SPS-5 to GPS-6S Overlay GB 1/21/1996 1/29/2014 15 

28 12 0901 SPS-9O Overlay GB 7/25/1996 10/11/2006 8 

29 12 0902 SPS-9O Overlay GB 7/25/1996 10/11/2006 8 

30 12 0903 SPS-9O Overlay GB 7/25/1996 10/11/2006 8 

31 12 0959 SPS-9O Overlay GB 7/25/1996 1/24/2004 7 

32 12 1370 GPS-1 to 6S Overlay GB 10/29/2001 10/10/2013 7 

33 12 3997 GPS-1 to 6S Overlay GB 1/25/1996 3/1/1999 2 

34 12 4096 GPS-2 to GPS-6C Overlay ATB 10/23/2003 3/25/2014 5 

35 12 4100 GPS-2 to GPS-6S Overlay ATB 10/2/2002 2/13/2012 4 

36 12 4101 GPS-1 to 6B Overlay GB 4/14/1992 1/22/1996 3 

37 12 4106 GPS-1 to 6S Overlay GB 1/20/2005 5/11/2009 3 

38 12 4135 GPS-1 to 6B Overlay GB 3/10/1994 5/5/2004 9 

39 12 4136 GPS-1 to 6B Overlay GB 3/10/1994 5/5/2004 9 

40 12 4137 GPS-1 to 6B Overlay GB 3/10/1994 6/9/2006 9 

 

Average measured rutting values across the entire length of each test section can be extracted 

from the LTPP table MON_T_PROF_INDEX_SECTION, and the individual rutting values 

measured at 50-ft intervals can be extracted from the LTPP table MON_T_PROF_INDEX_ 

POINT. 
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GENERATION OF MEPDG INPUT VARIABLES BASED ON LTPP DATA 

In the previous section, the availability of LTPP data in the selected Florida region was 

explored. This section explains the details of LTPP data extraction and the required 

calculations and assumptions to generate inputs for the AASHTOWare® Pavement ME Design 

software version 2.2.(1) The required MEPDG data have been classified into the following 

groups: project information, performance criteria, traffic data, climate data, pavement structure 

and materials, and permanent deformation (rutting) data. The LTPP SPS-1 and SPS-5 sites in 

Florida were selected for demonstration of the novel approach in this study for calibration of 

the rutting models for new and overlaid pavements, respectively. 

Project Information 

The software has an interface to enter general information for every design project (table 11). 

For calibration purposes, the significant information is the design life. The default value is  

20 yr, but it is important to enter a design life that encompasses the available performance data 

to be able to calibrate the models to those data. As table 7 and table demonstrate, the latest 

rutting measurement date compared to the construction date of the original or overlay surface 

was on SPS-5 sections, and the surface age at the latest measurement date was 19 yr. 

Therefore, in this study, the default design life of 20 yr was found to be adequate for 

calibration.  

Table 11. General project information. 

Data Item LTPP Source Tables Data Field/Value 

Section ID  EXPERIMENT_SECTION SHRP_ID 

Project location  EXPERIMENT_SECTION STATE_CODE 

Design type New pavement or overlay per table 10 N/A 

Pavement type Flexible pavement  N/A 

Design life (years) 20 yr N/A 

Base construction year/month EXPERIMENT_SECTION  CN_ASSIGN_DATE 

Pavement construction year/month EXPERIMENT_SECTION CN_ASSIGN_DATE 

Traffic opening year/month EXPERIMENT_SECTION  ASSIGN_DATE 

 

Performance Criteria 

The software has an interface to enter some performance criteria to be met by the specific 

pavement design (table 12). However, this information is not significant for the purpose of 

calibrating the performance models. Therefore, the default values were used for this study. 



 

35 

Table 12. Performance criteria. 

Data Item LTPP Source Tables 

Data 

Field/Value 

Initial IRI (m/km) MEPDG defaults  1 

Terminal IRI (m/km) limit MEPDG defaults  2.7 

Terminal IRI (m/km) reliability MEPDG defaults 90 

AC top-down fatigue cracking (m/km) limit MEPDG defaults  378.8 

AC top-down fatigue cracking (m/km) reliability MEPDG defaults  90 

AC bottom–up fatigue cracking (%) limit MEPDG defaults  25 

AC bottom–up fatigue cracking (%) reliability MEPDG defaults  90 

AC thermal cracking (m/km) limit MEPDG defaults  189.4 

AC thermal cracking (m/km) reliability MEPDG defaults  90 

Permanent deformation—total pavement (mm) limit MEPDG defaults  19 

Permanent deformation—total pavement (mm) reliability MEPDG defaults  90 

Permanent deformation—AC-only (mm) limit MEPDG defaults  6 

Permanent deformation—AC-only (mm) reliability MEPDG defaults  90 

IRI = International Roughness Index. 

Traffic Data 

Table 8 lists the general availability of the required traffic data within the LTPP database. In 

this section, the details of traffic input data extraction and calculation are explained. Table 13 

lists some of the data sources used for traffic inputs. The LTPP TRF module contains tables 

that start with the TRF_MEPDG_ prefix. These tables contain traffic data estimated for input 

into the MEPDG software based on test sites that have more than 210 d of monitored data per 

year. However, for other site-years where the total number of accepted monitoring data was 

less than 210 d in that year, traffic data can still be found in the tables starting with the 

TRF_MONITOR_ prefix. 

Table 13. Traffic input data sources and default values. 

Data Item LTPP Source Tables Data Field/Default Value 

Two-way AADTT TRF_MONITOR_LTPP_LN  TRUCKS_LTPP_LN 

Number of lanes Not applicable 1 

% of trucks in design direction Not applicable 100 

% of trucks in design lane Not applicable 100 

Operational speed (kph) SECTION_GENERAL 

Not available for Florida sections 

SPEED_LIMIT  

Used 100 kph based on posted 

limit. 

Traffic capacity cap Not enforced  N/A 

Average axle width (m) MEPDG defaults 2.59 

Dual tire spacing (mm) MEPDG defaults 305 

Tire pressure (single tire) (kPa) MEPDG defaults 827.4 

Tandem axle spacing (m) MEPDG defaults 1.31 

Tridem axle spacing (m) MEPDG defaults 1.25 

Quad axle spacing (m) MEPDG defaults 1.25 

Mean wheel location (mm) MEPDG defaults 460 

Traffic wander standard 

deviation (mm) 

MEPDG defaults 254 

Design lane width (m) MEPDG defaults 3.6576 

Average spacing of short axles 

(m) 

MEPDG defaults 3.66 
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Data Item LTPP Source Tables Data Field/Default Value 

Average spacing of medium 

axles (m) 

MEPDG defaults 4.57 

Average spacing of long axles 

(m) 

MEPDG defaults 5.49 

Percent trucks with short axles  MEPDG defaults 33 

Percent trucks with medium 

axles  

MEPDG defaults 33 

Percent trucks with long axles  MEPDG defaults 34 

Vehicle class distribution (%) TRF_MEPDG_VEH_CLASS_DIST Or 

TRF_MONITOR_LTPP_LN 

Multiple fields in these tables are 

used. 

Growth rate (%) by vehicle 

class 

 Estimated based on data from 

TRF_MONITOR_LTPP_LN 

TRUCKS_LTPP_LN 

Growth function Compound growth was assumed. Compound growth was assumed. 

Monthly adjustment factors by 

vehicle class 

 TRF_MEPDG_MONTH_ADJ_FACTR Multiple fields in these tables are 

used. 

Hourly adjustment factors MEPDG defaults were used. MEPDG defaults were used. 

Axles per truck for each 

vehicle class and axle group 

Estimated based on data from 

TRF_MONITOR_LTPP_LN  

Multiple fields in these tables are 

used. 

Axle load distribution for 

every axle group 

TRF_MEPDG_AX_DIST_ANL Or 

TRF_MONITOR_AXLE_DISTRIB 

Multiple fields in these tables are 

used. 

The traffic inputs in the MEPDG software comprise two main interfaces. The first interface 

includes basic traffic information, axle configuration, lateral wander, vehicle class distribution 

and growth, monthly adjustment, and axles per truck; the second interface includes the axle 

load distributions for single, tandem, tridem, and quad axles.  

A software routine called LTPP Pavement Loading User Guide (PLUG) had previously been 

developed based on Microsoft® Access to populate the input data required for axle load 

distributions in the second interface.(42) However, the LTPP PLUG does not populate other 

traffic data required for the first interface in the MEPDG software. Therefore, during the 

current project, a series of Visual Basic for Applications (VBA) macros were developed in an 

Microsoft® Excel platform to extract, calculate, and create Extensible Markup Language 

(XML) data files to be imported into the MEPDG software for the first traffic inputs interface. 

In this manner, all traffic input data were imported into the MEPDG software using the 

generated XML files from the VBA macro codes created in this project and from the LTPP 

PLUG software. 

Within the basic traffic information, the initial two-way average annual daily truck traffic 

(AADTT) is the most significant information. In this study, the LTPP table 

TRF_MONITOR_LTPP_LN, which is based on Automatic Vehicle Classification (AVC) and 

WIM equipment, was used as the source of AADTT. The data field TRUCKS_LTPP_LN in 

this table gives an estimate of the annual number of trucks in each class based on AVC and 

WIM information. The sum of these values for every year gives an estimate of AADTT in the 

LTPP lane for that year. Since the objective of this study is calibration of performance models 

based on performance measurements within LTPP test sections, these AADTT estimates were 

used along with the assumption that all of the roadway traffic has passed through the LTPP 

lane. In other words, a 100-percent value was used for directional and lane adjustment factors.  
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In MEPDG, the flexible pavement response model only requires the load spectrum, tire contact 

pressure distributions, and areas of contact for traffic characterization (see page 3.3.42 of the 

final report for NCHRP Project 1-37A).(2) However, for the slab cracking prediction model, the 

axle configuration, traffic wander, and wheelbase are considered critical factors (see page KK-

9 and KK-10 of appendix KK of the final report for NCHRP Project 1-37A).(2) Since the axle 

configuration, lateral wander, and wheelbase information are only used for analysis and design 

of jointed concrete pavements, the default software values were used for this study.  

The vehicle class distribution is extracted from the LTPP table TRF_MEPDG_VEH_CLASS_ 

DIST where available (for any site-year where more than 210 d of monitored data have been 

recorded) and estimated from the LTPP table TRF_MONITOR_LTPP_LN otherwise. To 

generate MEPDG input values, the annual class distributions were averaged among all years of 

available data.  

Data from the TRUCKS_LTPP_LN field in the TRF_MONITOR_LTPP_LN table were used 

to estimate a traffic growth factor by each vehicle class. For every vehicle class in each site, the 

available data were used with linear interpolation to fill in the gaps between the final available 

year and the initial year (for which AADTT was input) and create a continuous series of truck 

counts. Then the initial counts and the final cumulative counts were used with an assumption 

of compound growth to estimate the growth factor r. In equation 20, Tf is the cumulative truck 

count for every class at the final year of available data, Ti is the truck count at the initial year, 

and Y is the difference in the number of years between the initial year and the final year of 

available data. Equation 20 was recursively solved using a VBA macro to estimate r, or growth 

factor, for every vehicle class: 

  (20) 

Where: 

Tf = cumulative traffic at the end of the period. 

Ti = traffic at the beginning of the period. 

r = growth factor. 

Y = period in years. 

For monthly adjustment factors, data from the LTPP table TRF_MEPDG_MONTH_ADJ_ 

FACTR were used. The LTPP TRF_MEPDG_HOURLY_DISTRIB has hourly adjustment 

factors only for the LTPP sites that were in the traffic pooled fund study. Since hourly 

distributions are more important in analysis of jointed concrete pavements, the MEPDG default 

values were used for hourly distributions in this study. 

For every vehicle class, based on the estimated count of axles in each axle group (single, 

tandem, tridem, or quad) within the TRF_MONITOR_LTPP_LN table, the number of axles per 

truck is calculated. This number is then averaged among all years with available data to 

generate the MEPDG inputs. 

𝑇𝑓 = 𝑇𝑖  
 1 + 𝑟 𝑌 − 1

𝑟
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For each LTPP site-year with adequate data (more than 210 d of monitored data per year), the 

TRF_MEPDG_AX_DIST_ANL table was used to generate the MEPDG required inputs. For 

other site-years, data from the TRF_MONITOR_AXLE_DISTRIB table were converted to 

generate the corresponding MEPDG inputs. All of these data were reformatted to be input into 

the LTPP PLUG tables. Then the PLUG software was used to generate the required XML files 

for each site. 

Climate Data 

The AASHTOWare® Pavement ME Design software has two options to gather the climatic 

data—a single weather station or a virtual weather station. The appropriate option is selected 

based on the proximity of the section to a certain weather station. Existing weather stations (the 

data for which can be downloaded at http://me-design.com/MEDesign/ClimaticData.html) are 

listed by location and can be searched by latitude and longitude. The latitude and longitude 

data are available in table SECTION_COORDINATES of the LTPP database. Table 14 lists 

the data source and the corresponding fields.  

Table 14. Climate information. 

Data Item LTPP Source Tables Data Field/Value 

Longitude (degrees, minutes) SECTION_COORDINATES  LONGITUDE 

Latitude (degrees, minutes) SECTION_COORDINATES  LATITUDE 

Elevation (ft) AWS_LOCATION  ELEVATION 

Depth of water table (ft) N/A 5 m (+1) 

Climate station MEPDG  N/A 

Note: (+1) a default value of 5 m was set for the depth of the water table, since this information is not available 

from the LTPP database. 

The LTPP InfoPaveTM website has a tool for extracting the National Aeronautics and Space 

Administration MERRA climatic data in the form of HCD files for each LTPP test section.(40) 

This tool also provides the station information in the form of a station.dat file. These files can 

be copied to the climatic data folder, which has been designated by the user for the 

AASHTOWare® software.(1) This way, the user will also have the option to use MERRA 

climatic data. For the current project, only the existing weather station data were used.  

Pavement Structure and Materials Data 

Pavement layers are identified in LTPP with a unique number (LAYER_NO). Layer number 1 

is always assigned to the lowest layer (subgrade) in the pavement structure, and additional 

layers above it are indicated with progressively larger layer numbers. In addition to 

LAYER_NO, which is specific to each test section, for the SPS projects, which have more than 

one test section per site, a layer identifier, PROJECT_LAYER_CODE, is available. Pavement 

layers with the same material properties from different test sections along the entire site are 

identified using this field code. Even though the sequence of a layer might be different in 

different test sections (different LAYER_NO), a similar PROJECT_LAYER_CODE indicates 

that those layers from different test sections were constructed at the same time and using 

similar materials. 
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Since not every section has test results for each layer, an expansion data process was applied to 

populate the layer structure properties. Under this process, the test results from one section are 

expanded to the other section when the PROJECT_LAYER_CODE in both sections is the 

same for a given layer. This process is applied to the entire site for the Florida SPS-1 and  

SPS-5 test sections. 

Before applying the described procedure, sections need to be ordered according to the 

construction sequence (SECTION_START and SECTION_END fields in the 

SPS_PROJECT_STATIONS table). Then blank fields are filled with data available from the 

closest section having the same PROJECT_LAYER_CODE. The description of the layer was 

also taken into consideration for the expansion of subgrade test results. 

Layer Thickness and Type of Material 

Layer thickness and type of material are extracted from the LTPP table TST_L05B 

(SECTION_LAYER_STRUCTURE). Table 15 summarizes the data required for input into 

MEPDG software and the corresponding LTPP tables and fields. 
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Table 15. Layer thickness and type of material.  

Data Item LTPP Source Tables Data Field/Value 

Thickness (mm) TST_L05B, 

SECTION_LAYER_STRUCTURE 

REPR_THICKNESS 

Construction number TST_L05B, 

SECTION_LAYER_STRUCTURE 

CONSTRUCTION_NO 

Layer number TST_L05B, 

SECTION_LAYER_STRUCTURE 

LAYER_NO 

Type of material TST_L05B, 

SECTION_LAYER_STRUCTURE 

MATL_CODE 

Material that is similar 

among SPS sections on 

one site 

SECTION_LAYER_STRUCTURE PROJECT_LAYER_CODE 

New Asphalt Concrete Layer 

Wherever data were available, input level 1 was considered for the AC layer. Under this input 

level, binder properties, mixture volumetric properties, dynamic modulus, and creep 

compliance need to be provided according to laboratory test results. Mixture volumetric 

properties calculations were made using available LTPP test results prior to introducing the 

data into the software. Dynamic modulus master curve is calculated internally in the software 

when it is provided with the dynamic modulus for a combination of laboratory test results. 

Individual values for creep compliance are introduced, and the software calculates the master 

curve. 

Mixture Volumetric Information 

The mixture volumetric information was calculated with the LTPP data and applying the 

weight–volume relationships for asphalt mixtures.(43) Relevant values for the volumetric 

calculation were taken from LTPP TST tables as described in table 16.  

Table 16. Mixture volumetric data. 

Data Item 

LTPP Source 

Tables Data Field/Value 

Unit weight (kg/m3) TST_AC02 BSG 1,000 

Effective binder 

content (%) 

TST_AC04 ASPHALT_CONTENT_MEAN (Pb = asphalt, percent by total 

weight of mixture) 

Effective binder 

content (%) 

TST_AC03 MAX_SPEC_GRAVITY 

(Gmm = maximum SG of paving mixture) 

Effective binder 

content (%) 

TST_AG01 BSG_OF_COARSE_AGG 

 (Gsb = BSG of aggregate) 

Effective binder 

content (%) 

TST_AG02 BSG_OF_FINE_AGG  

(Gsb = BSG of aggregate) 

Air voids (%) TST_AC02 BSG 

(Gmb = BSG of compacted mixture) 

Air voids (%) TST_AC03 MAX_SPEC_GRAVITY 

(Gmm = maximum SG of paving mixture) 

BSG = bulk specific gravity. 

The following relationships were applied to calculate the effective binder content (equation 21) 

and the air voids (equation 26). 
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  (21) 

Where: 

Pbe = effective binder content (%).  

Pb = asphalt, percent by total weight of mixture.  

Pba = absorbed asphalt, percent by weight of aggregate, calculated using equation 22:  

  (22) 

 

Where Gse is the effective specific gravity (SG) of aggregate, calculated using equation 23: 

 

  (23) 

 

Where Gsb is the bulk specific gravity (BSG) of aggregate, calculated using equation 24: 

 

  (24) 

 

Where: 

Pi = percentages by weight of aggregates. 

Gi = BSG of aggregates. 

Gb = asphalt SG, considered 1.01.(44) 

Gmm = maximum SG of paving mixture, calculated using equation 25: 

  (25) 

 

Then the air voids are calculated with equation 26: 

  (26) 

 

Where: 

Va = air voids (%). 

Gmb = BSG of compacted mixture. 

Binder and Asphalt Concrete Properties 

Binder properties are available in the LTPP database, except for the softening point (table 17). 

This item is obtained indirectly by applying the correlation between temperature and viscosity, 
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considering that the softening point value is associated uniquely with a viscosity of 

13,000 poise.(45) Viscosity–temperature parameters correspond to MEPDG recommended 

values for an asphalt cement grade 40-50 (A = 10.5254 and VTS = –3.5047). Applying 

equation 27, the softening point temperature for the specified viscosity is 47 ºC. 

  (27) 

Where: 

η = viscosity, centipoise (cP). 

Tr = reference temperature, R. 

A = regression intercept. 

VTS = regression slope or viscosity temperature susceptibility. 

Table 17. Binder properties. 

Data Item LTPP Source Tables Data Field/Value 

Poisson’s ratio MEPDG defaults MEPDG defaults 

Softening point (ºC) at 1,300 pascal-sec MEPDG defaults 47 ºC  

Absolute viscosity (pascal-sec) at 60 ºC TST_AE_02 ABSOLUTE_VISC_140_F 

Kinematic viscosity (centistokes) at 

135 ºC  

TST_AE_02 KINEMATIC_VISC_275_F 

SG at 25 ºC TST_AE_03 SPECIFIC_GRAVITY 

Penetration at temperature 25 ºC TST_AE_02 PENETRATION_77_F 

AC dynamic modulus master curve is calculated internally in the MEPDG. This calculation is 

done based on the individual dynamic modulus values entered for a set of frequency and 

temperature combinations. The general expression for the dynamic modulus master curve is in 

equation 28:(1) 

  (28) 
 

Where: 

t = time of loading at a given temperature of interest. 

δ, α = fitting parameters; for a given set of data, δ represents the minimum value of E*, and  

δ + α represents the maximum value of E*.  

β, γ = parameters describing the shape of the sigmodal function. 

c = fitting parameter.  

η
Tr

 = viscosity at reference temperature. 

It should be noted that the dynamic modulus values available within the LTPP TST_ESTAR_ 

tables have been calculated using an ANN model developed under a previous LTPP data 

analysis project. This ANN model uses actual laboratory-tested resilient modulus values 

available within the LTPP TST_AC07_ tables. Considering that calculated dynamic modulus 

values based on a relationship to the resilient modulus test results are used here, by MEPDG 

definition, this is level 2 input. However, the only option within the software to enter 

calculated dynamic modulus values was to use the level 1 input option. If the level 2 input 

log log 𝜂 = 𝐴 + 𝑉𝑇𝑆 𝑙𝑜𝑔 𝑇𝑟  

𝑙𝑜𝑔 𝐸∗ = 𝛿 +
𝛼

1 + 𝑒𝛽+𝛾 𝑙𝑜𝑔  𝑡 −𝑐 𝑙𝑜𝑔  𝜂 −𝑙𝑜𝑔 𝜂𝑇𝑟    
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option is selected, the software requires material properties other than the resilient modulus to 

predict the dynamic modulus based on the Witczak model. 

Table 18 shows the LTPP tables and corresponding fields where the required input values 

regarding binder and mixture properties have been stored. In using the TST_ESTAR_ tables, 

the ESTAR_LINK corresponding to PREDICTIVE_MODEL number 1 was used, as the first 

predictive ANN model is the one estimating dynamic modulus based on resilient modulus lab 

testing results.  

Table 18. Mixture properties. 

Data Item LTPP Source Tables Data Field/Value 

Poisson’s ratio MEPDG defaults MEPDG defaults 

Temperature levels for dynamic 

modulus 

TST_ESTAR_MODULUS  

(TST_ESTAR_MASTER.PREDICTIVE_ 

MODEL = 1) 

which has been populated based on 

TST_AC07_V2_MR_SUM values 

TEMPERATURE 

Frequency levels for dynamic 

modulus 

TST_ESTAR_MODULUS  

(TST_ESTAR_MASTER.PREDICTIVE_ 

MODEL = 1) 

which has been populated based on 

TST_AC07_V2_MR_SUM values 

FREQUENCY 

Dynamic modulus TST_ESTAR_MODULUS  

(TST_ESTAR_MASTER.PREDICTIVE_ 

MODEL = 1) 

which has been populated based on 

TST_AC07_V2_MR_SUM values 

ESTAR 

Creep compliance (1/GPa) MEPDG defaults MEPDG defaults 

Thermal conductivity (watt/meter-

kelvin) 

MEPDG defaults MEPDG defaults 

Heat capacity (joule/kilogram-

kelvin) 

MEPDG defaults MEPDG defaults 

Thermal contraction MEPDG defaults MEPDG defaults 

 

Existing Asphalt Concrete Properties 

SPS-5 sections are experiments with HMA overlays. For this type of pavement structures, the 

MEPDG requires the backcalculated elastic modulus or the results of a structural adequacy 

evaluation of the existing pavement. In all the sections, the backcalculated elastic modulus was 

obtained from the LTPP database. During the history of the LTPP program, two data analysis 

studies were conducted to backcalculate all of the FWD data. The most recent study was the 

LTPP Determination of In-Place Elastic Layer Modulus: Backcalculation Methodology and 

Procedure.(46) The latest backcalculated elastic modulus data became available since the SDR 

29.0 and can be downloaded from the InfoPaveTM website.(40) The backcalculated elastic 

modulus along with the frequency and temperature are required in the MEPDG software for 

the overlay analysis. Table 19 shows the LTPP data tables and fields where the backcalculated 

moduli and the corresponding information can be found. 
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Table 19. LTPP data tables and fields for backcalculated moduli. 

Data Item LTPP Source Tables Data Field/Value 

Backcalculated modulus 

averaged for each FWD pass 

BAKCAL_MODULUS_SECTION_LAYER AVG_MODULUS 

Backcalculated layer BAKCAL_MODULUS_SECTION_LAYER BC_LAYER_NO 

Corresponding LTPP layer 

number 

BAKCAL_LAYER_LINK LAYER_NO 

FWD pass number BAKCAL_MODULUS_SECTION_LAYER FWD_PASS 

Test date BAKCAL_PASS TEST_DATE 

Temperature BAKCAL_BASIN SURFACE_TEMP 

Frequency N/A 15 Hz 

Gradation percent passing  

3/4-inch sieve 

TST_AG04 THREE_FOURTHS_

PASSING 

Gradation percent passing  

3/8-inch sieve 

TST_AG04 THREE_EIGHTHS_

PASSING 

Gradation percent passing Nº4 

sieve 

TST_AG04 NO_4_PASSING 

Gradation percent passing Nº200 

sieve 

TST_AG04 NO_200_PASSING 

For the testing frequency, several studies have recommended a value of 1/2t where t is the 

period of the FWD load pulse and can be extracted from the FWD time history data that are 

available in the LTPP Ancillary Information Management System and can be downloaded 

through InfoPaveTM.(44,40) Based on an observation of several of the FWD time histories, it was 

decided that a value of 16 Hz corresponding to t = 0.03 s was suitable to use in this project. 

This value also coincides with the findings from several past studies.(48–50) 

Asphalt-Treated Base and Permeable Asphalt-Treated Base  

Some of the SPS-1 sections have asphalt-treated bases (ATBs) and permeable asphalt-treated 

bases. Those materials behave similarly to HMA concrete. So, LTPP source tables and fields 

are the same as the ones described for HMA.  

Additional Asphalt Concrete Layer Properties 

The additional AC layer properties required by the software are listed in table 20. 

Table 20. Additional AC layer properties. 

Data Item LTPP Source Tables Data Field/Value 

Surface shortwave absorptivity MEPDG defaults 0.85 

Is endurance limit applied? MEPDG defaults False 

Endurance limit (microstrain) MEPDG defaults 100 

Layer interface MEPDG defaults Full friction interface 

 

Unbound and Subgrade Materials 

Unbound materials response is characterized by the resilient modulus calculated from the 

LTPP materials testing module data (TST_UG07_SS07_* tables). The representative resilient 

modulus was calculated according to the guidelines provided in the NCHRP Project 1-28A 

study, which found that the summary resilient modulus should be reported using equation 29 
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and calculated for the following stress states: σ3 = 5 psi and σ1 = 15 psi for aggregate 

base/subbase and σ3 = 2 psi and σ1 = 6 psi for subgrade soils.(51) The calculated resilient 

modulus values are listed in table 39 of appendix A. 

  (29) 
 

Where: 

k1, k2, k3 = regression constants. 

Pa = atmospheric pressure equal to 14.7 psi. 

θ = bulk stress, calculated using equation 30: 

 

  (30) 
 

Where τoct is the octahedral shear stress, calculated using equation 31:  

 

  (31) 

 

Where σ1 and σ3 are the principal stresses. 

Table 21 shows the LTPP source tables and fields for the required input data for unbound 

aggregate and subgrade soils materials properties. 
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Table 21. LTPP data sources for unbound materials properties. 

Data Item LTPP Source Tables Data Field/Value 

Layer thickness (inches) TST_L05B REPR_THICKNESS 

Poisson’s ratio N/A MEPDG defaults based on AASHTO 

soil classification 

Coefficient of lateral earth 

pressure (Ko) 

N/A MEPDG defaults based on AASHTO 

soil classification 

Resilient modulus (level 2) N/A Equation 29 

Average applied max axial 

stress 

TST_UG07_SS07_WKSHT_ 

SUM 

APPLIED_MAX_AXIAL_STRESS_ 

AVG (σ
1
) 

Confining pressure TST_UG07_SS07_WKSHT_ 

SUM 

CON_PRESSURE (σ
3
) 

Average resilient modulus TST_UG07_SS07_WKSHT_ 

SUM 

RES_MOD_AVG (Mr) 

Average applied cyclic stress TST_UG07_SS07_WKSHT_ 

SUM 

APPLIED_CYCLIC_STRESS_AVG 

(Scyclic) 

Average resilient strain TST_UG07_SS07_WKSHT_ 

SUM 

RES_STRAIN_AVG (εr) 

Percent passing 0.020 mm TST_SS02_UG03 HYDRO_02 

Percent passing # 200 TST_SS01_UG01_UG02 NO_200_PASSING 

Percent passing # 80 TST_SS01_UG01_UG02 NO_80_PASSING 

Percent passing # 40 TST_SS01_UG01_UG02 NO_40_PASSING 

Percent passing # 10 TST_SS01_UG01_UG02 NO_10_PASSING 

Percent passing # 4 TST_SS01_UG01_UG02 NO_4_PASSING 

Percent passing 3/8" TST_SS01_UG01_UG02 THREE_EIGHTHS_PASSING 

Percent passing 1/2" TST_SS01_UG01_UG02 ONE_HALF_PASSING 

Percent passing 3/4" TST_SS01_UG01_UG02 THREE_FOURTHS_PASSING 

Percent passing 1" TST_SS01_UG01_UG02 ONE_PASSING 

Percent passing 1 1/2" TST_SS01_UG01_UG02 ONE_AND_HALF_PASSING 

Percent passing 2" TST_SS01_UG01_UG02 TWO_PASSING 

Percent passing 3" TST_SS01_UG01_UG02 THREE_PASSING 

Liquid Limit  TST_UG01_SS03 LIQUID_LIMIT 

Plasticity Index  TST_UG01_SS03 PLASTICITY_INDEX 

AASHTO soil classification TST_AG04  NO_10_PASSING 

AASHTO soil classification TST_SS01_UG01_UG02 NO_4_PASSING and 

NO_200_PASSING 

AASHTO soil classification TST_UG01_SS03 PLASTIC_LIMIT and 

PLASTICITY_INDEX 

Maximum dry unit weight (pcf) N/A MEPDG defaults based on AASHTO 

soil classification 

Saturated hydraulic 

conductivity (m/hr) 

N/A MEPDG defaults based on AASHTO 

soil classification 

Specify gravity of soils (Gs) N/A MEPDG defaults based on AASHTO 

soil classification 

Optimum gravimetric water 

content (%) 

N/A MEPDG defaults based on AASHTO 

soil classification 

Soil water characteristic curve 

parameter (af, bf, cf, hr) 

N/A MEPDG defaults based on AASHTO 

soil classification 

N/A = no adequate data. 

The AASHTOWare® Pavement ME Design software does not allow an ATB layer directly on 

top of the subgrade. Therefore, the subgrade was split into two layers with the same materials, 

each one with half the subgrade thickness. 
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For the Florida SPS-1 site, the pavement structure is supported by a compacted limerock 

embankment. The construction report indicated a hard material underneath the embankment 

that, for the modeling purposes, was considered as bedrock with the properties noted in  

table 22. 

Table 22. Bedrock material properties. 

Data Item LTPP Source Tables Data Field/Value 

Layer thickness MEPDG defaults Semi-infinite 

Unit weight MEPDG defaults 2,240 

Poisson’s ratio MEPDG defaults 0.15 

Elastic modulus MEPDG defaults 5,171 

 

Backcalculated values of resilient modulus are applied when laboratory results are not 

available. These backcalculated values need to be adjusted to laboratory conditions to use in 

ME design. The adjustment to laboratory condition is done internally by the software 

according to the selected C-value that is listed in table 23.(52) 

Table 23. C-values to convert the backcalculated layer modulus values to an equivalent 

resilient modulus measured in laboratory. 

Layer Type Location C-value of Mr/EFWD Ratio 

Aggregate base/subbase Between a stabilized and HMA layer 1.43 

Aggregate base/subbase Below a PCC layer 1.32 

Aggregate base/subbase Below an HMA layer 0.62 

Subgrade/embankment Below a stabilized subgrade/embankment 0.75 

Subgrade/embankment Below an HMA or PCC layer 0.52 

Subgrade/embankment Below an unbound aggregate base 0.35 

PCC = portland cement concrete. 

Pavement Permanent Deformation 

During each LTPP manual distress survey, the transverse profile of the pavement sections is 

measured at every 50 ft, which results in rutting measurements for both wheelpaths at 11 test 

locations across the length of each test section. Point-by-point rutting measurements and 

calculated average section rutting values are stored in the LTPP database. Table 24 shows the 

LTPP data source for rutting measurements.  

Table 24. LTPP data source for rutting measurements (wire reference method). 

Data Item LTPP Source Tables Data Field/Value 

Measurement date MON_T_PROF_INDEX_SECTION 

MON_T_PROF_INDEX_POINT 

SURVEY_DATE 

Average section left wheelpath 

rutting 

MON_T_PROF_INDEX_SECTION LLH_DEPTH_WIRE_REF_MEAN 

Average section right 

wheelpath rutting 

MON_T_PROF_INDEX_SECTION RLH_DEPTH_WIRE_REF_MEAN 

Point-by-point left wheelpath 

rutting 

MON_T_PROF_INDEX_POINT LLH_DEPTH_WIRE_REF 

Point-by-point right wheelpath 

rutting 

MON_T_PROF_INDEX_POINT RLH_DEPTH_WIRE_REF 
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Rutting measurements used to be conducted using a 1.8-m straightedge and a reference wire. 

Later, the LTPP program adopted the Face Dipstick device, which measures the transverse 

profile elevations at every foot along the width of the lane. Even after using the Dipstick, the 

rutting values have been recorded according to a simulated straightedge and the wire reference 

methods. There has been no concrete evidence as to which method produces a more repeatable 

or representative rutting measurement. In this study, the values recorded according to the wire 

reference method have been used as measured rutting values to be used in the calibration of 

permanent deformation models. In the wire reference method, the maximum displacement 

between the reference wire line and pavement surface is calculated in the left- and right-lane 

halves. Reference wire is placed at profile end points and connects peaks, which protrude 

above horizontal datum end points, with straight lines. Displacement is computed 

perpendicular to horizontal datum between end points. 

Pavement permanent deformation is the result of incremental deformation in each layer of the 

pavement. MEPDG calculates the incremental deformation for each subseason at the mid-

depth of each sublayer within the pavement system. Each layer contributes to the total 

permanent deformation according to its material properties, climate, and load conditions. The 

rutting measurements in the LTPP database are for the total pavement structure, and trenching 

measurements are not available to calibrate the permanent deformation models for each layer 

independently. Therefore, the calibration factors for the following models need to be adjusted 

in a way that minimizes the difference between the LTPP measured rutting and the total 

pavement rutting calculated using equations 32 and 33.  

  (32) 

 

  (33) 

Where: 

RD = pavement permanent deformation. 

εi
p
 = total plastic strain in sublayer i. 

hi = thickness of sublayer i. 

n = number of sublayers. 

∆p(HMA) = accumulated permanent or plastic vertical deformation in the HMA 

layers/sublayers, calculated using equation 1 (inches). 

∆p(base), ∆p(subbase), ∆p(soil) = permanent or plastic deformation for the unbound 

layers/sublayers, calculated using equation 5 (inches). 

ASSEMBELED CALIBRATION DATASETS 

This section of the report presents general information on the different LTPP and non-LTPP 

datasets that have been used in this project. Data from 13 Florida LTPP SPS-1 test sections and 

11 FDOT APT sections were used in calibrating the permanent deformation model for new 

pavements. Data from 15 Florida LTPP SPS-5 sections were used in calibrating the permanent 

deformation models for overlaid pavements. 

𝑅𝐷 =  𝜀𝑝
𝑖

𝑛

𝑖=1

. ℎ𝑖  

∆𝑅𝐷 = ∆𝑝(𝐻𝑀𝐴) + ∆𝑝(𝑏𝑎𝑠𝑒 ) + ∆𝑝(𝑠𝑢𝑏𝑏𝑎𝑠𝑒 ) + ∆𝑝(𝑠𝑜𝑖𝑙 ) 
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SPS-1 Sections 

Figure 5 shows the pavement structure in the Florida SPS-1 test sections in the same order that 

they exist onsite. Figure 6 and figure 7 show the trend in the average section rutting values 

measured on Florida SPS-1 test sections from 2000 to 2011. As it can be seen, despite the 

increasing trend in rutting values with time, the trends for different test sections are not parallel 

to each other, and they cross at several points. This indicates the inherent variability in the 

involved parameters and the measurement methods. Also, the averaging of rutting values from 

different locations on each test section obscures the real trends.  

 
Source: FHWA. 

HMAC = hot-mix asphalt concrete; DGAB = dense-graded aggregate base. 

Figure 5. Illustration. Pavement structure in Florida SPS-1 test sections. 
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Source: FHWA. 

Figure 6. Chart. Average rutting measurements on SPS-1 test sections 120107 to 120109. 

  
Source: FHWA. 

Figure 7. Chart. Average rutting measurements on SPS-1 test sections 120104 to 120161. 
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Figure 8 shows the pavement structure in the Florida SPS-5 test sections in the same order that 

they exist on the site. Figure 9 and figure 10 show the trend in the average section rutting 

values measured on Florida SPS-5 test sections from 1995 to 2013. 

SPS-5 Sections 

 
Source: FHWA. 

Figure 8. Illustration. Pavement structure in Florida SPS-5 test sections. 
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Source: FHWA. 

Figure 9. Chart. Average rutting measurements on SPS-5 test sections. 

  
Source: FHWA. 

Figure 10. Chart. Average rutting measurements on SPS-5 test sections. 
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FDOT APT Data 

FDOT has an APT facility with a heavy vehicle simulator (HVS). FDOT has used this facility 

for conducting several AC pavement experiments, of which two were selected in this project to 

provide information for the rutting calibration process. 

Dominant Aggregate Size Range Gradation Model Experiment 

FDOT established an accelerated pavement experiment to test various aggregate gradations to 

resist rutting. The approach taken by FDOT is known as the dominant aggregate size range 

(DASR) gradation model. Four sections were built to be tested under the HVS. Test sections 

were trafficked at 50 ºC using a 455-mm wide-base single tire inflated to 390 kPa and loaded 

to 40 kN.(53) 

Each test section consisted of two layers of HMA of 2 inches. Those layers were placed over a 

20.5-inch limerock base and a 12-inch limerock stabilized subgrade. The DASR porosity 

ranged from 42 to 56 percent, and mixes with lower DASR porosity exhibited less rutting. 

Figure 11 presents a schematic of the pavement structure in the four test sections, and figure 12 

shows the rutting measurements. 

 
Source: FHWA. 

SP-12.5 = Superpave with nominal maximum aggregate size of 12.5 inches. 

Figure 11. Illustration. FDOT DASR project sections.(54) 
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Source: FHWA. 

Figure 12. Chart. Rutting for the four sections tested under FDOT DASR project. 

Asphalt Rubber Binder Experiment  

FDOT built a set of seven APT sections as a part of a study to compare HMA mixtures 

constructed using a polymer-modified asphalt (PMA) and an asphalt rubber binder (ARB). The 

objective of this study was to find a way to make ARB handle and perform similarly to  

PG 76-22, Florida’s “gold standard” binder. The experiment included three PMA sections and 

four ARB sections. Testing lanes were milled and resurfaced, approximately 1 inch of existing 

asphalt remained in place after milling, and then each lane was resurfaced with two 1.5-inch 

layers of a 12.5-inch nominal maximum aggregate size fine-graded Superpave mixture. The 

asphalt mixtures of each lane were the same except for the binder type.(54) 

Figure 13 presents a schematic of the pavement structure in the four test sections, and figure 14 

shows the rutting measurements.  

Accelerated loading was performed using FDOT’s HVS with a super single tire loaded to  

9 kip and inflated to 110 psi. A wheel wander of 4 inches was used and the test temperature 

maintained at 50 ºC. All the mixtures showed good rutting performance. All mixtures with a  

PG 76-22 (ARB) exhibited slightly better rutting resistance than the control mix. 
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Source: FHWA. 

GTR = ground tire rubber. 

Figure 13. Illustration. FDOT ARB project sections.  
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Source: FHWA. 

Figure 14. Chart. Rutting for the seven sections tested under FDOT ARB project. 
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CHAPTER 4. PROGRAMMING METHODOLOGY 

INTRODUCTION 

In the proposed approach for the execution of this research project, task 4 was anticipated for all 

the programming activities that were needed to implement a multi-objective calibration of the 

MEPDG performance models. An overview of the general programming activities is described in 

the following sections of this report. First, the approach to implement the AASHTO 

recommended calibration (single-objective) is presented. Second, the multi-objective 

evolutionary optimization framework is outlined. Third, the methodology for calculation of the 

predicted performance using MEPDG is explained. And finally, the multiple considered 

objective functions and their corresponding calculations are clarified.  

PROGRAMMING SINGLE-OBJECTIVE CALIBRATION 

The plan for task 3 of this research project was to use the available AASHTOWare® Pavement 

ME Design software to conduct a conventional single-objective calibration according to the 

AASHTO guidelines, the results of which would serve as a comparison baseline. In this manner, 

this study will compare the multi-objective approach against a single-objective approach 

currently being used by the State agencies. 

NCHRP 1-40B provides an 11-step procedure for verification, calibration, and validation of the 

MEPDG models for local conditions, which has been adopted by AASHTO.(4,3) At the seventh 

step, the significance of the bias (the average difference between predicted and measured 

performance) is tested. If there is a significant bias in prediction of pavement performance 

measures, the first round of calibration is conducted at the eighth step to eliminate bias. During 

this step, the SSE is minimized by adjusting the βr1, βGB, and βSG calibration factors.  

At the ninth step, the STE (standard deviation of error among the calibration dataset) is evaluated 

by comparing it to the STE from the national global calibration. If there is a significant STE, the 

second round of calibration at the 10th step tries to reduce the STE by adjusting the βr2 and βr3 

calibration factors. A final validation step checks for the reasonableness of performance 

predictions. 

The AASHTO guidelines provide regression equations for calculating the STE for each sublayer 

(AC, granular layers, and fine-grained layers). These equations were initially developed, not 

based on trenching data, but based on a “systematic approach” of assigning a fraction of the total 

measured rutting to each layer. During the NCHRP Project 09-30A, some trenching experiments 

were conducted.(31) However, the STE equations for each layer have not actually been updated 

accordingly. Only the STE regression equation for the total pavement rutting was updated 

following that study. In the absence of trenching data, only the STE in calculating the total 

pavement rutting is compared to the STE from the global calibration, which was about 0.1 inch. 

Global heuristic optimization methods such as EAs could possibly identify a more optimum set 

of calibration coefficients compared to the local exhaustive search methods. That is why in this 

project an EA is used for each step of the required single-objective optimization to calibrate the 

rutting models for new and overlaid pavements. 
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The single-objective calibration process is used in calibrating rutting models for new AC 

pavements using LTPP SPS-1 Florida site data and overlaid AC pavements using LTPP SPS-5 

Florida site data. 

PROGRAMMING MULTI-OBJECTIVE OPTIMIZATION FRAMEWORK 

In this research project, MOEAs have been implemented to optimize the multiple objective 

functions involved. Using a multi-objective optimization approach allows escaping 

preconception, avoiding excessive concentration on only one aspect of the problem, and 

combining multiple sources of information in an objective manner. 

MOEA Framework (moeaframework.org) is a free and open-source Java framework for multi-

objective optimization using a variety of EAs, including GAs and ESs. In this object-oriented 

framework, an instance of the “abstract problem” class needs to be created, in which the 

calculation process for the multiple objective functions is implemented. Then an instance of the 

“problem execution” class is created, where the abstract multi-objective optimization problem is 

solved using a selected “algorithm.”  

At the first round of programming for this project, a Java code was developed to integrate the 

performance model engine of the AASHTOWare® Pavement ME Design software and the 

multi-objective EA into a calibration software as indicated in figure 15. After creating all the 

input data files for all the calibration test sections, the ME Design software was executed once to 

generate the materials properties, climate, traffic, and pavement response files. The framework 

runs the Asphalt Pavement Analysis and Design System (APADS) software using these files and 

the updated calibration factors at each iteration to calculate the MEPDG rutting values.(1) A 

comparison of these calculated values to LTPP measured values is used to evaluate the multiple 

objective functions (error functions) for each of the calibration factor sets. The MOEA then 

updates the solution population members (calibration factor sets) according to the results of 

objective function evaluations. 

 
Source: FHWA. 

Figure 15. Flowchart. Multi-objective calibration framework. 
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If improving final optimization solutions in terms of one objective degrades them in terms of 

other objectives, there is a conflict between the objectives; a clear example is the cost–

performance tradeoff. When there is no conflict between multiple objectives, they can be 

combined using an engineered weighing scheme, and the problem would change into a single-

objective optimization. The general goal of any multi-objective optimization is to identify the 

Pareto-optimal tradeoffs between multiple objectives. It is called a Pareto-optimal tradeoff 

because the best compromise among the multiple conflicting objectives is sought, and it was 

defined by Vilfredo Pareto (1896).(55) A Pareto-optimal solution has at least one better objective 

value compared to any other feasible solution in the decision space, while performing as well or 

worse in all remaining objectives. A solution X1 is called dominated if and only if another 

feasible solution X2 performs better than X1 in terms of at least one objective and as well as X1 

in terms of others. A set of Pareto-optimal solutions is called the nondominated or Pareto-

optimal front. 

EAs have good global search ability, are less dependent on seed values, and do not require the 

mathematical formula to take the derivative of the objective functions.(56) In addition, EAs seem 

more suitable for multi-objective optimization because they are population based (they find 

several members of the Pareto-optimal front in a single run of the algorithm instead of having to 

perform a series of separate runs) and are less sensitive to the shape and discontinuities in the 

Pareto-optimal front.(33) A multi-objective GA called epsilon-dominance nondominated sorted 

GA (NSGA)II (ε-NSGAII) is implemented for multi-objective calibration.(57) ε-NSGAII has 

performed better in terms of effectiveness, efficiency, and reliability compared to other 

evolutionary multi-objective algorithms on complicated water resources applications.(57,58) It is 

also demonstrated to be easier to implement than traditional multi-objective EAs due to its 

simplified parameterization, adaptive population sizing, and automatic termination.(57) 

The ε-NSGAII was designed based on an earlier successful second-generation multi-objective 

GA, the NSGAII, while the first-generation algorithm was called NSGA.(59,60) NSGA 

implemented the nondomination sorting approach recommended by Goldberg.(61) Fitness is 

assigned based on the level of domination (number of solutions that dominate the solution being 

evaluated) and similarity of solutions (i.e., fitness sharing). NSGA’s front-based fitness 

assignment ensures that the solutions are found along the full extent of the Pareto front. NSGAII 

improved upon NSGA by implementing a more efficient nondomination sorting scheme, 

eliminating the need to specify the sharing parameter, and adding elitism and crowded 

tournament selection.(59) Following real-parameter simulated binary crossover (mating) and 

polynomial mutation, the N best individuals are selected from the combination pool of parent and 

child populations, preserving the elite population members. The two-step crowded tournament 

selection favors the individuals with lower rank (dominated by fewer other solutions), and if two 

solutions share the same rank, the solution with larger crowding distance is preferred (crowding 

distance is the largest cuboid surrounding the solution, in which no other solutions are present). 

NSGAII’s extensive problem-specific parameter calibration was minimized in ε-NSGAII using 

epsilon-dominance archiving, adaptive population sizing, and automatic termination.(57) 

Taking advantage of the epsilon-dominance concept, the user can specify the precision to 

quantify each objective. In the first step, the search space of the problem is divided into grid 

blocks, each block having a width of epsilon based on the specified precision. According to the 

developers of the algorithm, “Larger ε values result in a coarser grid (and ultimately fewer 



 

60 

solutions) while smaller values produce a finer grid.”(57) Epsilon can be viewed as publishable 

precision or error tolerance determined to avoid wasting computational resources on 

unjustifiably precise results.(62) If there are multiple solutions in a grid block, only the solution 

closest to the lower left-hand corner of the block is saved (assuming minimization of all 

objectives). Step 2 comprises nondomination sorting based on the grid blocks. In this step, each 

grid block is used as a reference, and any other solution grids to the top and right side of the 

reference grid will be eliminated.(57) Step 3 is called “thinning of solutions,” where dominated 

solutions are eliminated. As a result, a more even search of the objective space is encouraged. 

The ε-NSGAII starts with exploiting small populations to “precondition” search, and then it 

automatically adapts population size according to problem difficulty and explores further areas 

of the solution space.(57) This is carried out through a series of “connected runs.” An offline 

archive is used to store epsilon-nondominated solutions found after each generation, which are 

subsequently used to direct the search in the next run. While the search is directed using 

previously evolved solutions (25 percent elitism among runs), adding new random solutions  

(75 percent) encourages the exploration of additional regions of the search space.(57) If the 

number and quality of nondominated solutions does not increase above a minimum threshold 

(delta parameter) between two successive runs, the algorithm is automatically terminated across 

all populations. The initial use of smaller population sizes, the elimination of random seed 

analysis, and the elimination of trial-and-error application runs to determine search parameters 

are all contributing to lower computational cost. 

The probability of mating and mutation are assumed to be 1 and 1/n, respectively, with n being 

the number of unknown parameters to calculate (number of calibration factors in this case). The 

initial population size is assumed 10, and the maximum number of generations per run is 250. 

The search is terminated after 10,000 function evaluations unless terminated due to the delta 

parameter of 10 percent beforehand.(58) 

MEPDG PERFORMANCE PREDICTION FOR FUNCTION EVALUATION 

After executing the preliminary runs of the developed program, it was found that each evaluation 

using the APADS software takes about 4 min to complete. This is because APADS conducts 

both the pavement analysis to calculate responses and then the calculation of pavement 

performance. However, pavement responses do not change by changing the calibration factors in 

consecutive iterations, and there is no need to conduct pavement analysis at every iteration. 

There was no option to calculate only the pavement performance using the responses. While the 

APADS software was launched simultaneously for all the LTPP test sections used in the 

calibration database, each optimization iteration was taking about 30 min to evaluate all the 

solution population members (calibration factor sets) on all the calibration data (using a 

computer with Intel Core i7-4600 2.1 GHz and 8 GB of RAM). Since the complete calibration 

could take hundreds of iterations, it was not feasible to continue using the APADS software in 

this framework. Therefore, it was decided to simulate the Pavement ME software to replace the 

APADS routine in this framework. 

As explained above, due to the long computational time of the APADS analysis software, it was 

decided to use the MEPDG equations to calculate pavement performance based on the generated 

materials properties, climate, traffic, and pavement response data files. The calculation of total 
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pavement deformation using these equations was embedded in the code for objective function 

evaluation, which involves calculation of the difference between measured and calculated 

rutting. The following sections explain how these calculations were conducted to simulate the 

performance predictions in the Pavement ME software. 

Total Pavement Permanent Deformation 

The total rutting is the summation of each layer permanent deformation. Pavement ME software 

calculates the monthly incremental pavement total deformation for the design life. The 

expression to calculate total pavement deformation when the pavement structure is composed of 

HMA layer(s) and granular base (GB) layer(s), on top of a fine-grained subgrade, is in equation 

34: 

  (34) 

Where: 

RD = total pavement permanent deformation. 

RDHMA = HMA layer permanent deformation. 

RDGB = GB permanent deformation. 

RDSG = fine-grained subgrade permanent deformation. 

hHMA = thickness of the HMA (inches). 

εp(HMA) = permanent strain of the HMA layer. 

δa(GB)(N) = permanent or plastic deformation for granular material. 

δa(SG)(N) = permanent or plastic deformation for fine-grained materials. 

The initial round of rutting calculation with global calibration factors (local factors set to 1.0) 

was done using the Pavement ME software. Subsequent rutting calculation within the 

optimization framework was done using a simulated approach based on the MEPDG equations to 

save computational time. This process can be done efficiently, since pavement temperature, 

number of axle load repetitions, and elastic strain do not need to be recalculated for each new set 

of local calibration factors. The AASHTOWare® output files that provide the data for the global 

rutting calculation are described in table 25. 

Table 25. AASHTOWare® Pavement ME Design software data files. 

Data Item Software File Data Field/Value 

Layer thickness input.tmp Material thickness 

Water content input.tmp Initial water content  

Local and global calibration factors calibrationfactor.dat HMA rutting (columns 4, 5, 6), 

subgrade rutting (columns 1, 3) 

Cumulative traffic per month TruckGrowth.csv Column 2 

Noncumulative number of trucks in 

each class per month 

TruckGrowthByClass.csv For each class 

Hourly temperature thermal.tmp Column# = Round(0.3681hac + 2.2857, 

0) 

Vertical strain in each subseason 

under each axle type and at different 

horizontal locations under the load 

_VertStrain.txt Strain 

Rutting per layer rut.tmp AC1, GB2, SG3, Total 

𝑅𝐷 = 𝑅𝐷𝐻𝑀𝐴 + 𝑅𝐷𝐺𝐵 + 𝑅𝐷𝑆𝐺 = 𝜀𝑝(𝐻𝑀𝐴)ℎ𝐻𝑀𝐴 + 𝛿𝑎(𝐺𝐵) 𝑁 + 𝛿𝑎(𝑆𝐺) 𝑁  
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Most of the data files generated by the Pavement ME software include data at a monthly 

frequency, except for the thermal.tmp file, which includes hourly pavement layer temperature 

values. It appears that the APADS software is calculating rutting values on a submonthly basis. 

Each “subseason” is one-fifth of the month, which includes one-fifth of the total monthly traffic 

and an average temperature for a 20-percent percentile of a normal distribution generated based 

on hourly temperature data in that month. A normal distribution histogram is generated based on 

hourly temperature data in each month, and the area under the histogram is divided into five 

identical slices. Each slice indicates one subseason, and the centroid of each slice is used as the 

average temperature for that subseason. The software then cumulates the calculated rut depth 

values for the five subseasons in the month to calculate the monthly rutting. The _VertStrain file 

includes vertical strain in each subseason, under each axle type, and at different horizontal 

locations under the load. However, it is not clear which depth (layer) of the pavement structure 

these strain values are calculated for. Since the available data files do not contain adequate 

details on the intermediate pavement response data, it was decided to simulate the software 

output instead of using the documented process in the AASHTO Manual of Practice.(51) 

Note: The simulation process explained here onward is not the same procedure that the 

AASHTOWare® Pavement ME Design software is using to calculate rut depth (according to the 

AASHTO Manual of Practice). The following sections explain the simulation methodology for 

calculating rutting in asphalt bound and unbound pavement layers.  

Simulating Permanent Deformation in Asphalt Concrete Layers 

For better accuracy in simulating the ME software calculations, the permanent deformation in the 

AC layers was assumed to be calculated on an hourly basis instead of a subseason basis. The 

general shape of the rutting prediction model was used to conduct this simulation, assuming 

rutting and traffic to be cumulative values (note that in the original MEPDG equation, this is 

only true if the temperature was constant in this period, as it is in laboratory tests). The hourly 

temperature in each pavement layer is available in the thermal.tmp file. The available cumulative 

monthly traffic and calculated global rutting prediction were transformed linearly to cumulative 

hourly values (which is again an assumption used for this simulation and not necessarily true). 

After this transformation, the hourly strain is backcalculated with equation 35 for the global 

model with local calibration factors equal to 1. This is because the available monthly maximum 

vertical strain data (_VertStrain.txt) for each axle type (single, tandem, tridem, quad) could not 

be attributed to a specific pavement layer and were not readily transformed to hourly values. As 

noted previously, an hourly period is used to achieve better accuracy in simulating the software 

results. 

(35) 
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Where: 

ε
r
j
 = backcalculated resilient or elastic strain for hour j.  

RDg,j = HMA permanent deformation calculated using MEPDG software for global 

calibration factors (g stands for global); the total amount of rutting accumulated up to 

hour j in each month i is calculated (assuming linear increase in rutting within each 

month) using equation 36:  

  (36) 

Where: 

i = month. 

j = hour. 

di = total number of days in the month i. 

Hj = number of hours from the beginning of each month up to hour j. 

For D in equation 2, Dm is used, which is the depth below the surface for each HMA layer m 

calculated using equation 37: 

 (37) 

Where: 

m = HMA layer number from top to bottom. 

k1, k2, k3 = global field calibration parameters.(6) 

k1 = –3.35412, k2 = 1.5606, k3 = 0.4791. 

hHMA = thickness of the HMA sublayer/layer (inches). 

Tj = layer temperature for hour j from thermal.tmp file. 

Nj = number of axle load repetitions up to hour j (assuming linear increase in traffic within 

each month) calculated using equation 38:  

  (38) 

The subsequent monthly rutting calculations for each month i and any different set of calibration 

factors can be done using the above backcalculated hourly strain values in equation 39: 

 (39) 

Where: 

RDHMA,i = total HMA permanent deformation accumulated up to month i. 

βr1, βr2, βr3 = local or mixture field calibration factors. 

This approach was tested through a comparison of the Pavement ME software results with 

various pavement structures and different local calibration factors. Examples for the comparison 

of this simulated calculation to the ME software can be found in appendix C. It should be noted 

that the same approach was used for ATB layers. Figure 16 shows an example comparison of the 

simulated total pavement rutting to the Pavement ME software output. As evident in this figure 
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and similar figures in appendix C, the simulated calculation and the software output follow a 

similar trend. While there are some intermediate decrements in rutting values simulated within 

each month, the total accumulated rutting at the end of each month is very close to the software 

output. The reason for the intermediate decrements (which do not comply with the theory of 

rutting accumulation) is the assumptions made for the simulation, which may not be inherently 

correct. One of those assumptions is that traffic and rutting values are increasing linearly within 

each month, which might not be true. As explained before, the actual subseason pavement 

response data for each layer are not provided by the AASHTOWare® software, and therefore, an 

exact calculation (according to the MEPDG equations) could not be conducted for this project. 

 
Source: FHWA. 

Figure 16. Chart. Example comparison of the simulated calculation to Pavement ME 

software output (on SPS-1 test section 120102). 

Simulating Permanent Deformation in Unbound Materials 

A similar approach was applied for the coarse- and fine-grained unbound layers. The relationship 

between the calculated elastic strain and the laboratory resilient strain is backcalculated for the 

global model using equation 40: 
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  (40) 
 

Where: 

εp = permanent vertical strain. 

εv = vertical resilient or elastic strain in the layer calculated by the structural response model. 

δg,j = permanent or plastic deformation for granular and fine-grained materials calculated by 

the Pavement ME software for the global calibration factors; the total amount of rutting 

accumulated up to hour j in each month i is calculated using equation 41: 

  (41) 

Where: 

k1 = global calibration coefficient. 

k1 = 2.03 for granular materials. 

k1 = 1.35 for fine-grained materials. 

hub = thickness of the unbound layer/sublayer (inches). 

Nj = number of axle load repetitions up to hour j. 

Knowing the initial relationship among permanent and resilient strains and then rutting in each 

unbounded layer with any set of local calibration factors is calculated using equation 42: 

  (42) 

Where: 

δub,,j = permanent or plastic deformation for granular and fine-grained materials accumulated 

up to hour j. 

βs1 = local calibration factor. 

CALCULATION OF THE MULTIPLE OBJECTIVE FUNCTIONS 

In this section, the concept and equations for calculation of each objective function have been 

outlined. These objective functions quantify the multiple sources of information that could be 

combined to enhance model calibration. These multiple objective functions will be optimized 

simultaneously to determine the calibration coefficients that provide a tradeoff among the 

various objectives. 

Several scenarios can be devised for multi-objective formulation of calibration, all of which 

could overcome cognitive challenges and add to our knowledge of this problem. More than one 

set of multiple objectives will be considered to explore new aspects of the calibration problem. 

𝜀𝑝 ,𝑗 = 𝜀𝑣,𝑗  
𝜀0,j

𝜀𝑟 ,𝑗
 =

𝛿𝑔,𝑗

𝑘1 ℎ𝑢𝑏   𝑒
− 

𝜌
𝑁𝑗

 
𝛽

 

 

𝛿𝑔 ,𝑗 = 𝛿𝑎 𝑖−1
+  

𝛿𝑎 𝑖
− 𝛿𝑎 𝑖−1

24𝑑
 𝐻𝑗  

𝛿𝑢𝑏 ,𝑗 = 𝛽𝑠1𝑘1ℎ𝑢𝑏  𝜀𝑝 ,𝑗   𝑒
− 

𝜌
𝑁𝑗

 
𝛽

  



 

66 

The following are the identified approaches and the multiple objective functions that need to be 

simultaneously minimized for each scenario: 

• Scenario 1: Optimizing major statistical outcomes. 

i. SSE, which represents bias (average error) that is an estimate of model accuracy. 

ii. Standard deviation of error (or STE), which represents variation in error that is an 

estimate of model precision. 

• Scenario 2: Combining different sources of data. 

i. SSE on LTPP data. 

ii. STE on LTPP data. 

iii. SSE on FDOT APT data. 

iv. STE on FDOT APT data. 

In the first alternative scenario, mean and standard deviation of prediction error are 

simultaneously minimized to reduce the bias and STE (increase model accuracy and precision) at 

the same time. In this manner, the information from a single calibration run is fully implemented, 

and an additional round of computationally intensive calibration is avoided. This two-objective 

optimization will be separately executed in calibrating rutting models for new AC pavements 

using LTPP SPS-1 Florida site data and overlaid AC pavements using LTPP SPS-5 Florida site 

data. 

In the second scenario, the SSE and STE in predicting permanent deformation of pavements 

within different performance data sources will be used as separate objective functions to be 

minimized simultaneously. This four-objective optimization will be used in calibrating rutting 

models for new AC pavements using the LTPP SPS-1 Florida site data and the FDOT APT data 

at the same time. This scenario will comprise an objective approach to incorporate different 

sources of data. This scenario was not applied to overlaid pavements because the available APT 

data were only for new pavement structures. 

As explained before, when there is no conflict between multiple objectives, they can be 

combined using an engineered weighing scheme, and the problem would change into a single-

objective optimization. However, in the case of the selected objective functions in this study, the 

existence of a conflict cannot be proven theoretically. In the case of the second scenario, the 

sources of data for multiple objective functions are different, and the errors on LTPP and APT 

data may or may not be in conflict. In the case of the first scenario, equations 43 and 44 are the 

expanded expressions for calculating SSE and STE, which are to be minimized. 

  (43) 

 

  (44) 
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Where: 

n = the number of rutting data records. 

Rpi = the predicted (for a specific pavement structure at a specific time) rutting record i. 

Rmi = the corresponding measured rutting record i. 

Equation 45 is an expanded expression for STE from equation 44.  

  (45) 

 

For different sets of calibration factors, the SSE and STE (from equations 43 and 45) could be 

increased or decreased either in the same or the opposite direction of each other. A set of 

calibration factors that results in the minimum SSE does not necessarily guarantee a minimum 

STE. This means that a calibrated model that exhibits higher accuracy (lower SSE) might not 

necessarily have higher precision (lower STE) as well. As it cannot be proven whether the 

selected objective functions are in conflict, they cannot be combined with the goal of simplifying 

the problem into a single-objective optimization. Therefore, a multi-objective optimization 

approach was used. 
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CHAPTER 5. COMPARISON OF MULTI-OBJECTIVE TO SINGLE-OBJECTIVE 

CALIBRATION RESULTS 

INTRODUCTION 

A comprehensive framework was devised for comparison of the multi-objective calibration 

results to the AASHTO recommended single-objective calibration. This comparison framework 

is based on quantitative and qualitative evaluation of the calibrated models.(63) Figure 17 shows 

the different steps within the comparison framework.  

The measured rutting databases for both LTPP and APT were randomly divided into 80 percent 

for calibration and 20 percent for validation. Following the calibration of the models using the 

calibration data, the calibrated prediction models were tested using the validation dataset. 

 
Source: FHWA. 

Figure 17. Flowchart. Framework for comparison of the calibrated performance models. 

For quantitative evaluation, accuracy, precision, and generalization capability of the models are 

assessed using the calibration and validation datasets. To evaluate the accuracy of the multi-

objective approach compared to the conventional single-objective calibration, statistical 

significance testing is required to determine whether the bias between measured and predicted 

performance values is statistically significant before and after each calibration process. 

The bias (average error) is an estimate of the model accuracy, and the STE represents the 

precision of the performance model. According to the AASHTO recommended calibration 
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guidelines, the STE of the calibrated model is compared to the STE from the national global 

calibration to determine its significance.  

Once the models are calibrated, they are validated on a validation dataset to check for the 

reasonableness of performance predictions. This step also provides a measure of the 

generalization capability (repeatability) of the calibrated models. The model that generalizes 

better will be the model that matches measured pavement performance equally well on both the 

validation and the calibration datasets. 

For qualitative evaluation of the calibrated models, scatterplots of measured versus predicted 

performance on the calibration and validation datasets were used. Another qualitative assessment 

could be a sensitivity analysis of the calibrated models to the changes in input variables, which is 

a substantial task and beyond the scope of the current project. The reasonableness of this model 

behavior can be compared between the single-objective and multi-objective calibration methods. 

An additional qualitative evaluation was conducted by comparing the shape of the distribution of 

measured versus predicted pavement performance. Statistical distribution shape descriptors such 

as nonparametric skewness and kurtosis can be used for this purpose. 

Examining the predicted rate of change in performance indices compared to measured 

deterioration trends, a combination of quantitative and qualitative evaluations was implemented 

to compare different calibrated models. 

This comparison of the multi-objective approach to the conventional single-objective method is 

demonstrated in calibrating rutting models for new AC pavements using LTPP SPS-1 Florida 

site data, new AC pavements using FDOT APT data, and overlaid AC pavements using LTPP 

SPS-5 Florida site data. 

SINGLE-OBJECTIVE CALIBRATION RESULTS 

A single-objective calibration according to the AASHTO guidelines was conducted, the results 

of which serve as a comparison baseline. The AASHTO recommended approach includes an  

11-step procedure for “verification,” “calibration,” and “validation” of the MEPDG models for 

local conditions. The verification involves an examination of accuracy and precision of the 

global (nationally calibrated) model on the local dataset.  

Table 26 and table 27 list the important statistics regarding this verification of the rutting models 

for new pavements using Florida SPS-1 site data and overlaid pavements using Florida SPS-5 

site data, respectively. As expected, the results show a significant positive bias and a high 

standard deviation of error because the global model was calibrated based on all LTPP data from 

across North America. The next steps will demonstrate the AASHTO recommended procedure 

for “eliminating” the bias and potentially reducing the STE. 
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Table 26. “Verification” of the global rutting model for new pavements on Florida SPS-1. 

Statistic Calibration Data Validation Data Combined Data 

Data records 128 26 154 

SSE 
11,135.13 mm2  

(17.26 inch2) 

2,396.75 mm2  

(3.72 inch2) 

13,531.88 mm2  

(20.97 inch2) 

RMSE 9.33 mm (0.367 inch) 9.60 mm (0.379 inch) 9.37 mm (0.370 inch) 

Bias +8.05 mm (0.317 inch) +8.34 mm (0.328 inch) +8.10 mm (0.319 inch) 

p value (paired t-test) for 

bias 

5.11E – 39 < 0.05; 

significant bias 

1.28E – 08 < 0.05; 

significant bias 

5.51E – 47 < 0.05; 

significant bias 

STE 4.73 mm (0.186 inch) 4.85 mm (0.191 inch) 4.73 mm (0.186 inch) 

Generalization capability  N/A N/A 96.4% 

R2 (goodness of fit) 0.0391 0.123 0.0487 

RMSE = root-mean-squared error; generalization capability = 100 – normalized difference in bias between the 

calibration and validation datasets. N/A = not applicable. 

Table 27. “Verification” of the global rutting model for overlaid pavements on Florida 

SPS-5. 

Statistic Calibration Data Validation Data Combined Data 

Data records 189 39 228 

SSE 
62,207.04 mm2  

(96.42 inch2) 

11,607.67 mm2  

(17.99 inch2) 

73,814.71 mm2  

(114.41 inch2) 

RMSE 18.14 mm (0.714 inch) 17.25 mm (0.680 inch) 17.99 mm (0.709 inch) 

Bias +16.39 mm (0.645 inch) +15.71 mm (0.618 inch) +16.27 mm (0.640 inch) 

p value (paired t-test) for 

bias 

7.40E – 71 < 0.05; 

significant bias 

1.18E– 15 < 0.05; 

significant bias 

9.78E– 86 < 0.05; 

significant bias 

STE 7.80 mm (0.311 inch) 7.22 mm (0.284 inch) 7.70 mm (0.304 inch) 

Generalization capability  N/A N/A 95.85% 

R2 (goodness of fit) 0.0609 0.0018 0.0504 

N/A = not applicable; RMSE = root-mean-squared error. 

At the seventh step of the 11-step AASHTO recommended calibration procedure, the 

significance of the bias (the average difference between predicted and measured performance) is 

tested. If there is a significant bias in prediction of pavement performance measures, the first 

round of calibration is conducted at the eighth step to eliminate bias. During this step, the SSE is 

minimized by adjusting the βr1, βGB, and βSG calibration factors.  

At the ninth step, the STE (standard deviation of error among the calibration dataset) is evaluated 

by comparing it to the STE from the national global calibration, which was about 0.1 inch. If 

there is a significant STE, the second round of calibration at the tenth step tries to reduce the 

STE by adjusting the βr2 and βr3 calibration factors. A final validation step checks for the 

reasonableness of performance predictions on the validation dataset that has not been used for 

model calibration. 

Global heuristic optimization methods such as EAs could possibly identify a more optimum set 

of calibration coefficients compared to the local exhaustive search methods. That is why in this 

project GA was used for single-objective optimization in calibrating rutting models for new AC 

pavements using the LTPP SPS-1 Florida site data and overlaid AC pavements using the LTPP 

SPS-5 Florida site data.  
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Figure 18 shows a dynamic plot of SSE as the optimization iterations pass by for single-objective 

calibration on Florida SPS-1 data. The optimization is stopped when the SSE for the best 

member of the population does not change more than 1 mm2 for at least 10 consecutive 

generations (in this case, after 34 iterations). 

  
Source: FHWA. 

Figure 18. Chart. Dynamic plot of SSE in single-objective optimization on Florida SPS-1 

data. 

Table 28 lists the important statistics regarding these single-objective calibration results of 

rutting models for new pavements on Florida SPS-1. The final results of the single-objective 

minimization of SSE demonstrate a p value (0.096) greater than 0.05 for a paired t-test of 

measured versus predicted total rut depth on calibration data. Therefore, there is not enough 

evidence to reject the null hypothesis of the bias being insignificant. It seems that the 

continuation of this optimization process will not significantly improve the results (figure 18). 

On the other hand, the p value is much higher (0.47) for the validation dataset, and therefore the 

bias seems to be even less significant on the validation dataset, which was not used for model 

calibration. The negative bias indicates that the calibrated model underpredicts rut depth values 

on average by 0.25 mm, which is insignificant compared to the accuracy of manual rut depth 

measurements that is 1 mm in the LTPP program. 

There seems to be a lack of precision of the calibrated model demonstrated by the high amount 

of scatter in figure 19. However, since the overall STE is lower than the national global 

calibration results (0.068 inch < 0.129 inch), according to AASHTO calibration guidelines, there 

is no need for the second round of optimization to reduce STE. Therefore, the following are the 

selected calibration factors: 
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βr1 = 0.522, βr2 = 1.0, βr3 = 1.0, βGB = 0.011, and βSG = 0.171.  

Table 28. Single-objective calibration results of rutting models for new pavements on 

Florida SPS-1. 

Statistic Calibration Data Validation Data Combined Data 

Data records 128 26 154 

SSE 409.44 mm2 (0.64 inch2) 59.70 mm2 (0.09 inch2) 469.14 mm2 (0.73 inch2) 

RMSE 1.79 mm (0.071 inch) 1.52 mm (0.060 inch) 1.75 mm (0.069 inch) 

Bias –0.26 mm (–0.010 inch) –0.20 mm (–0.008 inch) –0.25 mm (–0.010 inch) 

p value (paired t-test) for 

bias 

0.096 > 0.05; insignificant 

bias 

0.47 > 0.05; insignificant 

bias 

0.072 > 0.05; insignificant 

bias 

STE 1.78 mm (0.070 inch) 1.53 mm (0.060 inch) 1.73 mm (0.068 inch) 

Generalization capability  N/A N/A 70% 

R2 (goodness of fit) 0.1519 0.2553 0.165 

N/A = not applicable; RMSE = root-mean-squared error. 

Figure 19 and figure 20 show scatterplots of the measured versus predicted total rut depth on 

calibration (128 records) and validation (26 records) datasets, respectively, for Florida SPS-1. 

The measured rut depth data are discrete values at every 1 mm (the plots show 0.5 mm because 

the rut depth values are averaged between the left and right wheelpaths), while the predicted rut 

depth data are continuous values. Even though the bias and the STE are relatively low on both 

the calibration and validation datasets, there is a significant amount of scatter in these plots, and 

the goodness-of-fit indicator (R2) is poor. This scatter could perhaps be due to two reasons. First 

and foremost, the calibrated model does not exhibit adequate precision. This could be tracked 

back to the lack of precision of the global model. Second, there is a high degree of variation 

(perhaps due to construction quality and environmental variability) in measured rut depths along 

each pavement section (and between the two wheelpaths) at each distress survey, while the 

model can only produce one value (for 50 percent reliability) for each pavement section at each 

specified time. This could add to the scatter observed in these plots.  
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Source: FHWA. 

Figure 19. Scatterplot. Measured versus predicted single-objective calibration results of 

rutting models for new pavements on calibration dataset for Florida SPS-1. 
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Source: FHWA. 

Figure 20. Scatterplot. Measured versus predicted single-objective calibration results of 

rutting models for new pavements on validation dataset for Florida SPS-1. 

Figure 21 shows a dynamic plot of SSE as the optimization iterations pass by for single-objective 

calibration on Florida SPS-5 data. The optimization is stopped when the SSE for the best 

member of the population does not change more than 1 mm2 for at least 10 consecutive 

generations (in this case, after 36 iterations). 
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Source: FHWA. 

Figure 21. Chart. Dynamic plot of SSE in single-objective optimization on Florida SPS-5 

data. 

Table 29 lists the important statistics regarding these single-objective calibration results of 

rutting models for overlaid pavements on Florida SPS-5. The final results of the single-objective 

minimization of SSE demonstrate a low p value (0.0005) for a paired t-test of measured versus 

predicted total rut depth on calibration data. Therefore, the null hypothesis of the bias being 

insignificant has been rejected. However, it seems that the continuation of this optimization 

process will not significantly improve the results (figure 21). The p value is higher (0.013) for 

the validation dataset, but the bias is still significant on the validation dataset as well. 

Table 29. Single-objective calibration results of rutting models for overlaid pavements on 

Florida SPS-5. 

Statistic Calibration Data Validation Data Combined Data 

Data records 189 39 228 

SSE 820.24 mm2 (1.27 inch2) 128.37 mm2 (0.20 inch2) 948.61 mm2 (1.47 inch2) 

RMSE 2.08 mm (0.082 inch) 1.81 mm (0.071 inch) 2.04 mm (0.080 inch) 

Bias –0.53 mm (–0.021 inch) –0.72 mm (–0.028 inch) –0.56 mm (–0.022 inch) 

p value (paired t-test) for 

bias 

0.0005 < 0.05; 

significant bias 

0.013 < 0.05; significant 

bias 

3.18E-05 < 0.05; 

significant bias 

STE 2.02 mm (0.080 inch) 1.69 mm (0.066 inch) 1.97 mm (0.078 inch) 

Generalization capability  N/A N/A 64.15% 

R2 (goodness of fit) 0.1196 0.0213 0.1073 

N/A = not applicable; RMSE = root-mean-squared error. 



 

77 

Since the overall STE is lower than the national global calibration results (0.078 inch <  

0.129 inch), according to AASHTO calibration guidelines, there is no need for the second round 

of optimization to reduce STE. Therefore, the following are the selected calibration factors: 

βr1 = 0.5004, βr2 = 1.0, βr3 = 1.0, βGB = 0.0738, and βSG = 0.1554. 

Figure 22 and figure 23 show scatterplots of the measured versus predicted total rut depth on 

calibration (189 records) and validation (39 records) datasets, respectively, for Florida SPS-5. 

Similar to the results on SPS-1 data, there is a significant amount of scatter in these plots, and the 

goodness-of-fit indicator (R2) is poor. The negative bias indicates that the calibrated model 

underpredicts rut depth values on average by 0.56 mm. While this bias is statistically significant, 

it is low compared to the accuracy of manual rut depth measurements, which is 1 mm in the 

LTPP program.  

 
Source: FHWA. 

Figure 22. Scatterplot. Measured versus predicted single-objective calibration results of 

rutting models for overlaid pavements on calibration dataset for Florida SPS-5. 
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Source: FHWA. 

Figure 23. Scatterplot. Measured versus predicted single-objective calibration results of 

rutting models for overlaid pavements on validation dataset for Florida SPS-5. 

MULTI-OBJECTIVE CALIBRATION RESULTS 

As discussed in chapter 4, several scenarios can be devised for multi-objective formulation of 

calibration, all of which could overcome cognitive challenges and add to our knowledge of this 

problem. The following sections demonstrate the results of the two considered scenarios—the 

first for simultaneous utilization of multiple statistical data in the calibration process, and the 

second for objective incorporation of data from multiple disparate sources. Note that in the 

multi-objective calibration approaches, unlike the single-objective calibration, all of the involved 

calibration factors are evolved to determine the suitable factors. 

The general goal of any multi-objective optimization is to identify the Pareto-optimal tradeoffs 

between multiple objectives. A Pareto-optimal tradeoff identifies the best compensation among 

the multiple conflicting objectives. The solutions presented on the Pareto-optimal front are 

nondominated solutions. A solution X1 is called dominated if, and only if, another feasible 

solution X2 performs better than X1 in terms of at least one objective and as well as X1 in terms 

of others. A set of nondominated solutions is called the nondominated or Pareto-optimal front. 

This nondominated solution set might contain information that advances knowledge of the 

problem at hand.  
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The final solution can be selected from the set using engineering judgment and/or other 

qualitative criteria. Statistical distribution shape descriptors (skewness and kurtosis) can be used 

in conjunction with engineering judgment to better match the distribution of measured and 

calculated rutting data on LTPP test sections. Difference in nonparametric skew (as calculated 

using equation 46) between the distributions of measured and calculated rutting values could be 

one of the criteria used to select the final solution among the nondominated pool of solutions. 

Skewness quantifies how symmetrical the distribution is.  

  (46) 

Where: 

NPS = non-parametric skewness. 

μ = mean. 

ν = median. 

σ = standard deviation. 

Another criterion is the difference in kurtosis (as calculated using equation 47) between the 

distributions of measured and calculated rutting values. Kurtosis quantifies whether the shape of 

the data distribution matches the Gaussian distribution. A flatter distribution has a negative 

kurtosis, and a distribution more peaked than a Gaussian distribution has a positive kurtosis. 

  (47) 

Scenario 1: Optimizing Major Statistical Outcomes (Two-Objective) 

In the first alternative scenario, mean and standard deviation of prediction error were 

simultaneously minimized to reduce the bias and STE (increase model accuracy and precision) at 

the same time. In this manner, the information from a single calibration run was fully 

implemented, and an additional round of computationally intensive calibration was avoided. 

Figure 24 presents the final Pareto-optimal front showing the nondominated solutions in terms of 

SSE and STE for the SPS-1 data. As explained in chapter 4, it cannot be proven whether the 

selected objective functions are in conflict. In other words, decreasing SSE might not necessarily 

decrease STE. As shown in this graph, the results of this specific optimization indicate that 

decreasing one objective might result in increasing the other. Since the two objectives of 

minimizing bias (increasing accuracy) and minimizing STE (increasing precision) seem to be 

conflicting objectives in this case, the application of a multi-objective optimization algorithm is 

justified. This means that a final calibrated model that exhibits higher accuracy might not 

necessarily have higher precision as well. In this specific case, the difference in STE is not 

significant among the different solutions. 

𝑁𝑃𝑆 =
𝜇 − 𝜈

𝜎
 

𝜅 =
  𝑌𝑖 − 𝜇 4𝑛

𝑖=1

𝑛𝜎4
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Source: FHWA. 

Figure 24. Scatterplot. The final nondominated solution set for two-objective calibration of 

rutting models for new pavements on Florida LTPP SPS-1 data. 

All the solutions on this nondominated front are valid solutions in terms of the mathematical 

optimization problem at hand. This is because no solution is better than another solution in terms 

of all objective functions. A solution might perform better than another in terms of one objective 

function (e.g., higher accuracy), but it will be performing worse in terms of the other objective 

function (e.g., lower precision). However, qualitative criteria and engineering judgment could be 

practiced when selecting the most reasonable solution from this front.  

Table 30 shows two of the candidate solutions on the final nondominated front for SPS-1 data 

(figure 24). These solutions have the minimum difference in skewness and kurtosis between the 

predicted and measured rutting values. Based on these results, the solution with minimum 

skewness difference seems to be the suitable solution, as its difference in kurtosis is not much 

higher than the solution with minimum kurtosis difference: 

βr1 = 0.54, βr2 = 0.79, βr3 = 1.16, βGB = 0.01, and βSG = 0.09. 
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Table 30. Candidate solutions from the two-objective nondominated front for SPS-1, with 

minimum difference in skewness and kurtosis between predicted and measured 

distributions. 

Candidate 

Solutions βr1 βr2 βr3 βGB βSG 
SSE 

(mm2) 

STE 

(mm) 

Skewness 

Difference 

(%) 

Kurtosis 

Difference 

(%) 

Minimum 

difference 

in 

skewness 

0.5357 0.7945 1.1652 0.0102 0.0870 494.19 1.66 43.27 34.48 

Minimum 

difference 

in kurtosis 

0.5224 0.8152 1.1548 0.0101 0.0118 617.18 1.79 55.40 33.18 

 

It should be noted that this solution (highlighted in figure 24) also provides a more reasonable 

(farther from zero) calibration factor for the subgrade rutting, compared to the single-objective 

calibration results. The calibration factor for rutting in the base layer seems insignificant, but all 

the solutions on the nondominated front shared this issue. Since trench data were not available 

for this study, the models could not be calibrated accurately for the rutting in unbound layers, as 

they are often overwhelmed by bound layers with higher stiffness.  

The final results in table 31 demonstrate a low p value for a paired t-test of measured versus 

predicted total rut depth on the calibration dataset. Therefore, the null hypothesis of the bias 

being insignificant has been rejected. The p value is higher for the validation dataset (0.001), but 

the bias is still significant on the validation dataset as well. The negative bias indicates that the 

calibrated model underpredicts rut depth values on average by 1.05 mm, which is at the same 

accuracy of manual rut depth measurements that is 1 mm in the LTPP program. 

Table 31. Two-objective calibration results of rutting models for new pavements on Florida 

SPS-1. 

Statistic Calibration Data Validation Data Combined Data 

Data records 128 26 154 

SSE 494.19 mm2 (0.77 inch2) 72.41 mm2 (0.11 inch2) 566.60 mm2 |(0.88 inch2) 

RMSE 1.96 mm (0.077 inch) 1.67 mm (0.066 inch) 1.92 mm (0.076 inch) 

Bias –1.06 mm (–0.042 inch) –1.01 mm (–0.040 inch) –1.05 mm (–0.041 inch) 

p value (paired t-test) for 

bias 

4.56E-11 < 0.05; 

significant bias 

0.001 < 0.05; significant 

bias 

1.68E-13 < 0.05; 

significant bias 

STE 1.66 mm (0.065 inch) 1.36 mm (0.054 inch) 1.61 mm (0.063 inch) 

Generalization capability  N/A N/A 95.28% 

R2 (goodness of fit) 0.1778 0.3067 0.194 

N/A = not applicable; RMSE = root-mean-squared error. 

In comparison to the single-objective calibration results, the two-objective calibration has 

resulted in lower accuracy (a higher bias), but higher precision (a lower STE), of the final model 

on both the calibration and validation datasets. This is because the standard deviation of error 

was also minimized simultaneously with the SSE. In addition to an increased precision, the other 

improvement is the generalization capability of the calibrated model. The model that was 

calibrated using two-objective optimization had more similar bias values on calibration and 

validation data, compared to the single-objective results. 
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Figure 25 and figure 26 show scatterplots of the measured versus predicted total rut depth on 

calibration (128 records) and validation (26 records) datasets, respectively, for Florida SPS-1. 

Similar to the single-objective calibration results, there is a significant amount of scatter in these 

plots, and the goodness-of-fit indicator (R2) is poor. As explained before, this scatter indicates 

the lack of precision of the rutting model. However, the overall STE is lower than the national 

global calibration results (0.063 inch < 0.129 inch). 

Overall, it seems that the two-objective optimization has increased the precision and 

generalization capability of the final calibrated model at the cost of decreasing accuracy. Since 

the changes in the results are not significant, conducting scenario 1 of the multi-objective 

optimization might not be worth the computational cost.  

 
Source: FHWA. 

Figure 25. Scatterplot. Measured versus predicted two-objective calibration results of 

rutting models for new pavements on calibration dataset for Florida SPS-1. 
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Source: FHWA. 

Figure 26. Scatterplot. Measured versus predicted two-objective calibration results of 

rutting models for new pavements on validation dataset for Florida SPS-1. 

From the two-objective Pareto-optimal front on SPS-1 (figure 24), it seems that using an epsilon 

parameter (MOEA precision factor) of 0.1 was too conservative and has produced too many 

solutions with similar objective function values. A higher epsilon value (equal to 1.0 instead of 

0.1) was used for the two-objective calibration on SPS-5 data, and that has increased the speed 

and efficiency of the multi-objective optimization drastically (by about 70 percent). Figure 27 

shows the final Pareto-optimal front showing the nondominated solutions in terms of SSE and 

STE for the SPS-5 data.  

Again, the skewness and kurtosis of the predicted rutting distribution with every solution on the 

nondominated front were calculated and compared to the measured values (table 32). From these 

calculations, it is evident that one of the solutions on the final front produces rutting predictions 

that have the lowest difference in distribution skewness and kurtosis from the distribution of 

measured rut depth values. However, there is another similar solution (in bold font) that has 

resulted in the most reasonable calibration factor for the subgrade rutting. The final selected 

solution is also highlighted in figure 27. 
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Source: FHWA. 

Figure 27. Scatterplot. The final nondominated solution set for two-objective calibration of 

rutting models for overlaid pavements on Florida LTPP SPS-5 data. 

Table 32. Solutions from the two-objective nondominated front for SPS-5, with difference 

in skewness and kurtosis between predicted and measured data distributions. 

Candidate 

Solutions βr1 βr2 βr3 βGB βSG SSE (mm2) 

STE 

(mm) 

Skewness 

Difference 

(%) 

Kurtosis 

Difference 

(%) 

Other viable 

solution 

1.8778 0.7588 0.5071 0.4438 0.0226 1,188.72 1.49 52.33 19.48 

Other viable 

solution 

2.1152 0.9602 0.5071 0.4405 0.0246 1,070.47 1.51 58.65 29.54 

Other viable 

solution 

2.1152 0.9602 0.5071 0.5877 0.0246 744.75 1.63 61.78 25.72 

Other viable 

solution 

2.1185 0.9939 0.5069 0.4370 0.0256 1,039.45 1.52 51.96 33.24 

Other viable 

solution 

2.1185 0.9939 0.5069 0.4746 0.0225 961.70 1.54 59.60 31.58 

Minimum 

skewness and 

kurtosis 

difference 

2.9712 0.7589 0.5071 0.5877 0.0253 787.72 1.61 51.89 19.28 

Other viable 

solution 

2.9838 0.7589 0.5071 0.5877 0.0540 671.14 1.66 56.40 22.83 

Other viable 

solution 

2.9844 0.7589 0.5071 0.5877 0.0887 541.80 1.64 53.49 25.64 

Other viable 

solution 

2.9844 0.9599 0.5071 0.5877 0.0500 643.39 1.70 56.25 31.35 
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The final selected solution seems to have reasonable calibration factors for base and subgrade 

rutting: βr1 = 2.98, βr2 = 0.76, βr3 = 0.51, βGB = 0.59, and βSG = 0.09. Table 33 shows the 

prediction results of this final solution on SPS-5 calibration and validation datasets. While the 

low bias value of –0.44 mm is much less than the LTPP measurement precision of 1 mm, the 

bias is statistically significant on the calibration dataset. However, the bias is statistically 

insignificant on the validation dataset that was not used in the calibration process.  

Table 33. Two-objective calibration results of rutting models for overlaid pavements on 

Florida SPS-5. 

Statistic Calibration Data Validation Data Combined Data 

Data records 189 39 228 

SSE 541.80 mm2 (0.84 inch2) 91.65 mm2 (0.14 inch2) 633.45 mm2 (0.98 inch2) 

RMSE 1.69 mm (0.066 inch) 1.53 mm (0.060 inch) 1.67mm (0.066 inch) 

Bias –0.44 mm (–0.017 inch) –0.47 mm (–0.018 inch) –0.45 mm (–0.018 inch) 

p value (paired t-test) for 

bias 

0.0003 < 0.05; significant 

bias 

0.051 > 0.05; insignificant 

bias 

4.16E-05 < 0.05; 

significant bias 

STE 1.64 mm (0.065 inch) 1.48 mm (0.058 inch) 1.61 mm (0.063 inch) 

Generalization capability  N/A N/A 93.18% 

R2 (goodness of fit) 0.0427 0.0013 0.0348 

N/A = not applicable; RMSE = root-mean-squared error. 

Figure 28 and figure 29 show scatterplots of the measured versus predicted total rut depth on 

calibration (189 records) and validation (39 records) datasets, respectively, for Florida SPS-5. 

Similar to the single-objective calibration, there is significant scatter in these plots. However, the 

standard deviation of error is lower for the model that was calibrated using the two-objective 

approach compared to the single-objective approach. The overall standard deviation of error is 

much lower than the STE from the national global calibration (0.063 < 0.129). 

Compared to the single-objective calibration, the rutting model for overlaid pavements (SPS-5) 

that was calibrated using the two-objective approach shows both a higher accuracy and higher 

precision. In addition, the two-objective calibration has resulted in a model with much greater 

generalization capability. 
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Source: FHWA. 

Figure 28. Scatterplot. Measured versus predicted two-objective calibration results of 

rutting models for overlaid pavements on calibration dataset for Florida SPS-5. 
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Source: FHWA. 

Figure 29. Scatterplot. Measured versus predicted two-objective calibration results of 

rutting models for overlaid pavements on validation dataset for Florida SPS-5. 

Scenario 2: Combining Different Sources of Data (Four-Objective) 

In the second scenario, the SSE and STE in predicting permanent deformation of pavements 

within different performance data sources were used as separate objective functions to be 

minimized simultaneously. This four-objective optimization was used in calibrating rutting 

models for new AC pavements using the LTPP SPS-1 Florida site data and the FDOT APT data 

at the same time. In this manner, information from pavement performance near the end of its 

service life can be incorporated in the calibration process. This scenario comprised an objective 

approach to incorporate different sources of data. This scenario was not applied to overlaid 

pavements because the available APT data were only for new pavement structures. 

Figure 30 shows the Pareto-optimal front for the four-objective calibration of the rutting models 

for new pavements using SPS-1 and APT data, simultaneously. In this figure, F1 and F2 are SSE 
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and STE on Florida LTPP SPS-1 data, and F3 and F4 are SSE and STE on FDOT APT data. 

While F1, F2, and F3 are indicated on the three dimensions, the values for F4 are indicated using 

a color chart, where lower values are closer to lighter gray. Figure 31 shows another approach to 

visualizing the final nondominated front for this four-objective optimization. In this figure, root-

mean-squared error (RMSE) is shown instead of SSE so that the values of the average error 

objective functions (F1 and F3) are relatively in the same scale and comparable with standard 

deviation functions (F2 and F4). Unlike figure 30, where each solution (set of calibration factors) 

was indicated using a circle, in figure 31, each solution is represented by a line that crosses the 

objective function axes at different locations.  

Figure 32 and figure 33 exhibit two-dimensional representations of the final Pareto-optimal front 

using pairwise comparison of SSE and STE, respectively. Each figure compares the average 

error or standard deviation of error on SPS-1 data to that on APT data. Note that some solutions 

on these fronts might seem suboptimal; however, that is because these figures are showing a two-

dimensional shadow of the final four-dimensional nondominated front on one plane. Also note 

that there is a crowd of solutions on these fronts because an epsilon value of 0.1 was used; an 

epsilon value of 1.0 would result in a more reasonable density of solutions in the final front. 

Similar to the first multi-objective calibration scenario, these figures show a conflict between the 

F1 and F3 and F2 and F4 objective functions, which advocates for the application of multi-

objective optimization. The advantage of using the multi-objective approach in this case is that 

solutions closer to the performance measured on SPS-1 sections can be preferred over other 

solutions closer to the performance observed in APT data. This is because the LTPP sections are 

actual in-service highway pavements exposed to actual climate and traffic, as opposed to APT 

sections, which have been exposed to simulated accelerated loading under a constant 

temperature.  
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Source: FHWA. 

Figure 30. Scatterplot. The final nondominated solution set for four-objective calibration of 

rutting models for new pavements: F1 and F2 are SSE and STE on Florida LTPP SPS-1 

data, and F3 and F4 are SSE and STE on FDOT APT data. 
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Source: FHWA. 

Figure 31. Chart. The final nondominated solution set for four-objective calibration of 

rutting models for new pavements: RMSE and STE on Florida SPS-1 and FDOT APT 

data. 
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Source: FHWA. 

Figure 32. Scatterplot. Two-dimensional representation of the final nondominated solution 

set for four-objective calibration: SSE on Florida LTPP SPS-1 versus SSE on FDOT APT 

data. 
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Source: FHWA. 

Figure 33. Scatterplot. Two-dimensional representation of the final nondominated solution 

set for four-objective calibration: STE on Florida LTPP SPS-1 versus STE on FDOT APT 

data. 

Table 34 shows some viable candidate solutions from the final nondominated front. The solution 

that has the minimum difference in kurtosis between the predicted and measured SPS-1 data is 

exhibiting a high difference in skewness. Therefore, other candidates with a better balance were 

sought. Some solutions show a very low value for the calibration factors for either base or 

subgrade, and those solutions were avoided. Therefore, it seems that the solution with the 

minimum difference in kurtosis is the best candidate, as it exhibits reasonable calibration factors 

with relatively good quality distribution of predicted values (in addition to being on the final 

nondominated front of the multi-objective optimization). Note that this solution offers more 

reasonable calibration factors for base and subgrade layers compared to the solutions on the 

single-objective and two-objective calibration (where all of the solutions had insignificant values 

for the calibration coefficient of the base layer): 

βr1 = 3.84, βr2 = 0.96, βr3 = 0.56, βGB = 0.14, and βSG = 0.79.  
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Table 34. Candidate solutions from the four-objective nondominated front with difference 

in skewness and kurtosis between the predicted and measured data distributions. 

Candidate 

Solutions βr1 βr2 βr3 βGB βSG 

On LTPP 

Data 

SSE 

(mm2) 

On 

LTPP 

Data 

STE 

(mm) 

Skewness 

Difference 

(%) 

Kurtosis 

Difference 

(%) 

Minimum 

difference 

in kurtosis 

3.8397 0.9549 0.5625 0.1377 0.7861 539.53 2.05 105.03 29.52 

Minimum 

difference 

in 

skewness 

3.8476 0.6471 0.8332 1.4298 0.4571 1,288.64 3.03 11.41 53.79 

Other 

viable 

solution 

1.2356 0.6223 0.7848 0.7718 0.7178 893.73 2.64 30.82 44.60 

Other 

viable 

solution 

6.2883 0.5961 0.9930 0.0104 0.5231 736.54 2.27 139.10 35.43 

Other 

viable 

solution 

1.0952 1.4996 0.5051 1.3954 0.0140 2,354.96 3.99 58.50 52.62 

Other 

viable 

solution 

1.0952 1.4559 0.5016 0.0560 0.0189 823.28 2.28 151.96 41.42 

Other 

viable 

solution 

0.9257 0.8089 1.0421 0.0206 0.1975 1,090.185 1.87 139.77 38.17 

 

The final results in table 35 demonstrate a high p value for a paired t-test of measured versus 

predicted total rut depth on both calibration and validation datasets (0.18 and 0.51, respectively). 

Therefore, there is not enough evidence to reject the null hypothesis of the bias being 

insignificant. The negative bias indicates that the calibrated model underpredicts rut depth values 

on average by 0.28 mm, which is insignificant compared to the accuracy of manual rut depth 

measurements that is 1 mm in the LTPP program. 

Based on the final selected solution, figure 34 and figure 35 show the measured versus predicted 

total rut depth on Florida SPS-1 calibration and validation datasets, respectively. Similar to the 

single-objective and two-objective calibration results, there is a significant amount of scatter in 

these plots, and the goodness-of-fit indicator (R2) is poor. As explained before, this scatter 

indicates the lack of precision of the rutting model. However, the overall STE is lower than the 

national global calibration results (0.078 inch < 0.129 inch). 
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Table 35. Four-objective calibration results of rutting models for new pavements on 

Florida SPS-1 data. 

Statistic Calibration Data Validation Data Combined Data 

Data records 128 26 154 

SSE 539.53 mm2 (0.84 inch2) 71.13 mm2 (0.11 inch2) 610.66 mm2 (0.95 inch2) 

RMSE 2.05 mm (0.081 inch) 1.65 mm (0.065 inch) 1.99 mm (0.078 inch) 

Bias –0.24 mm (–0.009 inch) –0.24 mm (–0.009 inch) –0.24 mm (–0.009 inch) 

p value (paired t-test) for 

bias 

0.18 > 0.05; insignificant 

bias 

0.51 > 0.05; insignificant 

bias 

0.125 > 0.05; insignificant 

bias 

STE 2.05 mm (0.081 inch) 1.67 mm (0.066 inch) 1.98 mm (0.078 inch) 

Generalization capability  N/A N/A 100% 

R2 (goodness of fit) 0.0263 0.1478 0.0382 

N/A = not applicable. 

 

In comparison to the single-objective calibration results, the four-objective calibration has 

resulted in increased accuracy (lower bias and even higher p value), but lower precision (a higher 

STE), of the final model on both the calibration and validation datasets. This is because the four-

objective scenario has included APT data in addition to the LTPP data, which are different in 

nature. The main improvement in the results of four-objective calibration compared to single-

objective calibration is the increased generalization capability of the calibrated model. The 

model that was calibrated using four-objective optimization had more similar bias values on 

calibration and validation data, compared to the single-objective results. 

While the four-objective calibration results are not superior to the single-objective results in 

terms of precision, the simultaneous minimization of error on both LTPP and APT data has 

actually resulted in higher accuracy and generalization capability of the calibrated model. 
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Source: FHWA. 

Figure 34. Scatterplot. Measured versus predicted four-objective calibration results of 

rutting models for new pavements on calibration dataset for Florida SPS-1. 
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Source: FHWA. 

Figure 35. Scatterplot. Measured versus predicted four-objective calibration results of 

rutting models for new pavements on validation dataset for Florida SPS-1. 

COMPARISON OF RESULTS 

To investigate the advantages of the novel calibration approach recommended in this study, the 

final single-objective and multi-objective calibrated models were compared through a 

comprehensive framework. This framework (figure 17) includes quantitative measures of 

accuracy, precision, and generalization capability. A model that has high accuracy and precision 

might not necessarily have an adequate generalization capability, meaning that it would not be 

able to reproduce the same accuracy when predicting the performance on other similar test 

sections. The employed qualitative measures include the goodness of fit and similarity of the 

distribution shape between measured and predicted performance. The quality of the solutions 

needs to be also examined in terms of the engineering reasonableness of the selected calibration 

factors. Finally, a combination of quantitative and qualitative criteria is used by comparing the 
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performance trends prediction. The capability of the final calibrated model in predicting future 

performance trends is an essential feature for pavement design and therefore a significant 

indicator of the quality of the developed model. 

Quantitative Comparison 

Figure 36 shows a comparison of the quantitative criteria among the single-objective, two-

objective, and four-objective calibrated models for rutting in new pavements on combined 

(calibration and validation) SPS-1 data. 

 
Source: FHWA. 

Figure 36. Bar chart. Comparison of the quantitative criteria for the calibrated rutting 

models on SPS-1. 

It is evident in this figure that the incorporation of the APT data in calibration of rutting models 

on LTPP SPS-1 data has led to a model with the lowest bias (and least significant) and the 

highest generalization capability. On the other hand, the two-objective minimization of SSE and 

STE has resulted in the lowest STE (highest precision), but a significant bias (low accuracy). 

Figure 37 shows a comparison of the quantitative criteria between the single-objective and two-

objective calibrated models for rutting in overlaid pavements on combined (calibration and 

validation) SPS-5 data. There were no APT data available for this calibration of rutting models 

for overlaid pavements. Unlike the case in calibration on SPS-1 data, the two-objective 

calibration on SPS-5 data has resulted in both an increase in accuracy (lower bias but still 

significant), an increase in precision (lower STE), and an increase in generalization capability of 

the rutting model compared to single-objective calibration.  
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Source: FHWA. 

Figure 37. Bar chart. Comparison of the quantitative criteria for the calibrated rutting 

models on SPS-5. 

Qualitative Comparison 

A model that exhibits the best quantitative results might not necessarily show the most desirable 

qualitative performance. Figure 38 shows a comparison of the qualitative criteria among the 

single-objective, two-objective, and four-objective calibrated models for rutting in new 

pavements on combined (calibration and validation) SPS-1 data. The two-objective results show 

the best goodness of fit, but as explained before, there is a lack of precision of the mechanistic 

model, and all of the calibration approaches resulted in significant scatter. The single-objective 

results have the least difference in skewness between the distributions of measured and predicted 

rutting. The four-objective results show the least difference in kurtosis (flatness) between the 

distributions of measured and predicted rutting. 
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Source: FHWA. 

Figure 38. Bar chart. Comparison of the qualitative criteria for the calibrated rutting 

models on SPS-1. 

Figure 39 shows a comparison of the qualitative criteria between the single-objective and two-

objective calibrated models for rutting in overlaid pavements on combined (calibration and 

validation) SPS-5 data. The single-objective results show the best goodness of fit and the lowest 

skewness difference between measured and predicted data. The two-objective results show the 

least difference in kurtosis (flatness) between the distributions of measured and predicted rutting. 

 
Source: FHWA. 

Figure 39. Bar chart. Comparison of the qualitative criteria for the calibrated rutting 

models on SPS-5. 
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In all cases, using the multi-objective approach has resulted in predicted rutting distributions that 

are more similar in flatness to the measured rutting distributions. 

Table 36 shows the final selected calibration factors. It is evident that the calibration factors 

selected for the rutting in base and subgrade layers were insignificant in single-objective 

calibration. However, the multi-objective calibration has resulted in more reasonable calibration 

factors for rutting in unbound layers. 

Table 36. Final selected calibration factors. 

Model βr1 βr2 βr3 βGB βSG 

New pavement (SPS-1) global 1.0 1.0 1.0 1.0 1.0 

New pavement (SPS-1) single-objective 0.522 1.0 1.0 0.011 0.171 

New pavement (SPS-1) two-objective 0.536 0.795 1.165 0.010 0.087 

New pavement (SPS-1) four-objective 3.840 0.955 0.563 0.138 0.786 

Overlaid pavement (SPS-5) global 1.0 1.0 1.0 1.0 1.0 

Overlaid pavement (SPS-5) single-objective 0.500 1.0 1.0 0.074 0.155 

Overlaid pavement (SPS-5) two-objective 2.984 0.759 0.507 0.588 0.089 

 

Quantitative and Qualitative Comparison 

To combine the quantitative and qualitative success metrics of a performance prediction model, 

the average absolute error (AAE) of the calibrated models in predicting the rate of change in 

pavement rutting was calculated. The rate of change in rut depth was estimated using measured 

data and by dividing the change in rutting by the amount of time (months) passed. Only the 

positive rates were considered in this investigation. Table 37 shows the AAE of the calibrated 

models in predicting the rate of change in pavement rutting. While the two-objective calibration 

on SPS-5 data has significantly improved the prediction of rutting deterioration rates compared 

to single-objective calibration, the multi-objective calibration results on SPS-1 do not exhibit the 

same quality. This investigation reveals that simply evaluating the bias and STE is not adequate 

for a comprehensive evaluation of performance prediction models. 

Table 37. AAE of calibrated models in predicting the rutting deterioration rates. 

Model 

AAE in Predicting the Rate of Change in 

Rutting (%) 

New pavement (SPS-1) single-objective 51.93 

New pavement (SPS-1) two-objective 60.53 

New pavement (SPS-1) four-objective 79.47 

Overlaid pavement (SPS-5) single-objective 100.81 

Overlaid pavement (SPS-5) Two-objective 66.26 

 

To visualize these deterioration trends, figure 40 and figure 41 demonstrate the measured and 

predicted rut depth trends on sample test sections of the Florida SPS-1 and SPS-5 sites, 

respectively. It is evident that on the SPS-1 test section 120108, the two-objective and four-

objective calibrations have predicted deterioration trends that are closer to the monitored 

performance, compared to single-objective calibration results. It should be noted that the 

predicted rutting data are from the simulated calculations (see chapter 4 for the description of the 

simulated calculations), and that is why a rutting decrement is observed for the model predictions 
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from the two-objective calibration around the 100th month. The trends on SPS-5 reveal that the 

two-objective calibration has predicted deterioration trends that better match the measured 

values, compared to single-objective calibration results. 

 
Source: FHWA. 

Figure 40. Chart. Predicted and measured rutting deterioration on FL SPS-1 section 

120108. 
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Source: FHWA. 

Figure 41. Chart. Predicted and measured rutting deterioration on FL SPS-5 section 

120509. 
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CHAPTER 6. SUMMARY OF FINDINGS AND RECOMMENDATIONS 

SUMMARY OF FINDINGS 

This report presented the results of an FHWA LTPP data analysis project with the objective of 

using multi-objective optimization to enhance calibration of the MEPDG performance models. 

The AASHTO recommended single-objective calibration approach was conducted on the 

MEPDG rutting models for new pavements using the Florida SPS-1 data and overlaid pavements 

using the Florida SPS-5 data. In the first alternative scenario for multi-objective calibration, SSE 

and standard deviation of prediction error were simultaneously minimized to reduce the bias and 

STE (increase model accuracy and precision) at the same time. In the second scenario, the SSE 

and STE in predicting permanent deformation of SPS-1 and FDOT APT pavement structures 

were used as separate objective functions to be minimized simultaneously. 

Although there was no fundamental way to prove whether there was a theoretical conflict 

between the selected objective functions, the shape of the final nondominated front indicated that 

the selected objective functions conflicted with one another, and therefore, the application of a 

multi-objective optimization approach was justified. In the first multi-objective calibration 

scenario, the simultaneous minimization of bias and STE resulted in calibrated models that had 

higher precision (lower STE) and higher generalization capability (lower difference in bias 

between calibration and validation data), compared to the single-objective calibration. While this 

scenario was more successful in calibration of rutting models for overlaid pavements on Florida 

SPS-5 data, it did not result in desirable accuracy levels for rutting models on new pavements 

using Florida SPS-1 data. The results of the second multi-objective scenario demonstrated that 

incorporation of the disparate source of performance data (FDOT APT data) as a separate 

objective function has significantly improved the prediction accuracy, precision, and 

generalization capability of the calibrated rutting model on SPS-1 data.  

The qualitative comparison of the calibrated models showed that using the multi-objective 

approach has resulted in predicted rutting distributions that are more similar in flatness (kurtosis) 

to the measured rutting distributions. However, the same was not true about skewness. The low 

goodness-of-fit indicator for scatterplots of predicted versus measured rutting in the case of all 

calibration approaches reveals that the MEPDG rutting models have an inherent lack of precision 

that might not be addressed with the calibration process. This is perhaps because the variability 

in pavement materials has not been captured in these models. The final selected calibration 

factors for rutting in unbound pavement layers (base and subgrade) were more reasonable in the 

multi-objective approach, compared to insignificant values achieved through single-objective 

calibration. Once again, this possibility of applying engineering judgment demonstrates the value 

of the multi-objective calibration in providing a final pool of solutions to choose from. 

To combine the quantitative and qualitative success metrics of a performance prediction model, 

the measured and predicted rutting deterioration trends were examined. While the two-objective 

calibration on SPS-5 data had significantly improved the prediction of rutting deterioration rates 

compared to single-objective calibration, the multi-objective calibration results on SPS-1 did not 

exhibit the same quality. This investigation revealed that simply evaluating the bias and STE is 

not adequate for a comprehensive evaluation of performance prediction models. Therefore, it is 
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recommended that the comprehensive comparison framework presented in this study be used 

when selecting suitable performance prediction models. 

RECOMMENDATIONS FOR STATE HIGHWAY AGENCIES 

Based on the findings of this study, there are several advantages in adopting a multi-objective 

calibration approach for pavement design within each State or local highway agency:  

• The existing trial-and-error approach will be replaced with a systematic framework for 

calibration of AASHTOWare® Pavement ME Design software.  

• Accuracy and precision of the models can be optimized at the same time.  

• Multiple sources of performance data with disparate data collection protocols (i.e., LTPP, 

State PMS, APT, etc.) can be incorporated simultaneously, without the need for 

reconciliation among different data sources.  

• Following the quantitative multi-objective optimization process, engineering judgment 

and qualitative criteria can be used to select the most reasonable calibration coefficients 

among the final pool of solutions. 

The flowchart in figure 42 demonstrates a potential multi-objective calibration framework that 

highway agencies can adopt for enhanced performance models. 
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Source: FHWA. 

Figure 42. Flowchart. Framework for implementation of multi-objective calibration. 

Using this multi-objective calibration approach results in a final pool of tradeoff solutions. This 

way, none of the possible sets of calibration factors are eliminated prematurely, and all of the 

nondominated solutions are included in the final tradeoff front. Exploring the final front might 

reveal unknown aspects of this calibration problem and result in more reasonable calibration 

coefficients that could not be identified using single-objective approaches. This study 

Select Calibration Factors for Design 

 

• Visualize the final Pareto-optimal front. 

• Use qualitative statistics such as skewness and kurtosis. 

• Practice engineering judgment to select final factors. 

• Observe predicted performance trends. 

• Update calibration with additional performance data. 

 

Follow AASHTO recommended procedure for collecting required data. 

Use AASHTOWare® Pavement ME Design software interface to generate projects, 

and run the software once for each project to generate required files. 

Material Properties Files 

Climate Files 

Traffic Files 

Response Files 

Multi-Objective Calibration Code 

Calibration Factor Files 

Run APADS 

within each 

project folder. 

MOEA 

updates 

factors. 

Extract total calculated 

performance from files. 

Measured Performance Files 

Evaluate Objective Function 1 

Evaluate Objective Function 2 

Evaluate Objective Function m 
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demonstrates the application of engineering judgment and qualitative criteria to select reasonable 

calibration coefficients from the final pool of solutions that result from the multi-objective 

optimization. More reasonable calibration factors result in a more justifiable pavement design 

considering multiple aspects of pavement performance. 

RECOMMENDATIONS FOR FURTHER RESEARCH AND VALIDATION 

The following are recommendations for future research into enhancing the multi-objective 

calibration process: 

• Other EAs and parameter settings could be tested to identify the most suitable one for this 

calibration application. Specifically, the stopping criteria need to be evaluated to make 

sure a good solution has been achieved. In addition, the precision (epsilon value) 

corresponding to each objective function needs to be examined to avoid additional 

computational cost that is beyond the required precision. 

• Other multi-objective calibration scenarios could be considered in future research. For 

example, statistical distribution shape descriptors (skewness and kurtosis, which were 

used in this study as qualitative comparison criteria) can be used in conjunction with SSE 

and STE to better match the distribution of measured and calculated rutting data on 

pavement test sections.  

• Other sources of data such as State PMS data could be incorporated into this multi-

objective calibration framework to investigate its feasibility in that regard. 

• The same multi-objective calibration framework can also be applied to other performance 

prediction models. 
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APPENDIX A. DETAILS OF CALIBRATION INPUT DATA 

ASPHALT CONCRETE DYNAMIC MODULUS 

Computed AC dynamic modulus is available in the LTPP database for the surface layers. 

However, for asphalt stabilized layers, dynamic modulus values are not included in the LTPP. In 

those cases, the ANNACAP software was run to obtain the dynamic modulus at five 

temperatures (–10, 4.4, 21.1, 37.8, and 54.4 ºC) and for four frequencies (0.1, 1, 10, and 25).(64) 

This software calculates the dynamic modulus based on an ANN algorithm. The input data are 

the resilient modulus at 5, 25, and 40 ºC and the shift factors. The details of the software and the 

ANN model are reported by Kim et al.(12) Table 38 shows the resulting estimated dynamic 

modulus values for SPS-1 and SPS-5 test sections. 

Table 38. Dynamic modulus for the Florida SPS-1 and SPS-5 experiment test sections. 

Temperature 

(ºC) 

Frequency 

(Hz) 

Dynamic Modulus (MPa) 

SPS-1 ATB Material Project 

Layer Code H 

Dynamic Modulus (MPa) 

SPS-5 ID 120503 Material 

Project Layer Code E 

–10.0 25.0 27,598 30,128 

–10.0 10.0 26,894 29,534 

–10.0 5.0 26,286 29,011 

–10.0 1.0 24,589 27,513 

–10.0 0.5 23,726 26,730 

–10.0 0.1 21,394 24,550 

4.4 25.0 21,263 24,424 

4.4 10.0 19,721 22,929 

4.4 5.0 18,467 21,685 

4.4 1.0 15,322 18,458 

4.4 0.5 13,905 16,952 

4.4 0.1 10,616 13,331 

21.1 25.0 10,399 13,086 

21.1 10.0 8,628 11,052 

21.1 5.0 7,375 9,579 

21.1 1.0 4,863 6,529 

21.1 0.5 3,977 5,419 

21.1 0.1 2,386 3,370 

37.8 25.0 3,084 4,279 

37.8 10.0 2,284 3,237 

37.8 5.0 1,803 2,598 

37.8 1.0 1,020 1,535 

37.8 0.5 797 1,224 

37.8 0.1 454 736 

54.4 25.0 817 1,253 

54.4 10.0 591 933 

54.4 5.0 465 752 

54.4 1.0 275 473 

54.4 0.5 223 394 

54.4 0.1 144 272 
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ASPHALT CONCRETE CREEP COMPLIANCE 

MEPDG at input level 1 requires the AC creep compliance modulus at three temperatures  

(–20, –10, and 10 ºC) and seven loading frequencies (1, 2, 5, 10, 20, 50, and 100 s). The LTPP 

creep compliance test was done under a different set of temperatures (–10, 5, and 25 ºC) but 

similar loading frequencies to the MEPD input values. Therefore, a conversion process that is 

suggested in the literature is applied to generate the master curve and then fit a generalized 

viscoelastic model.(65) The log time–temperature shift factor is considered linearly correlated 

with the temperature. The sections included in the analysis are located in areas where the yearly 

lowest temperature is above 0 ºC. Therefore, the creep compliance conversion was not 

performed, and input level 3 was considered for the MEPDG analysis. However, for some other 

locations, where the temperature falls below 0 ºC, the conversion process needs to be applied.  

The conversion process begins with the calculation of the reduced time that can be calculated 

using equation 48: 

  (48) 

Where: 

tT = time to obtain the creep compliance at temperature T. 

t
T

0
 = time to obtain the creep compliance at temperature T0 (1, 2, 5, 10, 20, 50, and 100 s). 

β = slope of the straight line of the relationship between the time–temperature shift factor and 

the temperature, which is calculated using equation 49: 

 

  (49) 

 

Where: 

T = temperature. 

T0 = reference temperature. 

The generalized model can be composed by a number of connected Kelvin models. The creep 

compliance model for a constant stress condition is expressed as in equation 50: 

  (50) 
 

Where: 

D(t) = creep compliance at time t. 

Gi = creep compliance coefficients. 

n = number of Kelvin models. 

Ti = time durations to cover the range of interest. 

Creep compliance coefficients are calculated solving the simultaneous equations as in  

equation 51:  

𝑡𝑇 = 𝑡𝑇0
𝑒 2.3026𝛽 𝑇−𝑇0   

𝛽 =  

log  
𝑡𝑇
𝑡𝑇0

 

𝑇 − 𝑇0
 

𝐷 𝑡 = 𝐺0 +  𝐺𝑖  1 − 𝑒
 −

𝑡𝑇
𝑇𝑖

 
 𝑛

𝑖=1   
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   (51) 
 

Where: 

{Gi} = vector of creep compliance coefficients. 

{Di} = vector of creep compliance. 

[E] = creep compliance matrix as in equation 52: 

 

  (52) 

 

RESILIENT MODULUS FOR UNBOUND AND SUBGRADE LAYERS 

Table 39 shows the available resilient modulus values for unbound materials in the LTPP 

database. 

Table 39. Calculated resilient modulus of unbound materials. 

Sample Code k1 k2 k3 

Mr (psi) 

Subgrade 

Mr (psi) 

Granular 

BS05 685.27 0.52 0.02 7,902 12,928 

BG03 1,178.20 0.73 N/A 13,050 25,584 

BS04 752.32 0.48 N/A 9,209 14,234 

BS02 737.88 0.44 N/A 9,164 13,685 

BS01 700.22 0.60 N/A 8,165 14,163 

BGX01 968.66 0.38 0.37 5,747 11,399 

BGX02 1,215.13 0.60 N/A 14,183 24,549 

BS03 735.40 0.53 N/A 8,817 14,318 

BS06 714.43 0.58 N/A 8,391 14,308 

BGX01 1,099.94 0.61 0.00 12,766 22,382 

BGX06 1,019.99 0.74 N/A 11,284 22,185 

BGX05  1,274.99 0.64 N/A 14,640 26,345 

BGX04 1,011.04 0.48 0.12 9,667 16,751 

BS57 766.96 0.49 N/A 9,340 14,614 

TS01 791.19 0.70 N/A 8,895 16,830 

BS55 1,229.38 0.52 N/A 14,789 23,824 

BG** 1,318.69 0.53 N/A 15,777 25,747 

BG56 1,188.30 0.56 N/A 14,105 23,456 

BG** 889.01 0.72 N/A 9,919 19,111 

BG55 1,117.46 0.68 N/A 12,655 23,535 

BS** 848.57 0.89 N/A 8,855 20,005 

BG** 909.19 0.66 N/A 10,365 18,973 

BG56 825.94 0.62 N/A 9,549 16,907 

BG** 543.51 0.77 0.92 901 4,221 

BG55 1,131.11 0.68 N/A 12,772 23,919 

TS01 854.43 0.50 N/A 10,361 16,375 

BS** 1,208.62 0.38 N/A 15,321 21,790 

TS03 982.82 0.23 N/A 13,234 16,304 

BG** 804.25 0.60 N/A 9,368 16,294 

 𝐺𝑖 =   𝐸 𝑇 𝐸  
−1

 𝐸 𝑇 𝐷𝑖  

 𝐸 =  
1 − 𝑒

 −
𝑡𝑇1
𝑇1

 
… 1 − 𝑒

 −
𝑡𝑇1
𝑇𝑛

 

⋮ ⋱ ⋮

1 − 𝑒
 −

𝑡𝑇𝑚
𝑇1

 
… 1 − 𝑒

 −
𝑡𝑇𝑚
𝑇𝑛
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Sample Code k1 k2 k3 

Mr (psi) 

Subgrade 

Mr (psi) 

Granular 

TS01 751.50 0.58 N/A 8,850 14,997 

BS55 965.17 0.46 N/A 11,872 18,139 

BG56 1,000.85 0.53 N/A 11,981 19,528 

BG** 706.06 0.78 0.10 6,232 13,966 

BG55 1,253.38 0.68 N/A 14,153 26,502 

BS** 1,291.75 0.52 N/A 15,515 25,087 

TS03 838.60 0.55 N/A 9,980 16,493 

BG** 1,416.59 0.49 N/A 17,245 27,006 

BG56 1,347.88 0.55 N/A 16,004 26,596 

BG55 1,381.21 0.51 N/A 16,698 26,583 

BS** 1,028.25 0.46 0.32 6,546 13,401 

TS02 513.33 0.62 0.78 1,206 4,338 

BG** 747.88 0.70 N/A 8,394 15,947 

BG56 773.47 0.69 N/A 8,726 16,376 

BG** 1,315.23 0.55 N/A 15,636 25,906 

BG55 2,052.86 0.56 N/A 24,285 40,712 

TS01 683.52 0.17 0.81 1,776 4,357 

TS04 723.25 0.56 0.64 2,319 6,939 

TS01 1,124.28 0.57 N/A 13,290 22,319 

TS03 1,229.06 0.65 N/A 14,088 25,456 

BG** 1,296.16 0.55 N/A 15,401 25,548 

TS01 824.28 0.61 0.23 5,946 12,863 

BS** 834.87 0.35 N/A 10,717 14,794 

BG** 1,743.84 0.44 N/A 21,642 32,371 

TS01 662.98 0.62 0.48 2,871 7,869 

TS03 753.00 0.75 0.14 6,197 14,000 

BG** 979.84 0.53 N/A 11,723 19,132 

BG55 697.57 0.68 N/A 7,905 14,679 

TS01 816.71 0.38 0.25 6,172 11,011 

TS03 1,043.36 0.35 N/A 13,411 18,454 

BS** 1,109.58 0.57 N/A 13,109 22,044 

BS55 1,190.33 0.51 0.42 6,034 14,212 

BG** 1,165.05 0.59 N/A 13,634 23,453 

BG56 1,257.62 0.56 N/A 14,893 24,903 

BG** 1,231.76 0.55 N/A 14,645 24,258 

TS01 556.69 0.44 0.67 1,744 4,829 

TS03 606.55 0.52 0.58 2,233 6,120 

BG** 953.39 0.55 N/A 11,329 18,791 

BG55 968.58 0.56 N/A 11,474 19,171 

TS01 489.95 0.43 0.69 1,478 4,124 

TS03 508.58 0.49 0.77 1,273 4,050 

BG** 1,175.50 0.57 N/A 13,876 23,380 

BG56 928.50 0.62 N/A 10,750 18,967 

BG** 1,599.55 0.42 N/A 20,037 29,314 

BG55 1,265.45 0.53 N/A 15,176 24,628 

BS** 703.77 0.92 1.27 533 3,960 

BS55 922.19 0.55 0.70 2,609 8,210 

BG** 1,546.27 0.65 N/A 17,701 32,084 

BG56 1,594.46 0.49 N/A 19,387 30,447 

BG** 405.93 0.97 N/A 4,100 10,009 

BG55 547.74 1.03 N/A 5,414 13,916 

BS** 1,014.08 0.54 N/A 12,120 19,829 
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Sample Code k1 k2 k3 

Mr (psi) 

Subgrade 

Mr (psi) 

Granular 

BG** 1,210.00 0.57 N/A 14,267 24,105 

TS01 794.16 0.69 0.53 2,994 9,159 

TS03 878.04 0.60 0.46 3,948 10,447 

BG** 1,062.14 0.76 0.15 8,535 19,694 

BG56 1,055.31 0.60 N/A 12,308 21,341 

BG** 1,372.03 0.58 N/A 16,131 27,441 

BG55 1,403.67 0.66 N/A 15,981 29,346 

TS01 751.00 0.53 0.62 2,507 7,189 

BG** 1,157.71 0.66 N/A 13,190 24,180 

BG55 993.02 0.57 N/A 11,741 19,707 

BS** N/A 0.90 0.89 N/A N/A 

TS03 N/A 0.90 0.89 N/A N/A 

BG** N/A 0.33 0.58 N/A N/A 

BS** N/A 0.90 0.89 N/A N/A 

BS55 N/A 0.90 0.89 N/A N/A 

BG** N/A 0.46 0.71 N/A N/A 

BG56 N/A 0.46 0.71 N/A N/A 

BG** N/A 0.46 0.71 N/A N/A 

BG55 N/A 0.33 0.58 N/A N/A 

TS01 0.00 0.93 0.87 0.00 0.00 

BS55 920.88 0.50 N/A 11,153 17,680 

BG** N/A 0.33 0.58 N/A N/A 

BG56 N/A 0.33 0.58 N/A N/A 

BG** N/A 0.33 0.58 N/A N/A 

BG55 N/A 0.33 0.58 N/A N/A 

TS01 N/A 0.93 0.87 N/A N/A 

TS03 N/A 0.92 0.87 N/A N/A 

BG** N/A 0.33 0.58 N/A N/A 

BG56 N/A 0.38 0.63 N/A N/A 

BG** N/A 0.38 0.63 N/A N/A 

BG55 N/A 0.38 0.63 N/A N/A 

TS01 N/A 0.90 0.89 N/A N/A 

BS** N/A 0.86 0.89 N/A N/A 

TS01 N/A 0.90 0.89 N/A N/A 

TS03 N/A 0.90 0.89 N/A N/A 

BG** 1,324.28 0.50 N/A 16,052 25,396 

BG55 1,272.95 0.47 N/A 15,593 24,059 

TS01 N/A 0.90 0.89 N/A N/A 

TS02 N/A 0.92 0.88 N/A N/A 

BG** 3.77 3.58 0.82 3 145 

BG56 4.28 3.46 0.84 3 153 

BG** 0.05 6.44 0.84 0 8 

BG55 746.38 0.99 N/A 7,498 18,543 

N/A = no adequate data. 

RUTTING DATA 

SPS-1 

Table 40, table 41, and table 42 list the average rut depth values measured through the 

monitoring period for every test section on the Florida SPS-1 site.  



 

 

Table 40. Average measured rut depth for Florida SPS-1 test sections 120107 to 120111. 

120107 

Date 

120107 

Rut (mm) 

120108 

Date 

120108 

Rut (mm) 

120106 

Date 

120106 

Rut 

(mm) 

120110 

Date 

120110 

Rut 

(mm) 

120111 

Date 

120111 

Rut 

(mm) 

2/9/2000 4 2/9/2000 4 2/9/2000 5 2/9/2000 4 2/9/2000 4 

2/17/2000 3 2/17/2000 4 2/17/2000 3 2/17/2000 3 2/16/2000 4 

5/10/2001 4 5/10/2001 4 5/10/2001 4 5/10/2001 4 5/9/2001 4 

1/18/2002 5 1/18/2002 4 1/17/2002 5 1/17/2002 5 1/17/2002 5 

1/21/2002 5 1/21/2002 4 1/21/2002 4 1/21/2002 4 1/21/2002 6 

1/23/2003 5 1/23/2003 5 1/23/2003 5 1/23/2003 6 1/22/2003 6 

1/22/2004 6 1/22/2004 5 1/22/2004 5 1/22/2004 5 1/22/2004 4 

4/22/2004 6 4/22/2004 5 4/22/2004 6 4/22/2004 6 4/21/2004 6 

1/19/2005 7 1/19/2005 5 1/19/2005 5 1/18/2005 6 1/18/2005 7 

11/9/2006 8 11/9/2006 5 11/9/2006 6 11/9/2006 7 11/9/2006 7 

5/8/2009 10 5/8/2009 6 5/8/2009 7 5/7/2009 8 5/7/2009 8 

4/4/2011 12 4/4/2011 7 4/4/2011 9 4/4/2011 9 3/30/2011 9 
 

Table 41. Average measured rut depth for Florida SPS-1 test sections 120112 to 120105. 

120112 

Date 

120112 

Rut (mm) 

120109 

Date 

120109 

Rut 

(mm) 

120104 

Date 

120104 

Rut 

(mm) 

120103 

Date 

120103 

Rut 

(mm) 

120105 

Date 

120105 

Rut 

(mm) 

2/9/2000 3 2/9/2000 4 2/9/2000 4 2/9/2000 6 2/9/2000 5 

2/16/2000 3 2/16/2000 3 2/16/2000 4 2/16/2000 5 2/15/2000 5 

5/9/2001 3 5/9/2001 3 5/9/2001 4 5/9/2001 6 5/9/2001 5 

1/16/2002 4 1/16/2002 3 1/16/2002 5 1/16/2002 7 1/15/2002 6 

1/21/2002 6 1/21/2002 4 1/21/2002 5 1/21/2002 6 1/21/2002 6 

1/22/2003 4 1/22/2003 3 1/22/2003 5 1/21/2003 7 1/21/2003 6 

1/22/2004 4 1/22/2004 5 1/22/2004 4 1/22/2004 6 1/22/2004 4 

4/21/2004 4 4/21/2004 4 4/21/2004 6 4/20/2004 7 4/20/2004 6 

1/18/2005 5 1/18/2005 4 1/17/2005 6 1/17/2005 8 1/17/2005 6 

11/8/2006 5 11/8/2006 4 11/8/2006 6 11/8/2006 8 11/8/2006 7 

5/7/2009 6 5/7/2009 5 5/6/2009 8 5/6/2009 10 5/6/2009 8 

3/30/2011 7 3/30/2011 6 3/30/2011 9 3/29/2011 11 3/29/2011 9 

  

1
1
2
 



 

 

Table 42. Average measured rut depth for Florida SPS-1 test sections 120101 to 120161. 

120101 

Date 

120101 

Rut (mm) 

120102 

Date 

120102 

Rut (mm) 

120161 

Date 

120161 

Rut (mm) 

2/9/2000 4 2/9/2000 3 2/9/2000 4 

2/15/2000 4 2/15/2000 3 2/15/2000 3 

5/8/2001 4 5/8/2001 3 5/8/2001 3 

1/15/2002 5 1/15/2002 3 1/15/2002 3 

1/21/2002 5 1/21/2002 4 1/21/2002 4 

1/21/2003 5 1/21/2003 3 1/21/2003 3 

1/22/2004 5 1/22/2004 4 1/22/2004 4 

4/20/2004 6 4/20/2004 4 4/20/2004 3 

1/17/2005 6 1/17/2005 4 1/14/2005 4 

11/3/2006 7 11/3/2006 4 11/3/2006 4 

5/6/2009 8 5/6/2009 5 N/A N/A 

3/29/2011 9 3/29/2011 5 N/A N/A 

N/A = no adequate data.  

1
1
3
 



 

 

SPS-5 

Table 43, table 44, and table 45 list the average rut depth values measured through the monitoring period for every test section on the 

Florida SPS-5 site. 

Table 43. Average measured rut depth for Florida SPS-5 test sections 120502 to 120565. 

120502 

Date 

120502 

Rut (mm) 

120561 

Date 

120561 

Rut (mm) 

120503 

Date 

120503 

Rut (mm) 

120508 

Date 

120508 

Rut (mm) 

120565 

Date 

120565 

Rut (mm) 

1/21/1996 4 1/21/1996 3 1/21/1996 4 1/21/1996 3 1/21/1996 4 

1/21/1997 6 1/21/1997 5 1/21/1997 4 1/21/1997 4 1/21/1997 4 

5/18/1998 4 5/18/1998 5 5/18/1998 5 5/18/1998 4 5/19/1998 4 

7/14/1999 4 7/14/1999 6 7/14/1999 5 7/15/1999 4 7/15/1999 5 

2/9/2000 5 2/9/2000 4 2/9/2000 4 2/9/2000 4 2/9/2000 4 

11/1/2000 6 11/1/2000 7 11/1/2000 7 11/1/2000 5 11/1/2000 5 

1/10/2002 6 1/9/2002 7 1/9/2002 6 1/9/2002 5 1/9/2002 6 

1/21/2002 5 1/21/2002 6 1/21/2002 6 1/21/2002 4 1/21/2002 5 

1/15/2003 6 1/15/2003 7 1/15/2003 7 1/15/2003 5 1/15/2003 6 

1/23/2004 3 1/23/2004 5 1/23/2004 5 1/23/2004 4 1/23/2004 5 

4/26/2004 6 4/26/2004 8 4/26/2004 6 4/26/2004 5 4/26/2004 6 

1/11/2005 6 1/11/2005 8 1/11/2005 7 1/11/2005 5 1/11/2005 6 

11/6/2006 6 11/6/2006 8 11/6/2006 7 11/6/2006 5 11/6/2006 6 

5/4/2009 6 10/1/2013 9 5/4/2009 7 5/4/2009 5 11/7/2006 6 

3/31/2011 7 N/A N/A 3/31/2011 8 3/31/2011 6 10/1/2013 7 

10/1/2013 7 N/A N/A 10/1/2013 8 10/1/2013 6 10/1/2013 6 

N/A = no adequate data.  

1
1
4
 



 

 

Table 44. Average measured rut depth for Florida SPS-5 test sections 120509 to 120504. 

120509 Date 

120509 Rut 

(mm) 120506 Date 

120506 

Rut (mm) 120566 Date 

120566 

Rut (mm) 120507 Date 

120507 

Rut (mm) 120504 Date 

120504 

Rut (mm) 

1/21/1996 3 1/21/1996 3 1/21/1996 3 1/21/1996 4 1/21/1996 4 

1/21/1997 3 1/21/1997 3 1/22/1997 4 1/22/1997 5 1/22/1997 4 

5/18/1998 3 5/18/1998 4 5/18/1998 4 5/19/1998 5 5/19/1998 4 

7/15/1999 4 7/15/1999 4 7/15/1999 3 7/15/1999 5 7/15/1999 4 

2/9/2000 4 2/9/2000 3 2/9/2000 3 2/9/2000 5 2/9/2000 4 

11/2/2000 4 11/2/2000 4 11/2/2000 4 11/2/2000 5 11/2/2000 4 

1/9/2002 5 1/10/2002 4 1/10/2002 4 1/10/2002 5 1/10/2002 4 

1/21/2002 4 1/21/2002 3 1/21/2002 3 1/21/2002 5 1/21/2002 4 

1/15/2003 5 1/15/2003 4 1/16/2003 4 1/16/2003 5 1/16/2003 5 

1/23/2004 4 1/23/2004 4 1/23/2004 4 1/23/2004 4 1/23/2004 3 

4/26/2004 5 4/26/2004 4 4/27/2004 4 4/27/2004 5 4/27/2004 5 

1/11/2005 5 1/11/2005 4 1/13/2005 4 1/13/2005 6 1/12/2005 5 

11/6/2006 5 11/7/2006 4 11/7/2006 5 11/7/2006 6 11/7/2006 5 

5/4/2009 5 5/4/2009 4 10/2/2013 5 5/4/2009 6 5/5/2009 6 

4/1/2011 6 3/31/2011 4 1/29/2014 5 3/31/2011 6 4/1/2011 6 

10/1/2013 6 10/2/2013 5 3/31/2011 4 10/2/2013 6 N/A N/A 

N/A N/A N/A N/A 10/2/2013 5 10/2/2013 5 N/A N/A 

N/A = no adequate data. 

1
1
5
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Table 45. Average measured rut depth for Florida SPS-5 test sections 120562 to 120564. 

120562 

Date 

120562 

Rut (mm) 

120505 

Date 

120505 

Rut (mm) 

120563 

Date 

120563 

Rut (mm) 

120564 

Date 

120564 

Rut (Mm) 

1/21/1996 4 1/21/1996 3 1/21/1996 3 1/21/1996 3 

1/22/1997 4 1/22/1997 4 1/22/1997 4 1/23/1997 5 

5/19/1998 5 5/19/1998 4 5/19/1998 4 5/19/1998 5 

7/19/1999 3 7/19/1999 3 7/19/1999 3 7/19/1999 4 

2/9/2000 3 2/9/2000 3 2/9/2000 3 2/9/2000 4 

11/6/2000 4 11/6/2000 4 11/6/2000 4 11/6/2000 5 

1/10/2002 4 1/14/2002 4 1/14/2002 4 1/14/2002 5 

1/21/2002 4 1/21/2002 4 1/21/2002 4 1/21/2002 4 

1/16/2003 4 1/16/2003 4 1/16/2003 4 1/16/2003 5 

1/23/2004 4 1/23/2004 6 1/23/2004 6 1/23/2004 4 

4/27/2004 4 4/27/2004 4 4/27/2004 4 4/28/2004 6 

1/12/2005 4 1/12/2005 5 1/12/2005 4 1/12/2005 5 

11/7/2006 5 11/7/2006 5 11/7/2006 5 11/7/2006 6 

10/2/2013 7 5/5/2009 5 10/2/2013 6 10/3/2013 6 

N/A N/A 4/1/2011 6 N/A N/A N/A N/A 

N/A N/A 10/3/2013 6 N/A N/A N/A N/A 

N/A = no adequate data. 

APT ARB 

Table 46 shows the measured rut depth on the APT ARB experiment sections with HVS passes. 

Table 46. Average measured rut depth (mm) for FDOT ARB experiment sections. 

HVS 

Passes 

1 

PG 76-22 

PMA 

2 

ARB-5 

3 

30% RAP 

4 

Hybrid B 

5 

Hybrid A-L 

6 

GTR-C 

7 

Hybrid A-H 

0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

100 0.37 1.37 0.45 0.95 0.92 0.54 1.18 

300 0.76 1.85 0.71 1.22 1.32 0.77 1.66 

500 1.15 2.13 0.93 1.37 1.55 0.90 1.91 

700 1.23 2.32 1.12 1.51 1.67 1.04 2.09 

1,000 1.48 2.53 1.30 1.63 1.83 1.19 2.25 

1,300 1.71 2.78 1.45 1.74 1.96 1.26 2.41 

1,600 1.84 2.92 1.58 1.84 2.07 1.32 2.49 

2,000 1.99 3.13 1.71 1.91 2.18 1.42 2.60 

2,500 2.16 3.25 1.84 1.99 2.32 1.54 2.68 

3,000 2.30 3.34 1.94 2.06 2.42 1.56 2.69 

3,500 2.43 3.53 2.03 2.12 2.51 1.66 2.74 

4,000 2.54 3.57 2.10 2.19 2.59 1.71 2.91 

4,500 2.68 3.69 2.18 2.25 2.68 1.78 3.03 

5,000 2.76 3.78 2.26 2.28 2.78 1.83 3.10 

6,000 2.95 3.93 2.37 2.36 2.91 1.88 3.21 

7,000 3.12 4.06 2.46 2.42 3.02 1.95 3.27 

8,000 3.25 4.19 2.55 2.49 3.09 2.00 3.31 

9,000 3.39 4.27 2.59 2.53 3.22 2.06 3.38 

10,000 3.50 4.35 2.66 2.59 3.27 2.11 3.44 

11,000 3.62 4.45 2.71 2.62 3.33 2.14 3.51 

12,000 3.72 4.49 2.77 2.70 3.40 2.22 3.54 

13,000 3.77 4.57 2.83 2.74 3.45 2.24 3.61 
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HVS 

Passes 

1 

PG 76-22 

PMA 

2 

ARB-5 

3 

30% RAP 

4 

Hybrid B 

5 

Hybrid A-L 

6 

GTR-C 

7 

Hybrid A-H 

14,000 3.87 4.62 2.89 2.76 3.51 2.28 3.65 

15,000 3.92 4.67 2.94 2.77 3.56 2.30 3.68 

16,000 3.99 4.73 2.98 2.81 3.59 2.34 3.75 

18,000 4.11 4.83 3.05 2.85 3.67 2.38 3.72 

20,000 4.20 4.92 3.10 2.89 3.75 2.42 3.83 

22,000 4.33 5.01 3.22 2.93 3.83 2.46 3.89 

24,000 4.42 5.09 3.25 2.97 3.88 2.56 3.92 

26,000 4.48 5.21 3.34 3.01 3.93 2.64 3.97 

28,000 4.58 5.28 3.41 3.05 4.00 2.64 4.01 

32,000 4.70 5.41 3.57 3.11 4.06 2.69 4.03 

36,000 4.84 5.52 3.67 3.18 4.19 2.76 4.10 

38,000 4.88 5.64 3.69 3.21 4.22 2.80 4.15 

40,000 4.94 5.73 3.71 3.24 4.23 2.83 4.20 

45,000 5.06 5.73 3.84 3.32 4.34 2.92 4.26 

50,000 5.18 5.84 3.99 3.41 4.43 3.00 4.32 

55,000 5.24 5.99 4.07 3.49 4.49 3.08 4.40 

60,000 5.35 6.02 4.17 3.54 4.57 3.19 4.38 

65,000 5.47 6.07 4.27 3.59 4.65 3.23 4.48 

70,000 5.54 6.16 4.36 3.65 4.68 3.30 4.58 

80,000 5.67 6.32 4.50 3.74 4.86 3.39 4.69 

90,000 5.82 6.44 4.64 3.84 4.97 3.47 4.80 

100,000 5.93 6.58 4.76 3.92 5.09 3.57 4.97 

APT DASR 

Table 47 shows the measured rut depth on the APT DASR experiment sections with HVS passes. 

Table 47. Average measured rut depth (mm) for FDOT DASR experiment sections. 

HVS 

Passes 

DASR Porosity 

44% 

HVS 

Passes 

DASR 

Porosity 

42% 

HVS 

Passes 

DASR 

Porosity 

49% 

HVS 

Passes 

DASR 

Porosity 56% 

0 0.00 0 0.00 0 0.00 0 0.00 

100 1.43 100 1.45 100 2.12 100 2.87 

300 2.11 300 2.88 300 3.23 300 4.70 

500 2.57 500 3.54 500 3.91 500 5.95 

700 2.91 700 4.01 700 4.43 700 7.06 

1,000 3.35 1,000 4.71 1,000 4.95 1,000 8.32 

1,300 3.68 1,600 5.14 1,300 5.44 1,300 9.48 

1,423 3.81 2,000 5.64 1,600 5.82 1,600 10.50 

1,600 3.98 3,000 6.10 2,000 6.26 2,000 11.80 

2,000 4.30 3,500 6.47 2,500 6.73 2,500 13.22 

2,500 4.73 2,500 6.49 3,000 7.16 3,000 14.57 

3,000 5.03 4,000 6.99 3,500 7.48 3,500 15.75 

3,500 5.29 4,500 7.26 4,000 7.79 4,000 16.82 

4,000 5.61 5,000 7.51 4,500 8.06 4,500 17.83 

4,500 5.72 7,000 8.02 5,000 8.33 5,000 18.79 

5,000 6.08 8,000 8.39 6,000 8.75 6,000 20.59 

6,000 6.36 9,000 8.59 7,000 9.07 7,000 22.24 

7,000 6.60 10,000 8.88 8,000 9.37 8,000 23.74 

8,000 6.77 11,000 8.95 9,000 9.65 9,000 25.20 
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HVS 

Passes 

DASR Porosity 

44% 

HVS 

Passes 

DASR 

Porosity 

42% 

HVS 

Passes 

DASR 

Porosity 

49% 

HVS 

Passes 

DASR 

Porosity 56% 

9,000 6.95 12,000 9.27 10,000 9.91 10,000 26.33 

10,000 7.14 13,000 9.43 11,000 10.14 12,000 28.46 

11,000 7.31 14,000 9.61 12,000 10.33 13,000 29.59 

12,000 7.39 15,000 9.83 13,000 10.61 22,000 34.52 

13,000 7.61 16,000 9.96 14,000 10.72 24,000 36.21 

14,000 7.71 18,000 10.11 15,000 11.03 N/A N/A 

15,000 7.83 20,000 10.37 16,000 11.07 N/A N/A 

16,000 7.97 22,000 10.59 18,000 11.34 N/A N/A 

18,000 8.11 24,000 10.71 20,000 11.56 N/A N/A 

20,000 8.23 26,000 10.89 22,000 11.82 N/A N/A 

22,000 8.31 28,000 11.09 24,000 12.09 N/A N/A 

24,000 8.46 32,000 11.29 26,000 12.33 N/A N/A 

26,000 8.59 36,000 11.57 27,546 12.42 N/A N/A 

28,000 8.62 38,000 11.69 28,000 12.45 N/A N/A 

32,000 8.95 40,000 11.88 32,000 12.80 N/A N/A 

36,000 9.10 45,000 12.08 34,044 13.02 N/A N/A 

38,000 9.18 50,000 12.34 36,000 13.28 N/A N/A 

40,000 9.25 55,000 12.51 38,000 13.51 N/A N/A 

45,000 9.43 60,000 12.78 40,000 13.61 N/A N/A 

50,000 9.57 65,000 12.89 N/A N/A N/A N/A 

55,000 9.69 N/A N/A N/A N/A N/A N/A 

60,000 9.84 N/A N/A N/A N/A N/A N/A 

65,000 9.90 N/A N/A N/A N/A N/A N/A 

70,000 9.98 N/A N/A N/A N/A N/A N/A 

75,000 10.10 N/A N/A N/A N/A N/A N/A 

79,788 10.20 N/A N/A N/A N/A N/A N/A 

80,000 10.21 N/A N/A N/A N/A N/A N/A 

90,000 10.31 N/A N/A N/A N/A N/A N/A 

95,000 10.35 N/A N/A N/A N/A N/A N/A 

N/A = no adequate data. 

  



 

119 

APPENDIX B. PROGRAMMING CODES 

In this research project, MOEAs have been implemented to optimize the multiple objective 

functions involved. MOEA Framework (moeaframework.org) is a free and open-source Java 

framework for multi-objective optimization using a variety of EAs, including GAs and ESs. In 

this object-oriented framework, an instance of the “abstract problem” class needs to be created, 

in which the calculation process for the multiple objective functions is implemented. Then an 

instance of the “problem execution” class is created, where the abstract multi-objective 

optimization problem is solved using a selected “algorithm.” The user should employ an 

integrated development environment (IDE) to add the “MOEAFramework-2.10.jar” to the build 

path before running the codes discussed in this appendix. 

The following sections in this appendix describe the source codes developed for this study. In 

addition, the “ReadFromFile.java” and “WriteToFile.java” source codes were developed to read 

the calibration data and factors and to write the rutting calculation results and final calibration 

factors into corresponding files. 

To use these codes, the user needs to store the calibration and validation datasets in two separate 

folders and provide the folder path in the “problem execution” code. Depending on the number 

of objective functions, different source codes should be used as explained below. The calibration 

dataset comprises one folder per test section, which contains both the measured rutting through 

time and the intermediate pavement response files calculated using the AASHTOWare® 

Pavement ME Design software. The validation dataset only includes measured rutting in each 

folder for each test section. 

All the noted source codes and the calibration and validation data files used for this study are 

available online through https://www.fhwa.dot.gov/. 

PROBLEM EXECUTION: SOLVING THE MULTI-OBJECTIVE OPTIMIZATION 

PROBLEM 

This code is the main code that needs to be executed. An executable file was not created for this 

project because this was a research experiment, and the developed code does not include a front-

end user interface. Therefore the “problem execution” code needs to be run through an IDE. The 

user needs to make sure that all the other corresponding source codes are located in the same 

folder and that the folder path for the calibration and validation datasets is specified within this 

source code. Table 48 shows the names of the “problem execution” codes and the corresponding 

“problem” codes for the calculation of various numbers of objective functions. 
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Table 48. Developed source codes for multi-objective calibration of MEPDG rutting 

models. 

Problem To Be Solved Problem Execution Code 

Rutting Problem 

Objective Functions 

Code 

AASHTO calibration method for new 

pavements on SPS-1 

ProblemExecution_SPS1_ 

1Obj.java 

RuttingProblem_SPS1_ 

1Obj.java 

Two-objective calibration for new 

pavements on SPS-1 

ProblemExecution_SPS1_ 

2Obj.java 

RuttingProblem_SPS1_ 

2Obj.java 

Four-objective calibration for new 

pavements on SPS-1 and FDOT APT 

ProblemExecution_SPS1_ 

4Obj.java 

RuttingProblem_SPS1_ 

4Obj.java 

AASHTO calibration method for 

overlaid pavements on SPS-5 

ProblemExecution_SPS5_ 

1Obj.java 

RuttingProblem_SPS5_ 

1Obj.java 

Two-objective calibration for overlaid 

pavements on SPS-5 

ProblemExecution_SPS5_ 

2Obj.java 

RuttingProblem_SPS5_ 

2Obj.java 

 

RUTTING CALIBRATION PROBLEM: SETTING UP PROBLEM SOLUTIONS AND 

OBJECTIVE FUNCTIONS 

As noted above, an instance of the “abstract problem” class was created, in which the calculation 

process for the multiple objective functions is implemented. Table 48 includes the file names for 

the Java codes created for rutting problems according to the pavement type (new AC models 

calibrated on SPS-1 and overlaid AC models calibrated on SPS-5 data) and the number of 

objective functions used (single-objective calibration according to the AASHTO method, two-

objective minimization of bias and STE, or four-objective optimization using LTPP and APT 

data simultaneously). These source codes set up the problem solutions (calibration factors) and 

the way in which the various objective functions are calculated. These source codes are called 

from the corresponding problem execution codes, and they in turn call for the source code that 

provides total pavement deformation estimates. 

CLASS FOR DEFORMATION CALCULATIONS 

The source code called TotalDeformation.java adds the cumulative rutting developed in all 

pavement layers (including asphalt-bound and unbounded materials) up to each month through 

pavement age. This source code calls the corresponding codes for calculating the cumulative 

rutting in AC and unbounded layers. This source code is called by the problem codes to provide 

the specific calculations of objective functions. 

CALCULATION OF CUMULATIVE RUTTING IN ASPHALT CONCRETE LAYERS 

The source code called CumulativeAC.java provides a simulated process for calculating the 

amount of permanent deformation accumulated in asphalt-bound layers through time and under 

specific traffic and climatic conditions using the intermediate pavement response files provided 

by the AASHTOWare® Pavement ME Design software. The detailed process is described in 

chapter 4, under the heading “Simulating Permanent Deformation in Asphalt Concrete Layers.” 

This source code is called by the source code for calculating the total pavement deformation. 
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CALCULATION OF CUMULATIVE RUTTING IN UNBOUND LAYERS 

The source code called CumulativeUnbounded.java provides a simulated process for calculating 

the amount of permanent deformation accumulated in unbounded layers through time and under 

specific traffic and climatic conditions using the intermediate pavement response files provided 

by the AASHTOWare® Pavement ME Design software. The detailed process is described in 

chapter 4, under the heading “Simulating Permanent Deformation in Unbound Materials.” This 

source code is called by the source code for calculating the total pavement deformation. 
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APPENDIX C. COMPARISON OF SIMULATED RUTTING CALCULATIONS TO ME 

SOFTWARE RESULTS 

This appendix presents example comparisons between the simulated monthly rutting calculations 

and the AASHTOWare® Pavement ME Design software calculations. The intent is to 

demonstrate that the simulated calculation approach produces results that are almost identical to 

the software results on various pavement structures (LTPP SPS-1 and SPS-5 sections in Florida) 

and with different local calibration factors. The literature review indicated that the previous 

calibration efforts had found the calibration factors to be within the ranges in table 49. These 

ranges were used to change the calibration factors one by one and observe the simulated rutting 

calculations compared to the Pavement ME software results.  

Table 49. Range of the calibration factors reported in the literature.  

Statistic 

HMA Rutting 

βr1 

HMA Rutting 

βr2 

HMA Rutting 

βr3 

Base Rutting 

βGB 

Subgrade 

Rutting βSG  

Average 1.7757 1.0445 0.9273 0.4039 0.4569 

Range 0.51 to 7 1 to 1.15 0.7 to 1.1 0.0 to 1.5803 0.0 to 1.38 

A handful of these comparisons have been demonstrated in figure 43 through figure 53. In these 

figures, the solid line represents the rut depth values calculated using the MEPDG software as a 

function of pavement age, and dashed lines represent the simulated values for the same pavement 

sections with the same calibration factors. These figures show that overall, the simulated process 

is successfully estimating the rutting progression trend very similar to the Pavement ME 

software. While there are some intermediate decrements in rutting values simulated within each 

month, the total accumulated rutting at the end of each month is very close to the software 

output. The reason for the intermediate decrements (which do not comply with the theory of 

rutting accumulation) is the assumptions made for the simulation, which may not be inherently 

correct. One of those assumptions is that traffic and rutting values are increasing linearly within 

each month, which might not be true. As explained before, the actual subseason pavement 

response data for each layer are not provided by the AASHTOWare® software, and therefore, an 

exact calculation (according to the MEPDG equations) could not be conducted for this project. 
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Source: FHWA. 

Figure 43. Chart. Comparison of simulated rutting calculations to ME software results for 

test section 120102 with β𝑟1 = 1.05, β𝑟2 = 0.9, β𝑟3 = 0.85, βGB = 1.0, βSG = 1.0. 
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Source: FHWA. 

Figure 44. Chart. Comparison of simulated rutting calculations to ME software results for 

test section 120102 with β𝑟1 = 1.05, β𝑟2 = 1.15, β𝑟3 = 0.85, βGB = 1.0, βSG = 1.0. 
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Source: FHWA. 

Figure 45. Chart. Comparison of simulated rutting calculations to ME software results for 

test section 120102 with β𝑟1 = 1.0, β𝑟2 = 0.9, β𝑟3 = 0.9, βGB = 1.0, βSG = 1.0. 
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Source: FHWA. 

Figure 46. Chart. Comparison of simulated rutting calculations to ME software results for 

test section 120102 with β𝑟1 = 0.7, β𝑟2 = 1.02, β𝑟3 = 1.06, βGB = 1.0, βSG = 1.0. 
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Source: FHWA. 

Figure 47. Chart. Comparison of simulated rutting calculations to ME software results for 

test section 120502 with β𝑟1 = 0.51, β𝑟2 = 1.0, β𝑟3 = 0.7, βGB = 1.0, βSG = 1.0. 
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Source: FHWA. 

Figure 48. Chart. Comparison of simulated rutting calculations to ME software results for 

test section 120502 with β𝑟1 = 0.9, β𝑟2 = 1.0, β𝑟3 = 1.0, βGB = 1.0, βSG = 1.0. 
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Source: FHWA. 

Figure 49. Chart. Comparison of simulated rutting calculations to ME software results for 

test section 120502 with β𝑟1 = 1.0, β𝑟2 = 0.9, β𝑟3 = 1.0, βGB = 1.0, βSG = 1.0. 
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Source: FHWA. 

Figure 50. Chart. Comparison of simulated rutting calculations to ME software results for 

test section 120502 with β𝑟1 = 1.0, β𝑟2 = 1.0, β𝑟3 = 0.9, βGB = 1.0, βSG = 1.0. 
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Source: FHWA. 

Figure 51. Chart. Comparison of simulated rutting calculations to ME software results for 

test section 120502 with β𝑟1 = 1.25, β𝑟2 = 1.04, β𝑟3 = 0.94, βGB = 1.0, βSG = 1.0. 



 

133 

  
Source: FHWA. 

Figure 52. Chart. Comparison of simulated rutting calculations to ME software results for 

test section 120502 with β𝑟1 = 1.17, β𝑟2 = 1.1, β𝑟3 = 1.05, βGB = 1.0, βSG = 1.0. 
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Source: FHWA. 

Figure 53. Chart. Comparison of simulated rutting calculations to ME software results for 

test section 120502 with β𝑟1 = 1.17, β𝑟2 = 1.1, β𝑟3 = 1.05, βGB = 1.15, βSG = 0.9. 
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