Evaluation/Calibration Report

Ohio, SPS 2

Task Order 3, CLIN 2 Visit Dates: February 3 and 4, 2004

1 Executive Summary	
2 Corrective Actions Recommended	3
3 Post Calibration Analysis	3
3.1 Temperature-based Analysis	6
3.2 Speed-based Analysis	8
3.3 Classification Validation	11
4 Pavement Discussion	12
4.1 Profile analysis	12
4.2 Distress survey and any applicable photos	13
4.3 Vehicle-pavement interaction discussion	
5 Equipment Discussion	14
5.1 Pre-Evaluation Diagnostics	14
5.2 Calibration Process	14
5.2.1 Calibration Iteration 1	14
5.2.2 Calibration Iteration 2	15
5.3 Historical calibration information	
5.4 Projected Maintenance/Replacement Requirements	17
6 Pre-Validation Analysis	
6.1 Temperature-based Analysis	20
6.2 Speed-based Analysis	21
6.3 Classification Validation	23
7 Data Availability and Quality	24
8 Data Sheets	27
9 Updated handout guide and Sheet 17	27
10 Updated Sheet 18	27
11 Traffia Chart 16(a)	27

List of Tables

Table 1 Post-Validation results – 390200 - 4 February 2004	1
Table 2 Post-Validation Results - 390200 - 4 February 2004	4
Table 3 Post-Validation Results by Temperature Bin – 390200 - 4 February 2004	7
Table 4 Post-Validation Results by Speed Bin – 390200 - 4 February 2004	8
Table 5 Error rates for Truck Classification	12
Table 6 Long Range Index (LRI) and Short Range Index (SRI) - 390200 - 4 February	/
2004	13
Table 7 Calibration 1 Results – 390200 - 4 February 2004	14
Table 8 Calibration 2 Results- 390200 - 4 February 2004	15
Table 9 Classification Validation History - 390200	16
Table 10 Weight Validation History - 390200	16
Table 11 Pre-Validation Results - 390200 - 3 February 2004	17
Table 12 Pre-Validation Results by Temperature Bin - 390200 - 3 February 2004	20
Table 13 Pre-Validation Results by Speed Bin - 390200 - 3 February 2004	21
Table 14 Error rates for Truck Classification	24
Table 15 Amount of Traffic Data Available 390200 – 4 February 2004	25
Table 16 GVW Characteristics of Major sub-groups of Trucks - 390200 - 4 February	
2004	25

List of Figures

Figure 3-1 Post-Validation Speed-Temperature Distribution – 390200 - 4 February 2004	- 5
Figure 3-2 Post-validation GVW Percent Error vs. Speed by Truck – 390200 - 4 Februar	ry
2004	5
Figure 3-3 Post-Validation GVW Percent Error vs. Temperature by Truck – 390200 - 4	
February 2004	6
Figure 3-4 Post-Validation Speed vs. Spacing - 390200 - 4 February 2004	6
Figure 3-5 Post-Validation GVW Percent Error vs. Temperature by Group – 390200 - 4	
February 2004	7
Figure 3-6 Post-Validation Steering Axle error vs. Temperature by Group - 390200 - 4	
February 2004	8
Figure 3-7 Post-Validation GVW Percent Error vs. Speed Group - 390200 - 4 February	
2004	9
Figure 3-8 Post-Validation GVW Percent Error vs. Speed by Truck – 390200 - 4	
February 2004	9
Figure 3-9 Post-Validation Steering Axle Percent Error vs. Speed Group - 390200 - 4	
February 2004	0
Figure 3-10 Post-Validation Steering Axle Percent Error vs. Speed by Truck - 390200 -	4
February 2004	0

of LIPP SP3 weign-in-motion (WIM) sites pag	;e i
Figure 3-11 Tandem Axle Weight Errors by Position and Truck vs. Speed – 390200 – 4 February 2004	ļ 11
Figure 5-1 Calibration 1 Results - GVW by Truck by Speed – 390200 – 4 February 200)4 15
Figure 5-2 Calibration 2 Results - GVW by Truck by Speed – 390200 – 4 February 200)4 16
Figure 6-1 Pre-Validation Speed-Temperature Distribution—390200 - 3 February 2004	18
Figure 6-2 Pre-validation GVW Percent Error vs. Speed by Truck—390200 - 3 February 2004	
Figure 6-3 Pre-Validation GVW Percent Error vs. Temperature by Truck – 390200 - 3 February 2004	19
Figure 6-4 Pre-Validation Speed vs. Spacing - 390200 - 3 February 2004	19
Figure 6-5 Pre-Validation GVW Percent Error vs. Temperature by Group -390200 - 3	20
Figure 6-6 Pre-Validation Steering Axle Error vs. Temperature by Group - 390200 - 3	21
Figure 6-7 Pre-Validation GVW Percent Error vs. Speed Group - 390200 - 3 February	22
Figure 6-8 Pre-Validation GVW Percent Error vs. Speed by Truck – 390200 - 3 Februa 2004	ry 22
Figure 6-9 Pre-Validation Steering Axle Percent Error vs. Speed Group - 390200 - 3 February 2004	23
Figure 6-10 Pre-Validation Steering Axle Percent Error vs. Speed by Truck - 390200 - 3	3 23
Figure 7-1 Graph of Expected GVW distribution Class 9 – 390200 - 4 February 2004	_
	26
C 1	27

1 Executive Summary

A visit was made to the Ohio SPS-2 site on February 3rd and 4th, 2004 for the purpose of conducting a field performance evaluation and calibration of the WIM system located on US Route 23 at milepost 19.7. At this time, this site does not met research quality standards.

The site is instrumented with Mettler-Toledo mechanical load cell sensors and WIM Controller.

The validation used the following trucks:

- 1) 3S2 with a tractor having air suspension and trailer having a standard leaf spring suspension, unloaded, weighing 31,470 lbs.
- 2) 3S2 with a tractor having air suspension and trailer having a standard leaf spring suspension, loaded to 48,070 lbs.
- 3) 3S2 with a tractor having air suspension and trailer having a standard leaf spring suspension, loaded to 75.810 lbs.

The speeds ranged from 42 to 59 based on a target range of 45 to 55 miles per hour. The temperatures ranged from 28 to 37 degrees Fahrenheit.

SPS-1, -2, -5, -6 and -8	95 %Confidence Limit of Error	Site Values	Pass/Fail
Loaded single axles	±20 percent	-7.2% <u>+</u> 5.6%	Pass
Loaded tandem axles	±15 percent	4.0% <u>+</u> 19.6%	Fail
Gross vehicle weights	±10 percent	0.4% <u>+</u> 10.3%	Fail
Vehicle speed	<u>+</u> 1 mph [2 km/hr]	0.6 <u>+</u> 2.1 mph	Fail
Axle spacing length	<u>+</u> 0.5 ft [150 mm]	-0.1 <u>+</u> 0.2 ft	Pass

Table 1 Post-Validation results – 390200 - 4 February 2004

This site as currently calibrated fails all LTPP precision requirements except loaded single axles and axle spacing. The failure is due to the wide variation in the error for the tandem and gross vehicle weights, primarily for the unloaded test truck. The size of the errors increased as the test truck weights decreased, indicating a potential pavement effect on the truck dynamics that appeared to be greatest with unloaded trucks. In the field, there were no distresses observed that would influence truck motions significantly. A visual survey of truck movement over the site determined that there is no discernable vertical or horizontal movement of the trucks prior to, passing over, or beyond the WIM scale area.

MACTEC field technicians worked with the agency representative to compute factor adjustments and the agency representative made all equipment changes. This was expected given the information on the Traffic Sheet 18 completed as part of the assessment visit held on November 12th and 13th, 2003.

It was reported following the site assessment conducted on November 12th and 13th, 2003, that the pavement condition was unsatisfactory for conducting a performance evaluation. All but two of the wheel paths exceed the WIM Index limit of 0.789 m/km. Based on the profile data analysis, the Ohio SPS-2 WIM site does not meet the requirements for WIM site locations since more than half of the calculated LRI and SRI values for the pavement site are higher than the index limits. Therefore, the replacement of the pavement was and remains the preferred option for improving the quality of data from the WIM System.

To reduce the increased error effect of the weights reported by the WIM system as the weights of the trucks decrease, the agency should coordinate with the manufacturer to complete an assessment and calibration of the "span" setting for each weight sensor in the LTPP lane.

2 Corrective Actions Recommended

An assessment and adjustment to the system's span value needs to be performed.

This should be conducted under observation of the WIM equipment manufacturer. The "scan" setting currently being utilized is a setting for each load cell sensor that compensates for the inherent nonlinear increase in weight error as the raw weight input from the sensor decreases (fully loaded trucks 0% error, half-loaded trucks 4% error, empty truck 10% error).

The systems calibration should also be set up to allow for speed dependency compensation, rather than the overall compensation currently being used.

If these adjustments cannot reduce the variability of the tandem and gross axle weights, pavement remediation or replacement will need to be performed to reduce or eliminate the effect of the pavement on the truck dynamics.

3 Post Calibration Analysis

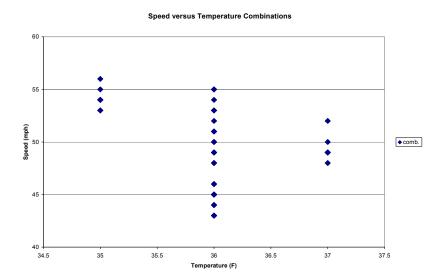
This analysis is based on test runs conducted February 4, 2004 from 12:30 p.m. onwards till 3:30 p.m. at test site 390200 on US 23 North, 7.6 miles North of SR 37. This SPS-2 site is at milepost 19.7 on the Northbound, right hand lane of a divided four-lane facility. No auto-calibration was used during test runs. The three trucks used for initial calibration and for the subsequent testing included:

- 1) 3S2 with a tractor having air suspension and trailer having a standard leaf spring suspension, unloaded, weighing 31,470 lbs.
- 2) 3S2 with a tractor having air suspension and trailer having a standard leaf spring suspension, loaded to 48,060 lbs.
- 3) 3S2 with a tractor having air suspension and trailer having a standard leaf spring suspension, loaded to 75,810 lbs.

The front axle suspension of the unloaded five-axle tractor semi-trailer (truck #1) consisted of one standard leaf spring. The drive tandem axle of the tractor used air suspension. The axle tandem of the trailer had a leaf spring suspension, with one standard leaf on the front axle and one standard leaf on the rear axle.

The front axle suspension of the partially loaded five-axle tractor semi-trailer (truck #2) consisted of two standard leaf springs. The drive tandem axle of the tractor used air suspension. The axle tandem of the trailer had a leaf spring suspension, with three standard leafs on the front axle and three standard leafs on the rear axle.

The front axle suspension of the fully loaded five-axle tractor semi-trailer (truck #3) consisted of two standard leaf springs. The drive tandem axle of the tractor used air suspension. The axle tandem of the trailer used a leaf spring suspension, with one standard leaf on the front axle and one standard leaf on the rear axle.


The trucks made a total of 40 passes over the WIM scale at speeds ranging from approximately 43 to 56 miles per hour. Pavement surface temperatures were recorded during the test runs and the temperature was essentially constant at 36 degrees Fahrenheit. The computed values of 95% confidence limits of each statistic for the test truck population are outside of the allowable limits except for single axles and axle spacing.

As seen in Table 2 the site failed the LTPP precision requirements.

Table 2 Post-Validation Results - 390200 - 4 February 2004

SPS-1, -2, -5, -6 and -8	95 %Confidence Limit of Error	Site Values	Pass/Fail
Loaded single axles	±20 percent	-7.2% <u>+</u> 5.6%	Pass
Loaded tandem axles	±15 percent	4.0% <u>+</u> 19.6%	Fail
Gross vehicle weights	±10 percent	0.4% <u>+</u> 10.3%	Fail
Vehicle speed	<u>+</u> 1 mph [2 km/hr]	0.6 <u>+</u> 2.1 mph	Fail
Axle spacing length	<u>+</u> 0.5 ft [150 mm]	-0.1 <u>+</u> 0.2 ft	Pass

The runs were conducted early afternoon and resulted in a very narrow range of temperatures. The runs were also conducted at various speeds to determine the effects of these variables on the performance of the WIM scale. To investigate these effects, the dataset was split into three speed groups, but could not be split into temperature groups. The distribution of runs within these groupings is illustrated in Figure 3-1. The trend of speed with temperature is an artifact of the graph and not the temperature range. The speed groups were divided as follows: Low speed = 43.0-47.0 mph, Medium speed = 47.1-52.0 mph and High speed = 52.1+ mph.

Figure 3-1 Post-Validation Speed-Temperature Distribution – 390200 - 4 February 2004

A series of graphs was developed to check graphically for any sign of a relationship between speed or temperature and the scale performance.

Figure 3-2 shows the By Truck GVW Error vs. Speed graph for the population as a whole. The figure shows that the error in GVW varies by truck. The variation is large for lighter truck compared to the medium and heavy trucks. Furthermore the errors appear to be trending down-wards for the lighter trucks and relatively horizontal for the loaded truck.

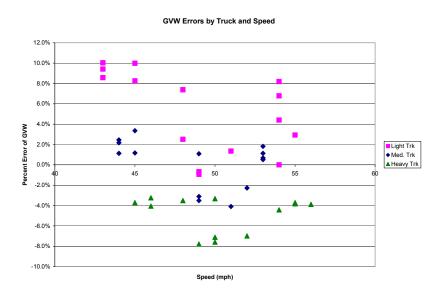


Figure 3-2 Post-validation GVW Percent Error vs. Speed by Truck – 390200 - 4 February 2004

Figure 3-3 shows the relationship between temperature and GVW percentage error. From Figure 3-3 it can be seen that accurate conclusions cannot be made since there is no significant temperature variation. The three temperature points being graphed are 35, 36 and 37 degrees Fahrenheit.

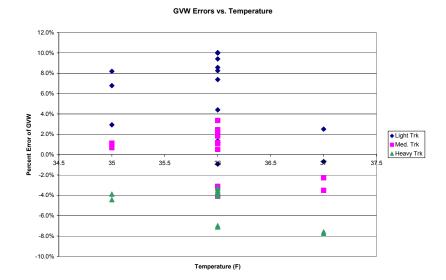


Figure 3-3 Post-Validation GVW Percent Error vs. Temperature by Truck – 390200 - 4 February 2004

Figure 3-4 shows the relationship between the spacing errors in feet and speeds. From Figure 3-4 it appears that the error in spacing is not significantly affected by the variation in speeds.

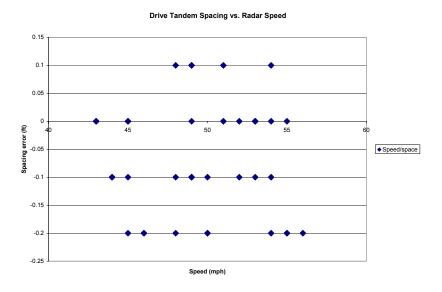


Figure 3-4 Post-Validation Speed vs. Spacing - 390200 - 4 February 2004

3.1 Temperature-based Analysis

There were no temperature ranges because the temperature was essentially the same during the post calibration process.

Table 3 Post-Validation Results by Temperature Bin – 390200 - 4 February 2004

Element	95%	High
	Limit	Temp.
Single axles	<u>+</u> 20 %	-7.2% <u>+</u> 5.6%
Tandem axles	<u>+</u> 15 %	4.0% <u>+</u> 19.6%
GVW	<u>+</u> 10 %	0.4% <u>+</u> 10.3%
Speed	<u>+</u> 1 mph	0.6 <u>+</u> 2.1 mph
Axle spacing	<u>+</u> 0.5 ft	-0.1 <u>+</u> 0.2 ft

Discussion of results by temperature from Table 3, Figure 3-5 and Figure 3-6 are not relevant since the temperature did not vary. The various figures are included for reporting consistency between sites.

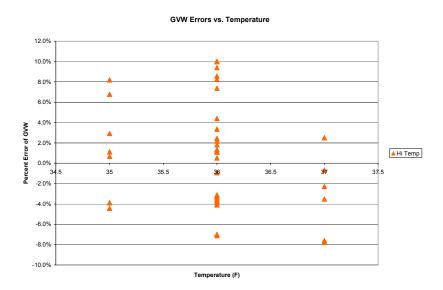


Figure 3-5 Post-Validation GVW Percent Error vs. Temperature by Group -390200 - 4 February 2004

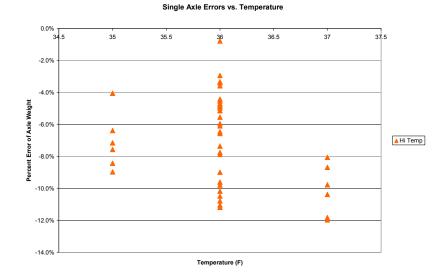


Figure 3-6 Post-Validation Steering Axle error vs. Temperature by Group - 390200 - 4 February 2004

3.2 Speed-based Analysis

The speed groups were divided as follows: Low speed = 43.0-47.0 mph, Medium speed = 47.1-52.0 mph and High speed = 52.1+ mph.

Table 4 Post-Validation Results by Speed Bin – 390200 - 4 February 2004

Element	95%	Low	Med.	High
	Limit	Speed	Speed	Speed
Single axles	<u>+</u> 20 %	-4.8% <u>+</u> 5.1%	-9.0% <u>+</u> 5.4%	-7.3% <u>+</u> 2.9%
Tandem axles	<u>+</u> 15 %	7.8% <u>+</u> 23.3%	0.5% <u>+</u> 17.1%	4.4% <u>+</u> 17.8%
GVW	<u>+</u> 10 %	3.5% <u>+</u> 11.5%	-2.4% <u>+</u> 8.8%	0.9% <u>+</u> 9.4%
Speed	<u>+</u> 1 mph	0.3 <u>+</u> 1.4 mph	1.2 <u>+</u> 2.6 mph	0.3 <u>+</u> 1.9 mph
Axle spacing	<u>+</u> 0.5 ft	$0.2 \pm 0.2 \text{ ft}$	$0.0 \pm 0.2 \text{ ft}$	-0.1 <u>+</u> 0.2 ft

From Table 4 there is no apparent trend in any of the elements with speed. With Figure 3-7 as a reference it would appear that if any trend exists it is not linear, but parabolic with a decrease in errors to around 50 miles per hour before the errors start increasing.

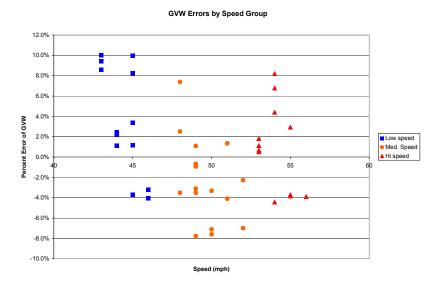


Figure 3-7 Post-Validation GVW Percent Error vs. Speed Group - 390200 - 4 February 2004

When Figure 3-7 is interpreted with a by truck component as it is in Figure 3-8 the dip isn't as apparent. Here the individual truck components of the variability are more clearly illustrated. The light truck (asterisks in the upper portion of the graph) are very widely spread. The medium truck (dots in the middle portion of the graph) are some what less variable with errors of plus or minus four percent of gross weight. The heavy truck (plus signs in the bottom portion of the graph) is under-estimated by four to eight percent, about the same variability as the medium truck. The range on the light truck by comparison was from one percent under to ten percent over on the GVW estimate.

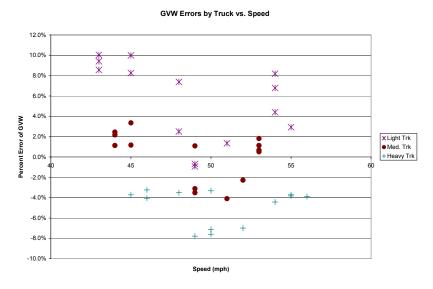


Figure 3-8 Post-Validation GVW Percent Error vs. Speed by Truck – 390200 - 4 February 2004

The single axles were also evaluated by speed group. As shown in Figure 3-9 it would appear that the underestimate of these axle weights increases with increasing speed. This trend is in fact dominated by the two lighter trucks.

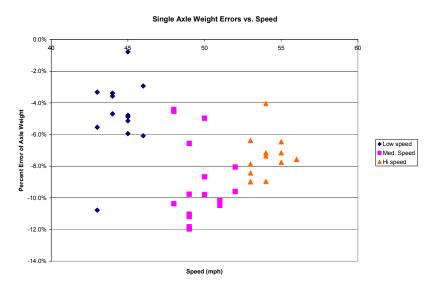


Figure 3-9 Post-Validation Steering Axle Percent Error vs. Speed Group - 390200 - 4 February 2004

Figure 3-10 shows the by truck distribution of errors. The solid symbols are the light and medium truck and show a distinct downward trend. The empty triangles of the empty truck however are scattered more randomly with respect to speed.

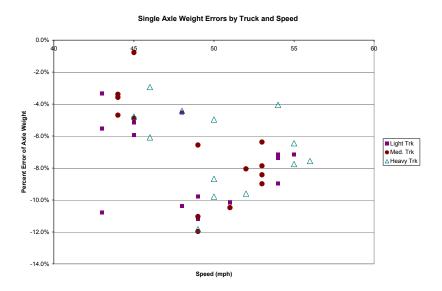


Figure 3-10 Post-Validation Steering Axle Percent Error vs. Speed by Truck - 390200 - 4 February 2004

Figure 3-11 shows the wide variation in response by truck and by tandem with speed. The light truck has the greatest difference in errors between the drive and trailer tandems. The Drive tandem is over-estimated by ten percent or less (the squares generally above the x-

axis). The trailer tandem however is any where from ten to thirty percent over-estimated. In contrast, the medium truck has a trailer tandem that is over-estimated to a greater degree than the drive tandem. (The diamonds are the medium trailer tandem and the triangles the drive tandem on the same vehicle.) The smallest difference in errors when comparing the tandems occurs with the heavy truck where the difference is an underestimate of five percent or less.

This truck specific variability would suggest a speed dependency influenced by pavement conditions and related to either weight and or length. It should be noted that all of the trucks have similar suspensions and that the heavy truck is six or seven feet shorter than the other two trucks.

Figure 3-11 Tandem Axle Weight Errors by Position and Truck vs. Speed -390200-4 February 2004

3.3 Classification Validation

The agency uses the 13-bin classification scheme of the FHWA Traffic Monitoring Guide.

A sample of 100 trucks was collected at the site. Video was taken at the site to provide ground truth for the evaluation. Based the sample it was determined that there are zero percent unknown vehicles and zero percent unclassified vehicles.

The second check is the ability of the algorithm to correctly distinguish between truck classes with no more than 2% errors in such classifications. The following are the error rates by class. They are expressed in expected error per 100 vehicles of the given class observed. Since the statistics come from a 100vehicle sample they reflect the actual percentages of the errors by class.

Table 5 Error rates for Truck Classification

Class	Error rate	Class	Error rate	Class	Error rate
4	-20	5	-70	6	0
7	N/A				
8	0	9	-3	10	0
11	0	12	N/A	13	N/A

4 Pavement Discussion

The pavement smoothness did contribute to out-of-range results. Slightly more than half of the index values are higher than the values from the assessment. Those values used data collected in December 2002. Most values are still clearly higher than the threshold currently identified for little if any influence on the results.

The pavement condition did not influence truck movement across the sensors. There have been no changes in condition or maintenance since the assessment. The discontinuity at the asphalt Portland cement concrete interface remains.

4.1 Profile analysis

The WIM site is a section of pavement that is 305 meters long with the WIM scale located at 274.5 meters from the beginning of the test section. An ICC profiler was used to collect longitudinal profiles of the test section with a sampling interval of 25 millimeters. The Long Range Index (LRI) incorporates the pavement profile starting 25.8 m prior to the scale and ending 3.2 m after the scale in the direction of travel. The Short Range Index (SRI) incorporates a shorter section of pavement profile beginning 2.7 m prior to the WIM scale and ending 0.5 m after the scale.

Profile data collected at the SPS WIM location by Stantec Inc. on February 4, 2004 have been processed through the LTPP SPS WIM Index software. This WIM scale is installed on a Portland cement concrete pavement. The results are shown in Table 6.

A total of 11 profiler passes have been conducted over the WIM site. Since the issuance of the LTPP directive on collection of longitudinal profile data for SPS WIM section, the requirements have been a minimum of 3 passes in the center of the lane and one shifted to each side. For this site the RSC has done 5 passes at the center of the lane, 3 passes shifted to the left side of the lane, and 3 passes shifted to the right side of the lane. Shifts to the sides of the lanes have been made such that data are collected as close to the lane edges as is safely possible. For each profiler pass, profiles are recorded under the left wheel path (LWP), and the right wheel path (RWP).

Table 6 shows the computed index values for all 11 profiler passes for this WIM site. The average values over the passes at each path are also calculated when three or more passes are completed. These are reflected in the next to last column of the table. Values above the index limits are presented in italics. Seven of twelve of these values are higher than

those contained in the assessment report for profile runs done in December 2002. The right-most column reflects the 2002 averages for comparison purposes.

Table 6 Long Range Index (LRI) and Short Range Index (SRI) - 390200 - 4 February 2004

Profiler	Passes		Pass 1	Pass 2	Pass 3	Pass 4	Pass 5	Ave. (2004)	Ave. (2002)
	LWP	LRI (m/km)	1.206	1.190	1.215	1.276	1.274	1.232	1.210
Contor	LWF	SRI (m/km)	1.490	1.293	1.672	1.448	1.781	1.537	1.548
Center	RWP	LRI (m/km)	0.863	0.858	0.822	0.838	0.770	0.830	0.823
	KWP	SRI (m/km)	0.657	0.581	0.700	0.587	0.664	0.638	0.878
Ι	LWP	LRI (m/km)	1.240	1.187	1.312			1.246	1.254
Left Shift	LWP	SRI (m/km)	2.026	1.567	1.824			1.806	1.667
Sillit	RWP	LRI (m/km)	1.020	0.817	1.028			0.955	0.988
	KWP	SRI (m/km)	0.979	0.834	1.174			0.996	1.532
	LWP	LRI (m/km)	1.580	1.561	1.510			1.550	1.289
Right	LWP	SRI (m/km)	1.754	1.894	1.685			1.778	1.712
Shift	RWP	LRI (m/km)	0.959	0.985	0.960			0.968	0.651
	KWP	SRI (m/km)	1.525	1.466	1.553			1.515	0.670

At all locations except the Right Wheel Path SRI locations the WIM Index value exceeds the limit of 0.789 m/km as can be seen in the table. These six values were slightly higher than the values reported in the assessment report. When all values are less than 0.789 it is presumed unlikely that pavement roughness will significantly influence sensor output. Values above that level may or may not influence the reported weights and potentially vehicle spacings. Based on the profile data analysis, the Ohio SPS-2 WIM site does not meet the requirements for WIM site locations since eighty-five percent of the calculated LRI and SRI values for the pavement site are higher than the index limits. If any remedial action is taken it should be done for the entire section. Suggested alternatives for pavement corrections are grinding or slab replacement. It should be noted that the existing pavement is tined Portland cement concrete. Whether or not this is an Agency requirement was not investigated. However, the tining makes it highly unlikely that the resulting profile index values will be below the performance threshold.

4.2 Distress survey and any applicable photos

The pavement condition is satisfactory. There were no distresses observed that would influence truck motions significantly

4.3 Vehicle-pavement interaction discussion

A visual survey of truck movement over the site determined that there is no discernable vertical or horizontal movement of the trucks prior to, passing over, or beyond the WIM scale area. Most of the trucks were traveling along the wheel path. Daylight cannot be seen between the tires and any of the sensors of the equipment indicating that the truck tires appear to be fully touching the sensors.

5 Equipment Discussion

The traffic monitoring equipment at this location includes Mettler-Toledo load cell sensors and WIM Controller. These sensors are installed in a staggered configuration in concrete pavement. The roadway outside this short section is asphalt concrete.

There were no changes in basic equipment operating condition since the assessment on November 12th and 13th, 2003.

5.1 Pre-Evaluation Diagnostics

A complete electronic and electrical check of all system components including in-road sensors, electrical power, and telephone service were performed immediately prior to the evaluation. All sensors and system components were found to be in working order.

A complete visual inspection of all WIM system and support components was also performed. All components were found to be in excellent physical condition.

The backup of the water being drained from the sensors identified during the assessment could not be reevaluated due to the accumulation of ice and snow in the median area where the drained water is accumulated. In conversation with the agency representative, it was explained that the water has backed up into the scale pit area and become frozen. Although there is adequate room for a significant amount of water, if the drainage pipe was to back up and become frozen, the scale pit will begin to fill, eventually keeping the scale from operating properly. It was observed during the colder temperatures that vehicle axles were missed or "ghost axles" added. It could not be determined if this was an effect of the scale not working properly, or the WIM controller.

5.2 Calibration Process

The equipment had two iterations of the calibration process between the initial 40 runs and the final 40 runs.

5.2.1 Calibration Iteration 1

The results of the 40 pre-calibration runs performed by the three test trucks produced an average combined GVW error of +5.3%. The compensation factor (P4) setting for that particular lane was increased from the original .740900 by 5.3% to .780262.

Table 7 Calibration 1 Results – 390200 - 4 February 2004

Element	95%	Mean plus or minus	Pass/
	Limit	Standard Deviations	Fail
Single axles	<u>+</u> 20 %	-2.2% <u>+</u> 3.4%	Pass
Tandem axles	<u>+</u> 15 %	9.1% <u>+</u> 23.2%	Fail
GVW	<u>+</u> 10 %	5.3% <u>+</u> 10.7%	Fail
Speed	<u>+</u> 1 mph	0.4 <u>+</u> 2.3 mph	Fail
Axle spacing	<u>+</u> 0.5 ft	$-0.1 \pm 0.3 \text{ ft}$	Pass

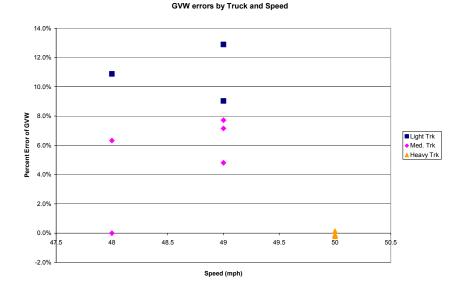


Figure 5-1 Calibration 1 Results - GVW by Truck by Speed – 390200 – 4 February 2004

The first set of 12 iterations performed by the three trucks produced an error of 4.2%. It was then determined that the P4 factor was not based on a percentage of the error, but actually represented a denominator that is a linear percentage adjustment to the scale weights, inversely proportional to the adjustment. The factor of .780262 was then increased to 5.00000.

5.2.2 Calibration Iteration 2

The second set of iterations produced a mean error of -1.7% for GVW. No further adjustments were made, and 28 additional runs were performed to complete the required 40 post calibration runs.

Table 8 Calibration 2 Results-390200 - 4 February 2004

Element	95% Limit	Mean plus or minus Standard Deviations	Pass/ Fail
Single axles	<u>+</u> 20 %	-8.7% <u>+</u> 5.5%	Pass
Tandem axles	<u>+</u> 15 %	1.4% <u>+</u> 15.9%	Fail
GVW	<u>+</u> 10 %	-1.7% <u>+</u> 8.8%	Fail
Speed	<u>+</u> 1 mph	1.3 <u>+</u> 2.6 mph	Fail
Axle spacing	<u>+</u> 0.5 ft	$0.0 \pm 0.2 \text{ ft}$	Pass

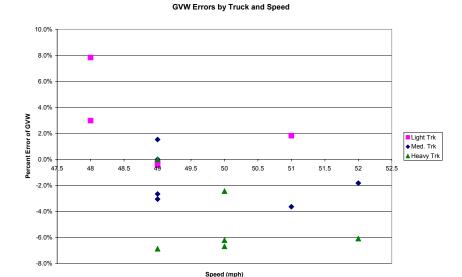


Figure 5-2 Calibration 2 Results - GVW by Truck by Speed - 390200 - 4 February 2004

5.3 Historical calibration information

This site has validation information from previous visits as well as the current one tabulated in the tables below.

Table 9 Classification Validation History - 390200

Date	Method	Mean Difference Percent			Percent	
		Class 9	Class 8	Other 1	Other 2	Unclassified
09/17/1999			No data	available		
04/09/2001	No data available					
05/29/2002		No data available				
11/12/2003	No.	0	17	N/A	N/A	0
	Trucks					
2/4/2004	No.	-3	0	-70	N/A	0
	Trucks			(Class 5)		

Table 10 Weight Validation History - 390200

Date	Method	Mean Error and (SD)		
		GVW	Single Axles	Tandem Axles
09/17/1999	Test Trucks		No data available	
04/09/2001	Test Trucks		No data available	
05/29/2002	Test Trucks	-1.5 (3.2)	2.1 (3.4)	-2.0 (3.1)
2/3/2004	Test Trucks	6.4 (3.6)	-1.3 (3.5)	10.5 (8.9)
2/4/2004	Test Trucks	0.4 (5.1)	-7.2 (2.8)	4.0 (9.8)

It should be noted that the 2002 validation was done with a single truck whereas this evaluation is using three trucks. The equipment has been Mettler-Toledo load cells for all validations.

5.4 Projected Maintenance/Replacement Requirements

Corrective maintenance on each WIM scale to resolve drainage deficiencies should be investigated and performed.

6 Pre-Validation Analysis

This initial analysis is based on test runs conducted February 3, 2004 and late morning hours at test site 390200 on US 23 North at 7.6 miles north of SR 37.

For the initial validation the three trucks made a total of 40 passes over the WIM scale at speeds ranging from approximately 47.0 to 60.0 miles per hour. Pavement surface temperatures were recorded during the test runs ranging from about 28.0 to 41.0 degrees Fahrenheit. The computed values of 95% confidence limits of each statistic for the total population are within Table 11.

As seen in Table 11 the site failed all the values except the loaded single axles and the axle spacing length.

SPS-1, -2, -5, -6 and -8	95 %Confidence Limit of Error	Site Values	Pass/Fail
Loaded single axles	±20 percent	-1.3% <u>+</u> 7.0%	Pass
Loaded tandem axles	±15 percent	10.5% <u>+</u> 17.8%	Fail
Gross vehicle weights	±10 percent	6.4% <u>+</u> 7.2%	Fail
Vehicle speed	<u>+</u> 1 mph [2 km/hr]	0.1 <u>+</u> 2.0 mph	Fail
Axle spacing length	<u>+</u> 0.5 ft [150 mm]	$-0.1 \pm 0.2 \text{ ft}$	Pass

The test runs were conducted started during late morning hours and was carried out till mid afternoon. The runs were also conducted at various speeds to determine the effects of these variables on the performance of the WIM scale. To investigate these effects, the dataset was split into three speed groups and two temperature groups. The distribution of runs within these groupings is illustrated in Figure 6-1. The speed groups were divided as follows: Low speed = 42.0-48.0 mph, Medium speed = 48.1-54.0 mph and High speed = 54.1+ mph. The two temperature groups were created by splitting the runs between those at 28.0 to 32.0 for Low temperature, and 32.02 to 41.0 for High temperature. There is a clear link between the speed and the temperature in the combinations shown in Figure 6-1.

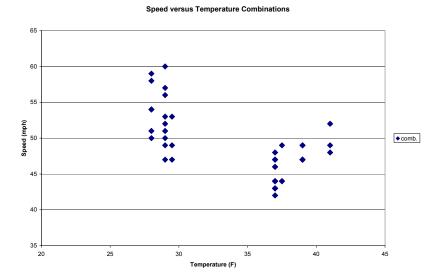


Figure 6-1 Pre-Validation Speed-Temperature Distribution-390200 - 3 February 2004

A series of graphs was developed to check graphically for any sign of a relationship between speed or temperature and the scale performance.

Figure 6-2 shows the by truck GVW Percent Error vs. Speed for the population as a whole. From Figure 6-2 it appears that the error in GVW is varying significantly for lighter truck compared to the medium and heavily loaded trucks.

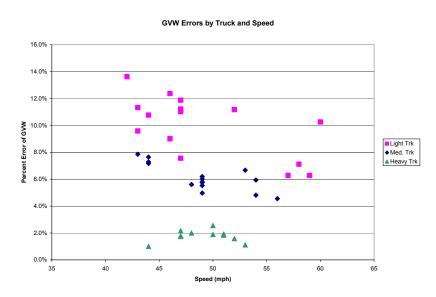


Figure 6-2 Pre-validation GVW Percent Error vs. Speed by Truck– 390200 - 3 February 2004

Figure 6-3 shows the relationship between Temperature and GVW percentage error. From Figure 6-3 it appears that as the temperature increased the error in GVW for lighter

truck increased significantly compared to the medium and the heavily loaded trucks. This is probably the result of confounding temperature with speed.

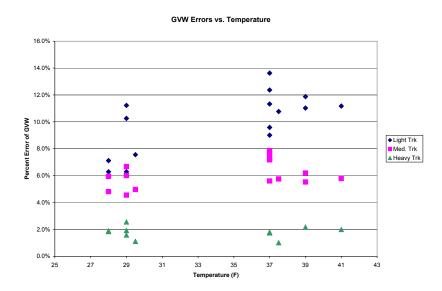


Figure 6-3 Pre-Validation GVW Percent Error vs. Temperature by Truck – 390200 - 3 February 2004

Figure 6-4 shows the relationship between the spacing errors in feet and speeds. From this figure it can be seen that the spacing errors are not significantly affected by the increase in speed except for a few outliers.

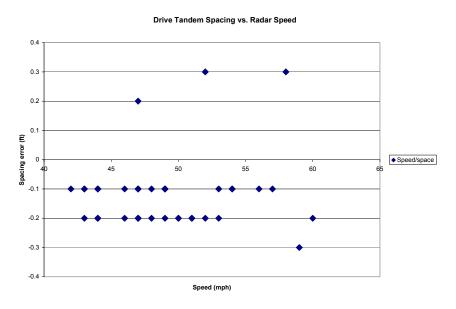


Figure 6-4 Pre-Validation Speed vs. Spacing - 390200 - 3 February 2004

6.1 Temperature-based Analysis

The two temperature groups were created by splitting the runs between those at 28.0 to 32.0 for Low temperature, and 32.0 to 41.0 for High temperature.

Table 12 Pre-Validation Results by Temperature Bin - 390200 - 3 February 2004

Element	95%	Low	High
	Limit	Temp.	Temp.
Single axles	<u>+</u> 20 %	-2.2% ± 5.3%	-0.6% <u>+</u> 8.3%
Tandem axles	<u>+</u> 15 %	-8.4% <u>+</u> 14.7%	12.1% <u>+</u> 19.8%
GVW	<u>+</u> 10 %	5.1% <u>+</u> 6.2%	7.3% <u>+</u> 7.9%
Speed	<u>+</u> 1 mph	0.3 <u>+</u> 3.2 mph	0.0 <u>+</u> 0.0 mph
Axle spacing	+ 0.5 ft	$-0.1 \pm 0.3 \text{ ft}$	-0.1 <u>+</u> 0.2 ft

From Table 12, Figure 6-5 and Figure 6-6 it appears that the increase in the temperature did not significantly affect the error in GVW and single axles. The trend is slight and is probably influenced more by speed than temperature.

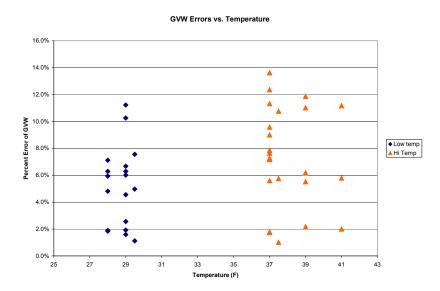


Figure 6-5 Pre-Validation GVW Percent Error vs. Temperature by Group – 390200 - 3 February 2004

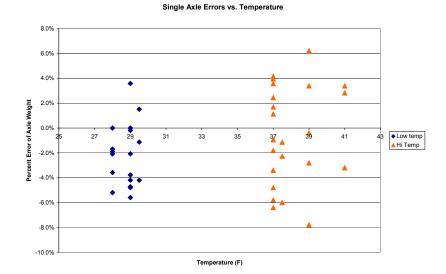


Figure 6-6 Pre-Validation Steering Axle Error vs. Temperature by Group - 390200 - 3 February 2004

6.2 Speed-based Analysis

The speed groups were divided as follows: Low speed = 42.0-48.0 mph, Medium speed = 48.1-54.0 mph and High speed = 54.1+ mph. The high-speed group is the smallest in size and effectively runs that exceed the upper end of the range of target speeds. The small size is a contributor to the results of the analysis since *t*-statistics are being used rather than a normal distribution in computing the two standard deviation limit.

Table 13 Pre-Validation Results by Speed Bin - 390200 - 3 February 2004

Element	95%	Low	Med.	High
	Limit	Speed	Speed	Speed
Single axles	<u>+</u> 20 %	-1.2% <u>+</u> 8.8%	-0.7% <u>+</u> 5.2%	-3.9% <u>+</u> 6.3%
Tandem axles	<u>+</u> 15 %	13.2% <u>+</u> 21.0%	6.5% ± 12.0%	12.6% <u>+</u> 13.9%
GVW	<u>+</u> 10 %	7.6% <u>+</u> 8.4%	4.6% ± 5.6%	6.9% <u>+</u> 5.8%
Speed	<u>+</u> 1 mph	0.1 <u>+</u> 0.9 mph	$0.3 \pm 1.0 \text{ mph}$	$0.0 \pm 7.9 \text{ mph}$
Axle spacing	<u>+</u> 0.5 ft	$0.2 \pm 0.2 \text{ ft}$	$-0.1 \pm 0.3 \text{ ft}$	$-0.1 \pm 0.6 \text{ ft}$

From Table 13, Figure 6-7 thru Figure 6-10 it may appear that the average error in GVW and single axles is decreasing with increases in speed.

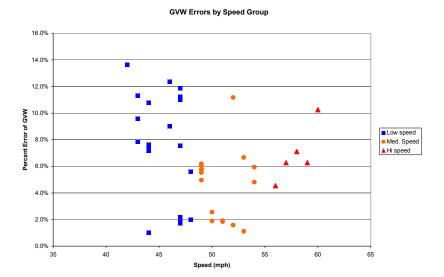


Figure 6-7 Pre-Validation GVW Percent Error vs. Speed Group - 390200 - 3 February 2004

In case of the trucks, the error in GVW is varying significantly for lighter truck compared to the heavily loaded trucks. In Figure 6-8 the plus signs represent the heavy truck with a over-estimate of weight of about two percent. The asterisks represent the light truck with an over-estimate of anywhere from six to fourteen percent. The dots are the medium truck whose errors are over-estimates of four to eight percent.

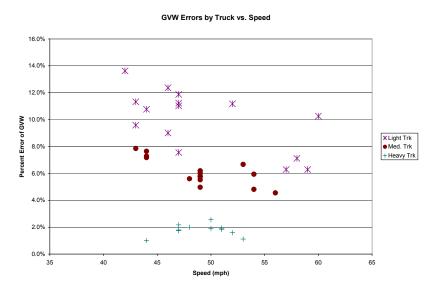


Figure 6-8 Pre-Validation GVW Percent Error vs. Speed by Truck – 390200 - 3 February 2004

For single axles the overall variability with increasing speeds as the speeds approach the speed limit at the site. The change in variability for single axles by speed group is shown in Figure 6-9.

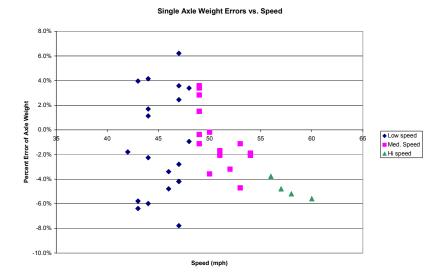


Figure 6-9 Pre-Validation Steering Axle Percent Error vs. Speed Group - 390200 - 3 February 2004

The errors for single axles when disaggregated by truck show varying patterns Figure 6-10. For the light truck the single axle weights (asterisks) are under-estimated. For the medium truck the errors go from over-estimates to under-estimates as speeds increase. A somewhat similar pattern exists for the heavy truck (triangles).

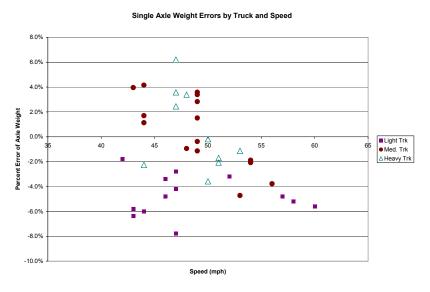


Figure 6-10 Pre-Validation Steering Axle Percent Error vs. Speed by Truck - 390200 - 3 February 2004

6.3 Classification Validation

The agency uses the 13-bin classification scheme of the FHWA Traffic Monitoring Guide. The agency had made an attempt to correct the classification problem noted at the assessment with a software upgrade.

A sample of 100 trucks was collected at the site. Video was taken at the site to provide ground truth for the evaluation. Based the sample it was determined that there are zero percent unknown vehicles and zero percent unclassified vehicles.

The second check is the ability of the algorithm to correctly distinguish between truck classes with no more than 2% errors in such classifications. The following are the error rates by class. They are expressed in expected error per 100 vehicles of the given class observed. Since the statistics come from a 100 vehicle sample they reflect the actual percentages of the errors by class.

Table 14 Error rates for Truck Classification

Class	Error rate	Class	Error rate	Class	Error rate
4	-20	5	-70	6	0
7	N/A				
8	0	9	-3	10	0
11	0	12	N/A	13	N/A

These figures exactly match the post-calibration figures since only one calibration validation check was done.

7 Data Availability and Quality

As of February 10, 2004 this site does not have at least 5 years of research quality data. Research quality data is defined to be at least 210 days in a year of data of known calibration meeting LTPP's precision requirements.

Data that has validation information available has been reviewed in light of the patterns present in the two weeks immediately following a validation/calibration activity. A determination of research quality data is based on the consistency with the validation pattern. Data that follows consistent and rational patterns in the absence of calibration information may be considered nominally of research quality pending validation information with which to compare it. Data that is inconsistent with expected patterns and has no supporting validation information is not considered research quality.

The amount and coverage for the site is shown in Table 15. The value for months is a measure of the seasonal variation in the data. The indicator of coverage indicates whether day of week variation has been accounted for on an annual basis. As can be seen from the table 1998, 2000 and 2001 have a sufficient quantity to be considered "full" years. Calibration of classification and weight equipment was done on September 17th 1999, April 9th 2001 and May 29th 2002 as of December 2003 upload. Statistics on data quality are only available for the May 29th 2002 validation. Together with the previously gathered calibration information it can be seen that at least 5 additional years of research quality data are needed to meet the goal of a minimum of 5 years of research classification and weight data.

Table 15 Amount of Traffic Data Available 390200 – 4 February 2004

Year	Classification	Months	Coverage	Weight	Months	Coverage
	Days			Days		
1998	255	11	Complete	272	11	Complete
			Week	(229)*		Week
2000	274	11	Complete	323	12	Complete
			Week			Week
2001	273	12	Complete	290	11	Complete
			Week			Week

^{*} Days of Data after eliminating February and March information

GVW graphs and characteristics associated with them are used as data screening tools. As a result classes constituting more that ten percent of the truck population are considered major sub-groups whose evaluation characteristics should be identified for use in screening. The typical values to be used for reviewing incoming data after a validation are determined starting with data from the day after the completion of a validation.

Class 9's constitute more than ten percent of the truck population. Based on the data collected from the end of the last calibration iteration the following are the expected values for these populations. The precise values will need to be determined by the RSCs on receipt of the first 14 days of data after the successful validation. For sites that do not meet LTPP precision requirements, this period may still be used as a starting point from which to track scale changes.

Table 16 GVW Characteristics of Major sub-groups of Trucks - 390200 - 4 February 2004

	Class 9
Percentage Overweights	0.8%
Percentage Underweights	2.8%
Unloaded Peak	32,000 lbs
Loaded Peak	78,000 lbs

The expected percentage unclassified is zero.

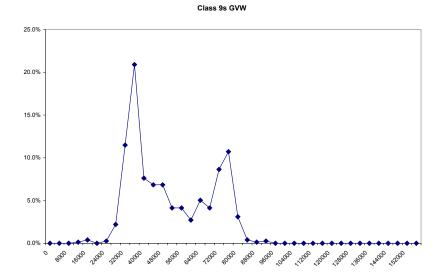


Figure 7-1 Graph of Expected GVW distribution Class 9 – 390200 - 4 February 2004

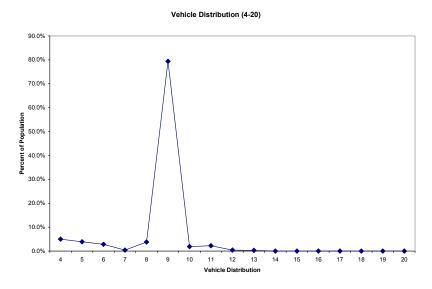


Figure 7-2 Expected vehicle distribution - 390200 - 4 February 2004

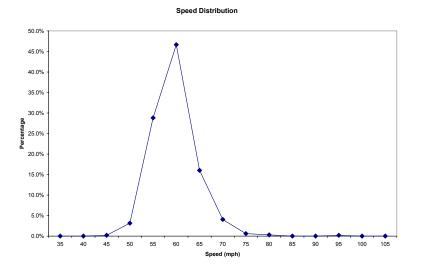


Figure 7-3 Expected speed distribution - 390200 - 4 February 2004

8 Data Sheets

The following is a listing of data sheets incorporated in Appendix A.

Sheet 19 – Truck 1 – Class 9 empty (4 pages)

Sheet 19 – Truck 2 – Class 9 partially loaded (4 pages)

Sheet 19 – Truck 3 – Class 9 fully loaded (4 pages)

Sheet 20 – Classification verification – post-validation (2 pages)

Sheet 21 – Pre-validation (6 pages)

Sheet 21 – Calibration Iteration 1 – (2 page)

Sheet 21 – Calibration Iteration 2 / Post-validation (4 pages)

9 Updated handout guide and Sheet 17

A copy of the handout has been included following page 27. It includes a current Sheet 17 with all applicable maps and photographs. There are no significant changes in the information provided except for the truck scales.

10 Updated Sheet 18

A current Sheet 18 indicating the contacts, conditions for assessments and evaluations has been attached following the updated handout guide.

11 Traffic Sheet 16(s)

Sheet 16s for the pre-validation and post-validation conditions are attached at the very end of the report following the updated Sheet 18 information.

HANDOUT GUIDE FOR SPS WIM FIELD PERFORMANCE EVALUATION AND CALIBRATION

STATE: Ohio

SHRP ID: 0200

1.	General Information	.]			
	Contact Information				
	Agenda				
4.	Site Location/ Directions				
5.	Truck Route Information				
6.	Sheet 17 – Ohio (390200)				
г:					
Figu	res				
Ci au	may 4.1. Spection 200200 many Delaystane Ohio	_			
	re: 4.1: Section 390200 near Delaware, Ohio				
_	Figure 5.1: Truck Map at 390200				
Figu	re 6.1: Site Map at 390200	. 8			

2/20/2004

1. General Information

SITE ID: 390200

LOCATION: US 23 North (Mile Post: 19.7) at Delaware

VISIT DATE: February 3rd and 4th, 2004

VISIT TYPE: Field Performance Evaluation and Calibration

2. Contact Information

POINTS OF CONTACT:

Assessment Team: Dean J. Wolf, 301-210-5105, djwolf@mactec.com

Highway Agency: Steven Jessberger, 614-752-4057,

steven.jessberger@dot.state.oh.us

Roger Green, 614-995-5993, roger.green@dot.state.oh.us

FHWA COTR: Debbie Walker, 202-493-3068, deborah.walker@fhwa.dot.gov

FHWA Division Office Liaison: Herman Rodrigo, 614-280-6850,

herman.rodrigo@fhwa.dot.gov

LTPP SPS WIM WEB PAGE: http://www.tfhrc.gov/pavement/ltpp/spstraffic/index.htm

3. Agenda

BRIEFING DATE: No Briefing Requested

ONSITE PERIOD: February 3rd and 4th, 2004

TRUCK ROUTE CHECK: Completed at Assessment Visit (See Truck Route)

4. Site Location/ Directions

NEAREST AIRPORT: Port Columbus International Airport, Columbus, OH

DIRECTIONS TO THE SITE: 7.6 miles North of SR 37

MEETING LOCATION: On site

WIM SITE LOCATION: US 23North, Milepost 19.7

WIM SITE LOCATION MAP: See Figure 4.1



Figure: 4.1: Section 390200 near Delaware, Ohio

5. Truck Route Information

ROUTE RESTRICTIONS: None

SCALE LOCATION: 171 Milepost 129, Hours: 7:00 a.m.-3:00 p.m. and 8:00 p.m.-4:00 a.m. Contact: Don Brane (740) 965-3105. Cat Scales at Pilot Travel, I-71 at Exit 131, Sunbury, OH.

TRUCK ROUTE:

- Northbound Turnaround –1.678 miles from site at SR 229 (40⁰ 26.035' North and 83⁰ 04. 363' West)
- Southbound Turnaround –1.424 miles from site at Irwin Road (40° 23. 356' North and 83° 04.459' West)

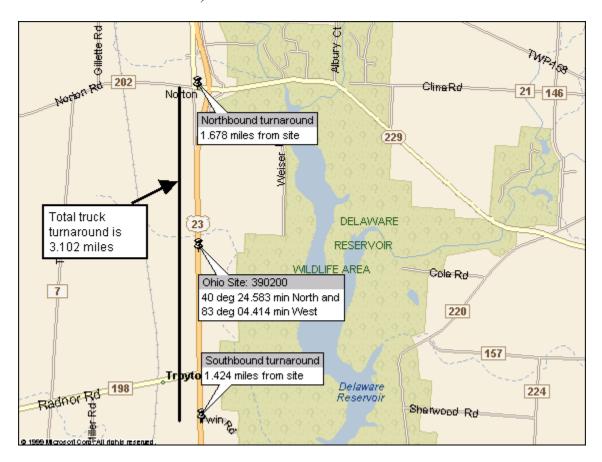
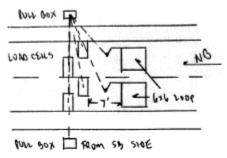
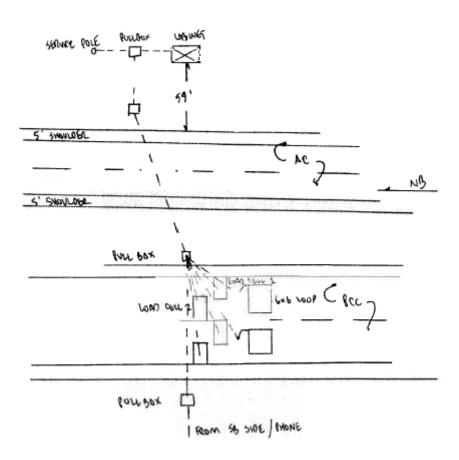


Figure 5.1: Truck Map at 390200


6. Sheet 17 – Ohio (390200)	
1.* ROUTEUS 23 MILEPOST19.745LTPP DI	RECTION - N S E W
2.* WIM SITE DESCRIPTION - Grade<_1 % Nearest SPS section upstream of the site _0 2 6_ Distance from sensor to nearest upstream SPS Section	Sag vertical Y/N1405ft
3.* LANE CONFIGURATION Lanes in LTPP direction2 Lane width	_12_ft
Median - $1 - painted$ Shoulder - $2 - physical barrier$ $\frac{3 - grass}{4 - none}$	1 – curb and gutter 2 – paved AC 3 – paved PCC 4 – unpaved 5 – none
Shoulder width _10ft	
4.* PAVEMENT TYPE Cement Concrete	
5.* PAVEMENT SURFACE CONDITION – Distress Survey Date	to Filename to Filename
6. * SENSOR SEQUENCELoop – Load Cell – Load Cell	_
7. * REPLACEMENT AND/OR GRINDING/ REPLACEMENT AND/OR GRINDING/ REPLACEMENT AND/OR GRINDING/	/ /
8. RAMPS OR INTERSECTIONS Intersection/driveway within 300 m upstream of sensor loadistance Intersection/driveway within 300 m downstream of sensor distance Is shoulder routinely used for turns or passing? Y/N	
9. DRAINAGE (Bending plate and load cell systems only)	1 - Open to ground2 - Pipe to culvert3 - None
Clearance under plate60 in Clearance/access to flush fines from under system Y / N	


Distanc Distanc	ATION and as LTPP lane Y / N Median Y / N Behind barrier Y / N e from edge of traveled lane _54_ ft e from system ft Mettler - Toledo
Contact	CESS controlled by LTPP / <u>STATE</u> / JOINT? - name and phone number Steven Jessberger 614-752-4057 te - name and phone number Dave Gardner 614-752-5740
AC in cabinet?	inet from drop10ft <u>Overhead</u> / underground / solar / erAmer. Elec. PowerPhone number
12. * TELEPHONE Distance to cab Service provide	inet from drop _991ft Overhead / <u>under ground</u> / cell? erVerizonPhone Number
13.* SYSTEM (software) Computer conn	are & version no.)Mettler - Toledo ection – <u>RS232</u> / Parallel port / USB / Other
14. * TEST TRUCK T	URNAROUND time10 minutes DISTANCE _6.2 mi.
Phone source Cabinet exterior Cabinet interior Weight sensors Classification sensors Other sensors Description Downstream direction	FILENAME _AC_Meter_Box_TO_1_7A_39_0200_11_12_03.JPG _Cabinet_Exterior_TO_1_7A_39_0200_11_12_03.JPG _Cabinet_Interior_TO_1_7A_39_0200_11_12_03.JPG _Load_Cells_1_TO_1_7A_39_0200_11_12_03.JPG _Loop_Sensors_1_TO_1_7A_39_0200_11_12_03.JPG _at sensors on LTPP lane 1_7A_39_0200_11_12_03.JPG
	A_39_0200_11_12_03.JPG

COMMENTS

GPS Coordinates for site: 40 ^o 24.583' North and 83 ^o 04.414' West
Amenities - 5.5 miles_ south of site
Food -Wendy's & Mc Donald's
Gas - Citgo, Sunoco, mini-mart
Miscelleaneous - 84 Lumber
HotelTravel Lodge
10.0_miles south of site
FoodDamon's, Wendy's, Taco Bell, Kroger's
HotelSuper 8, Ameri Host
Miscellaneous Banks, Wal-Mart, Sears Hardware
Contact for Lane SwitchDave Zurbe - 740-363-1251_(ext 266) - Striping
Roger Green – LTPP Division Liaison (Ohio)
Delaware County Garage – Bob Lloyd 740-369-1569
Types of Trucks: Three Class 9s
Expected Weight Ranges: Truck 1 – Empty with no suspension requirements;
Truck 2 – partially loaded 28,000 – 50,000 lbs no suspension requirements;
Truck 3 – 72,000 to 80,000 legal limit on gross and axles, air suspension;
Speeds to be run: 45 to 55 mph_(Posted Speed Limit is 55 mph)
Corrective actions recommended: Controller classification firmware should
be updated to facilitate the use of weights in the classification process. Grinding or
replacement of the travel lane_pavement.
Speed bias is 0.6 with a 2SD limit of 2.1
COMPLETED BYDean J. Wolf
COLIN DETER DI
PHONE _301-210-5105DATE COMPLETED _0_ 2_ /_0_ 4_ / _2_ 0_ 0_ 4_

Sketch of equipment layout

Site Map

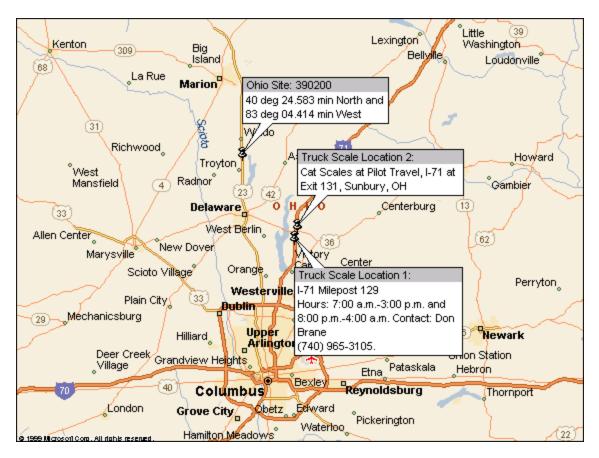


Figure 6.1: Site Map at 390200

Downstream_1_TO_1_7A_39_0200_11_12_03.JPG (Distress Photo 1)

Downstream_2_TO_1_7A_39_0200_11_12_03.JPG (Distress Photo 2)

Upstream_1_TO_1_7A_39_0200_11_12_03.JPG (Distress Photo 3)

AC Meter Box TO 1 7A 39 0200 11 12 03.JPG

Cabinet_Exterior_TO_1_7A_39_0200_11_12_03.JPG

Cabinet Interior TO 1 7A 39 0200 11 12 03.JPG

Load_Cells_1_TO_1_7A_39_0200_11_12_03.JPG

Loop_Sensors_1_TO_1_7A_39_0200_11_12_03.JPG

Downstream_1_TO_1_7A_39_0200_11_12_03.JPG

Upstream_1_TO_1_7A_39_0200_11_12_03.JPG

STATE CODE 39

Sheet 18 LTPP Traffic Data

WIM SITE COORDINATION

SPS Project ID 0 2 0 0

- 1. Equipment
 - Maintenance contract with purchase / separate contract LTPP / separate contract State / state personnel

Contact: Steven Jessberger 614-752-4057

- Purchase by LTPP / <u>State</u>
 Constraints on specifications (sensor, electronics, warranties, maintenance, installation)
- Installation <u>Included with purchase</u> / separate contract by State / state personnel / LTPP contract
- Calibration Vendor / State / LTPP
- Manuals and software <u>State</u> / LTPP
- Pavement PCC/AC <u>always new</u> / replacement as needed / grinding and maintenance as needed / maintenance only / no remediation
- Power overhead / <u>underground</u> / solar <u>billed to State</u> / LTPP / N/A
- Communication <u>Landline</u> / Cellular / Other <u>billed to State</u> / LTPP / N/A
- 2. Site visits Evaluation
 - WIM Validation Check advance notice required 14 days / weeks

rucks – air suspension 3S2	State / <u>LTPP</u>
2 nd common	State / <u>LTPP</u>
3 rd common	State / LTPP
4 th common	State / LTPP
Loads	State / <u>LTPP</u>
Contact	
Drivers	State / LTPP
Contact	
Contractors with prior succ	cessful experience in WIM calibration in state:
Nearest static scale (comm	ercial or enforcement)

- Profiling – short wave -- <u>permanent</u> / temporary site marking -- long wave – <u>permanent</u> / temporary site marking

WIM SITE COORDINATION

SPS Project_ID 0 2 0 0

 Pre-visit data Classification and speed: Contact Steven Jessberger Typical operating conditions (congestion, high truck volumes) Contact Steven Jessberger Equipment operational status: Contact Steven Jessberger
- Access to cabinet <u>State only</u> / Joint / LTPP <u>Key</u> / Combination
 State personnel required on site Y / N Contact information Steven Jessberger
- Enforcement Coordination required Y / N Contact information
- Traffic Control Required Y/ N Contact information
- Maximum number of personnel on site 4 Invitees
- Authorization to calibrate site State only / <u>LTPP</u>
- Special conditions
 3. Data Processing Down load download and copy to state Data Review Data submission for QC State per LTPP guidelines / State weekly / LTPP State - weekly; twice a month; monthly / LTPP
4. Site visits – Validation
- WIM Validation Check - advance notice required 14 <u>days</u> / weeks LTPP Semi-annually / Sate per LTPP protocol semi-annually / State other
- Trucks – air suspension 3S2 State / LTPP 2 nd common State / LTPP 3 rd common State / LTPP 4 th common State / LTPP Loads State / LTPP Contact

State / \underline{LTPP}

Drivers

WIM SITE COORDINATION

SPS Pro	iect ID	0200)

Contact
Contractors with prior successful experience in WIM calibration in state:
 Profiling – short wave <u>permanent</u> / temporary site marking long wave – <u>permanent</u> / temporary site marking
 Pre-visit data Classification and speed: Contact Steven Jessberger Equipment operational status: Contact Steven Jessberger
- Access to cabinet State only / Joint / LTPP Key / Combination
 State personnel required on site Y / N Contact information Steven Jessberger
- Enforcement Coordination required Y / \underline{N} Contact information
- Traffic Control Required Y/N Contact information
- Authorization to calibrate site State only / <u>LTPP</u>
- Special conditions
5. Site visit – Construction
- Construction schedule and verification – Contact
- Notice for straightedge and grinding check days / weeks On site lead to direct / accept grinding – State / LTPP
- WIM Calibration - advance notice required days / weeks Number of lanes LTPP / State per LTPP protocol / State Other
- Trucks – air suspension 3S2 State / LTPP 2 nd common State / LTPP Loads State / LTPP Drivers State / LTPP

Sheet 18 LTPP Traffic Data

STATE_CODE 39

WIM SITE COORDINATION

SPS Project_ID 0 2 0 0

-	Profiling	straight edge permanentlong wave - permanent / te	1 ,
-	Pre-visit d - Class Equi	sification and speed: Contact	tact
-	Access to State of	cabinet only / Joint / LTPP	Key / Combination
- Co		onnel required on site Y / N mation	
- Co		ent Coordination required Y / nation	
- Co		ntrol Required Y/N	
-	Authorizat	tion to calibrate site State or	ıly / LTPP
-	Special co	nditions	

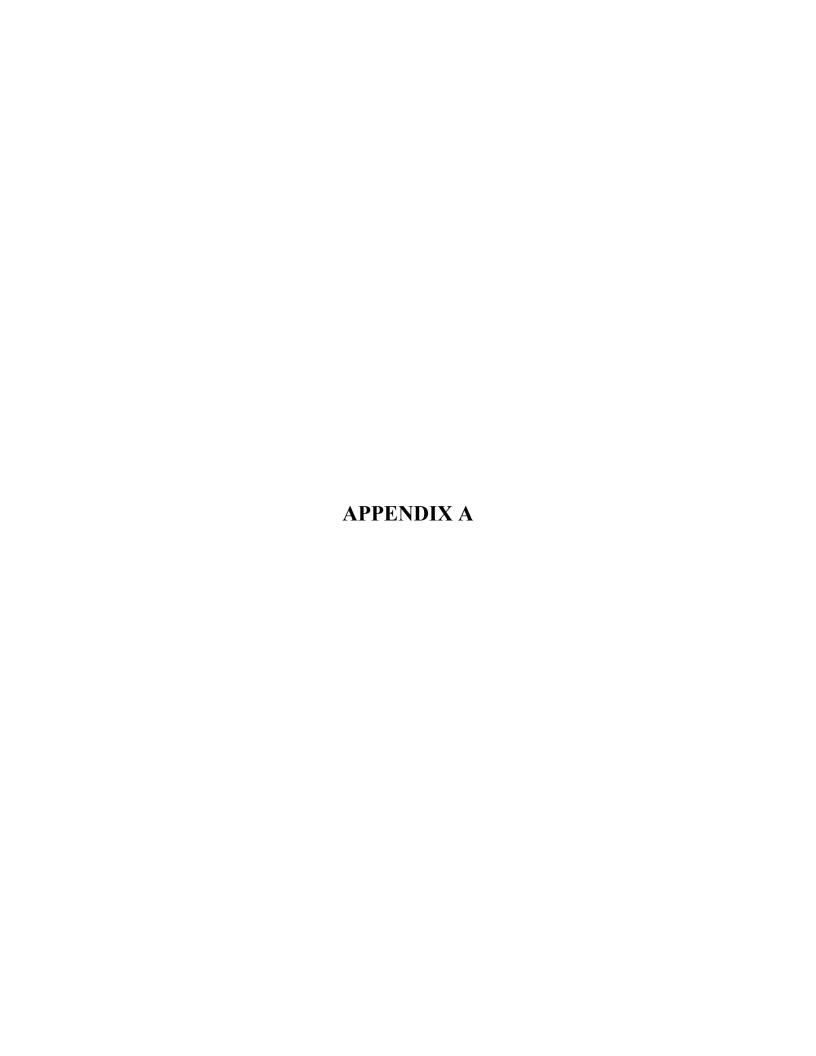
- 6. Special conditions
 - Funds and accountabilityReports

 - Other

SHEET 16 LTPP MONITORED TRAFFIC DATA SITE CALIBRATION SUMMARY

*STATE ASSIGNED ID	[7_2_1_]
*STATE CODE	[_39_]
*SHRP SECTION ID	[0200_]

SITE CALIBRATION INFORMATION


1. L	ATE OF CALIBRATION (MONTH/DAT/TEAR)
2. * T	YPE OF EQUIPMENT CALIBRATEDWIMCLASSIFIER XXBOTH
	EASON FOR CALIBRATION REGULARLY SCHEDULED SITE VISIT EQUIPMENT REPLACEMENT DATA TRIGGERED SYSTEM REVISION OTHER (SPECIFY) SITE EVALUATION AND CALIBRATION
4. * S	ENSORS INSTALLED IN LTPP LANE AT THIS SITE (CHECK ALL THAT APPLY): _ BARE ROUND PIEZO CERAMIC BARE FLAT PIEZO BENDING PLATES _ CHANNELIZED ROUND PIEZO X_ LOAD CELLS QUARTZ PIEZO _ CHANNELIZED FLAT PIEZO X_ INDUCTANCE LOOPS CAPACITANCE PADS _ OTHER (SPECIFY)
5. EQ	UIPMENT MANUFACTURERMettler Toledo
	WIM SYSTEM CALIBRATION SPECIFICS**
6.**CA	LIBRATION TECHNIQUE USED: TRAFFIC STREAMSTATIC SCALE (Y/N) _XX TEST TRUCKS
	3 NUMBER OF TRUCKS COMPARED3_ NUMBER OF TEST TRUCKS USED
	13_ PASSES PER TRUCK TRUCK TRUCK TYPE SUSPENSION TYPE PER FHWA 13 BIN SYSTEM 1 9 2 2 2 2 2 2 3 - OTHER (DESCRIBE) 3 9 2 2 2 2 2 2 2 2 2
7.	SUMMARY CALIBRATION RESULTS (EXPRESSED AS A PERCENT) MEAN DIFFERENCE BETWEEN DYNAMIC AND STATIC GVW6.4% STANDARD DEVIATION3.6% DYNAMIC AND STATIC SINGLE AXLES10.5% STANDARD DEVIATION3.5% DYNAMIC AND STATIC DOUBLE AXLES10.5% STANDARD DEVIATION8.9%
8.	3 NUMBER OF SPEEDS AT WHICH CALIBRATION WAS PERFORMED
9.	DEFINE THE SPEED RANGES USED (MPH)
10.	CALIBRATION FACTOR (AT EXPECTED FREE FLOW SPEED)7409_(P4)
11.**	IS AUTO-CALIBRATION USED AT THIS SITE? (Y/N)N IF YES, LIST AND DEFINE AUTO-CALIBRATION VALUE:
	CLASSIFIER TEST SPECIFICS***
12.***	METHOD FOR COLLECTING INDEPENDENT VOLUME MEASUREMENT BY VEHICLE CLASS:VIDEOX_MANUALPARALLEL CLASSIFIERS
13.	METHOD TO DETERMINE LENGTH OF COUNT TIME100 NUMBER OF TRUCKS
14.	MEAN DIFFERENCE IN VOLUMES BY VEHICLES CLASSIFICATION: *** FHWA CLASS 9 3 FHWA CLASS _570 *** FHWA CLASS 8 0 FHWA CLASS FHWA CLASS FHWA CLASS *** PERCENT "UNCLASSIFIED" VEHICLES: 0
	*** PERCENT "UNCLASSIFIED" VEHICLES:0
PERS	ON LEADING CALIBRATION EFFORT: Dean J. Wolf
CON	TACT INFORMATION: 301-210-5105 rev. November 9, 1999

SHEET 16 LTPP MONITORED TRAFFIC DATA SITE CALIBRATION SUMMARY

*STATE ASSIGNED ID	[7_	_2_	_1_]
*STATE CODE		- [_	3_	9_]
*SHRP SECTION ID	[0	_2	_0	0_]

SITE CALIBRATION INFORMATION

1. L	PATE OF CALIBRATION (MONTH/DAT/TEAR)	[_02_/ _04_	/ _200_	+
2. * T	YPE OF EQUIPMENT CALIBRATED WIN	MCLASSI	IFIER	_XX BOTH
	EASON FOR CALIBRATION REGULARLY SCHEDULED SITE VISIT EQUIPMENT REPLACEMENT DATA TRIGGERED SYSTEM REVISION OTHER (SPECIFY) SITE EVALUATION	RESE TRAI NEW AND CALIBRATION	EARCH NING EQUIPMEN	T INSTALLATION —
	ENSORS INSTALLED IN LTPP LANE AT THIS S BARE ROUND PIEZO CERAMIC CHANNELIZED ROUND PIEZO CHANNELIZED FLAT PIEZO OTHER (SPECIFY)	SARÈ FLAT PIEZO LOAD CELLS INDUCTANCE LOO	HAT APPLY)	: BENDING PLATES QUARTZ PIEZO CAPACITANCE PADS
5. EQ	UIPMENT MANUFACTURERMett	eler Toledo		
	WIM SYSTEM CA	LIBRATION SPECIF	<u>ICS</u> **	
6.**CA	LIBRATION TECHNIQUE USED: TRAFFIC STREAMSTATIC SCAL	.E (Y/N) _XX TI	EST TRUCK	S
	3 NUMBER OF TRUCKS COMPARED	31	NUMBER OF	TEST TRUCKS USED
	TYPE PER FHWA 13 BIN SYSTEM SUSPENSION: 1 - AIR; 2 - LEAF SPRING 3 - OTHER (DESCRIBE)	TRUCK	PASSES PE TYPE 9 9 9	SUSPENSION
7.	SUMMARY CALIBRATION RESULTS (EXPRES			
	MEAN DIFFERENCE BETWEEN DYNAMIC AND STATIC GVW DYNAMIC AND STATIC SINGLE AXLES DYNAMIC AND STATIC DOUBLE AXLES	_0.4%	CANDARD E CANDARD E CANDARD E	DEVIATION5.1% DEVIATION2.8% DEVIATION9.8
8.9.	3NUMBER OF SPEEDS AT WHICH CA			
). —			— —	-30 mpn
10.	CALIBRATION FACTOR (AT EXPECTED FREE	E FLOW SPEED)5	(P4)	_·
11.**	IS AUTO-CALIBRATION USED AT THIS SITE? IF YES, LIST AND DEFINE AUTO-CAL			
	CLASSIFIER	TEST SPECIFICS***	<u>.</u>	
12.***	METHOD FOR COLLECTING INDEPENDENT VVIDEOX_ MANUAL		MENT BY V LLEL CLAS	
13.	METHOD TO DETERMINE LENGTH OF COUNT	T TIME	_100_	NUMBER OF TRUCKS
14.	MEAN DIFFERENCE IN VOLUMES BY VEHICE *** FHWA CLASS 9 3 *** FHWA CLASS 8 0 FHWA	FHWA CLASS _5_ CLASS FHWA CLASS		70
	*** PERCENT "UNCLASSIFIED" VEHICLES: _	FHWA CLASS 0		
PERSO	ON LEADING CALIBRATION EFFORT:Dear	ı J. Wolf		
CON	FACT INFORMATION: 301-210-5105			rev. November 9, 199

	She	et 19	* STATE CODE	39
		raffic Data	* SPS PROJECT ID	100 = 200
'.ev. 08/31/		TEST TRUCK # \	* DATE 2 3 04	
PART I.	A Class9	2.* Number of Axles	<u>5</u>	
AXLES -	- units - lbs / 100s ll	os / kg		
A	3. Empty Truck Axle Weight	4.* Pre-Test Average 5 Loaded Axle Weight	i.* Post-Test Average Loaded Axle Weight	6.* Measured D)irectly of C)alculated D / C
В		6160 6113	5846	,; 5°0 D/O
C		6050 12210 (DE)	<u> </u>	D / 💍
D		3700 3700	3860	9720 D/O
Е		5600 5600 930 682	5860 9120	D / 🔘
F				D / C
GVW (san	ne units as axles)	pose cull is direct as	casure.	
7. a) Empt	y GVW	*	Test Loaded weight ded Weight	31620 31320 300
GEOMET	ΓRΥ			
8 a) * Trac	etor Cab Style - Cab	Over Engine / Conventional	b) * Sleeper Cab?	Ø / N
			<u>-</u>	⊘ / N
9. a) * Mal		b) * Model: <u>Ch (13</u>	<u>-</u>	∅ / N
9. a) * Mal	ke: <u>MACK</u> 1 er Load Distribution 1	Description:		∅ /N
9. a) * Mal	ke: <u>MACK</u> 1 er Load Distribution 1	b) * Model: <u>Ch (13</u>		∅ /N
9. a) * Mal	ke: <u>MACK</u> 1 er Load Distribution 1	Description:		∅ /N
9. a) * Mal	ke: <u>MACK</u> 1 er Load Distribution 1	Description:		∅ /N
9. a) * Mal	ke: <u>MACK</u> 1 er Load Distribution 1	Description:		Ø /N
9. a) * Mak	ke: MACK I	Description:		∅ /N

2/12/01/ Bloo

	Sheet 19	* STATE_CODE	39
	LTPP Traffic Data	* SPS PROJECT ID	100 4 2 00
ev. 08/31/01	RATION TEST TRUCK # 1	* DATE 2/3/04	
2.* Axle Spacing – ur	nits m / feet and inches / f	Geet and tenths	
to B 16.5	B to C	C to D 34.5	
	D to E4.1	E to F	
Wheelbased (me	easured A to last)	Computed 59.4	
3. *Kingpin Offset Fro	om Axle B (units) $\frac{+2}{(+i)}$	s to the rear)	-
USPENSION			
Axle 14. Tire Size	15.* Suspension Descript	tion (leaf, air, no. of leaves,	taper or flat leaf, e
Axle 14. Tire Size A 112 22.5		tion (leaf, air, no. of leaves,	
	LEAF - 1		
A 112 22.5	LEAF - 1		
A 11p 22.5 B 11p 22.5	LEAF - 1 ALF ALF		
A 112 22.5 B 112 22.5 C 112 22.5	LEAF - 1 ALF ALF		
A 11p 22.5 B 11p 22.5 C 11p 22.5 D 295 750 22.5	LEAF - 1 LEAF - 1		
A 11p 22.5 B 11p 22.5 C 11p 22.5 D 295 75p 22.5 E 295 75p 22.5 F	LEAF - 1 LEAF - 1 LEAF - 1		
A 112 22.5 B 112 22.5 C 112 22.5 D 295 752 22.5 E 195 752 22.5 F	LEAF - 1 ALF ALF ALF LEAF - 1 LEAF - 1 (psi) - from right to left		
A 112 22.5 B 112 22.5 C 112 22.5 D 295 752 22.5 E 195 752 22.5 F	LEAF - 1 LEAF - 1 LEAF - 1		
A 112 22.5 B 112 22.5 C 112 22.5 D 295 752 22.5 E 195 752 22.5 F	LEAF - 1 ALF ALF ALF LEAF - 1 LEAF - 1 (psi) - from right to left		
A 112 22.5 B 112 22.5 C 112 22.5 D 295 752 22.5 E 195 752 22.5 F	LEAF - 1 ALF ALF ALF LEAF - 1 LEAF - 1 (psi) - from right to left		
A 112 22.5 B 112 22.5 C 112 22.5 D 295 752 22.5 E 195 752 22.5 F	LEAF - 1 ALF ALF ALF LEAF - 1 LEAF - 1 (psi) - from right to left		

Sheet 19	* STATE CODE 39
LTPP Traffic Data	* SPS PROJECT ID DO + 200
*CALIBRATION TEST TRUCK # 1	* DATE 2/3/04

ev. 08/31/01

PART II

Table 1. Axle and GVW computations - pre-test

Axle A	1	Axle I	3	Axle C	3	Axle I)	Axle E	,	GVW	I
I	9840	II -I	6140	III -II	6020	IV -III	3680	V -IV	5100	V	31340
V -VI	9840	VI- VII	6180	VII- VIII	6080	VIII- IX	3720	IX	5560	X	31360
										XI	32160
Avg.	9840	(e	140	60	50	371	00	561	Ó 5600	31,	620

Table 2. Raw Axle and GVW measurements

Axles	Meas.	Pre-test Weight	Post-test Weight
A	I	9840	10020
1 + B	П	15980	15860
A + B + C	Ш	22000	21600
A + B + C + D	IV	25680	25 160
A + B + C + D + E (1)	V	31340	31320
B+C+D+E	VI	2550 21520	21300
C + D + E	VII	15360 15340	15 1 60
D+E	VIII	9340 9260	9720
E	IX	5060 5540	6,8,0
A + B + C + D + E (2)	X	31360	31300
A + B + C + D + E (3)	XI	32160	

Table 3. Axle and GVW computations - post -test

Axle A		Axle B		Axle C		Axle D		Axle E		GVW	
I	10050	II -I	5840	III -II	5140	IV -III	3860	V -IV	5 660	V	31320
V ·VI		VI- VII		VII- VIII		VIII- IX		IX`		X	
										XI	
Avg.	10020	50	40	57	40	38	60	5%	0	311	20

Sheet 19	*STATE CODE 39
LTPP Traffic Data	* SPS PROJECT ID DD + 2DD
*CALIBRATION TEST TRUCK #	* DATE 2/3/04
ev. 08/31/01 Pala entered in	to the Spreadsheets from below holder

Table 1	Avlaand	CUM	computations	
Launc 4	Axic and	1 T V VV	COMBINATIONS	-

Axle A	Axle B	Axle C	Axle D	Axle E	GVW
I	п	III	IV	V	V
	-I	-II	-III	-IV	
v	VI-	VII-	VIII-	IX,	X
-VI	VII	VIII	IX		
					XI
Avg.					

Table 5. Raw data – Axle scales – pre-test

Pass	Axle A	Axle B	Axle C	Axle D	Axle E	Axle F	GVW
1	1.850	6180	6080	-5726	5346	*****	31360
2	UF35	6.40	6620	3680	5 666		31346
1	48.40	G 200	= 6140	5706	6280	Age, .	3-21.60
Average	9840	6173 ³³	6080	3700	582667		31620

= Split Lased on pass 1, 2 Values

Table 6. Raw data – Axle scales –

Pass	Axle A	Axle B	Axle C	Axle D	Axle E	Axle F	GVW
1							
2							
3							
Average							

Pass	Axle A	Axle B	Axle C	Axle D	Axle E	Axle F	GVW
1	.0020	5790	1		₹€60		31320
2							
3							
Average	-00 Av	5750	5.790	4860	(250	4.51	3.320

Measured By Oran 2, WOLF	Verified By	Kny / Bho	

	*STATE_CODE 39							
		raffic Data			* SPS PROJE		100 4 2	D6
ev. 08/31/	*CALIBRATION	TEST TI	RUCK #_2		* DATE 2	3/04		
PART I.							·	
1.* FHW	A Class 9	2.*	Number of Axles _	5				
AXLES -	units - lbs/100s ll	bs / kg						
	3. Empty Truck Axle Weight		Pre-Test Average Loaded Axle Weight		* Post-Test A Loaded Ax Weight	_	6.*	Measured D)irectly or C)alculated?
A		-	10830 1065		10600			D / (C)
В		_	9660 160	5	27.50		18420	D / 🙋
C		-	<u> ૧૬</u> ૪૦	Ó	170	Tekro		D / 🕖
D		-	7440 146	,	7740		18840	D / 💋
E		-	10660 (0?	15	31.0			D / 🔘
F		-						D / C
GVW (san	ne units as axles)		post-oul of	réd Livi	ivulasur ict measu	e aples	e (rody	€ 100 a
7. a) Empty	y GVW		*b) Average Pr *c) Post Test I *d) Difference	re-T .oad	est Loaded v ed Weight	veight	482	\$0 48.00
GEOMET	RY							
8 a) * Trac	tor Cab Style - Cab (Over En	gine / <u>Conventiona</u>	1	b) * Sleep	per Cab?	(X)	N
9. a) * Mak	ce: freightlinge 1	o) * Moo	iel: FLD					
10.* Traile	r Load Distribution I	Descript	ion:					
	EMPTY GEEL GOTTLY	es cases)					
						v v.·		
11. a) Tract	tor Tare Weight (uni	ts):	16,000 lbs					
b). Trai	ler Tare Weight (uni	ts):	17,000 105	1				

Sh	eet 19	* STATE CODE	39
	raffic Data	* SPS PROJECT ID	100 4 200
*CALIBRATION	TEST TRUCK # 2	* DATE 2 3 04	
.cv. 00/31/01		·	
12.* Axle Spacing – units r	n / feet and inches / fee	et and tenths	
A to B 17.5	B to C	C to D 35.0	
	D to E	E to F	
Wheelbased (measured	l A to last)	Computed	
13. *Kingpin Offset From Ax	le B (units) + 20	to the rear)	
	(+ 18	to the rear)	
SUSPENSION			
Axle 14. Tire Size 1	5.* Suspension Description	on (leaf, air, no. of leaves,	taper or flat leaf, etc
A 11822.5	U6A5 - 2		
B 114.22.5	AIR		
C 11 R 22.5			
D 295/751 22.5			
E 295 75 A 22.5			
F			
16. Cold Tire Pressures (psi) –	from right to left		
	. 1 . 0		
Steering Axle Axle B	Axle C	Axle D	Axle E

Sheet 19	*STATE CODE 39
LTPP Traffic Data	* SPS PROJECT ID 100 4 200
*CALIBRATION TEST TRUCK # 2	* DATE 2 3 04

ev. 08/31/01

PART II

Table 1. Axle and GVW computations - pre-test

Axle .	A	Axle	В	Axle (2	Axle I)	Axle	E	GVW	
I	10840	П -I	9660	III -II	9600	IV -III	7380	V -IV	10620	V	48500
V -VI	10820	VI- VII	9460	VII- VIII	9560	VIII- IX	7500	IX	10700	X	4824
										XI	4820
Avg.	10830		9660	٩	580	74	40	10	660	487	60 48170

Table 2. Raw Axle and GVW measurements

Axles	Meas.	Pre-test Weight	Post-test Weight
A	I	10840	104.00
v + B	П	20500	19850
A + B + C	Ш	30100	29020
A + B + C + D	. IV	37480	36760
A + B + C + D + E (1)	V	48500 48100	47860
B+C+D+E	VI	37470	27260
C + D + E	VII	27600-60	5 % 010
D + E	VIII	18000	18840
E	IX	10420700	11100
A + B + C + D + E (2)	X	48100	47860
A + B + C + D + E (3)	XI	48240	

Table 3. Axle and GVW computations - post -test

Axle A	1	Axle B		Axle C		Axle D)	Axle I	3	GVW	7
I	10600	II -I	9250	III -II	9170	IV -III	7740	V -IV	11100	V	47%0
V .VI		VI- VII		VII- VIII		VIII- IX		IX,		X	
		_								XI	
Avg.	10000	97	50	প্র	ि	77	Λ <u>0</u>	111	. 0 0	r A	560

											MANAGEMENT TRACTICE AND		
	 -			Sheet 19)		**************************************	* ST	ATE	CODE	39		
				PP Traffic	Data	****				OJECT ID		a 200	
	21/01	*	CALIBRA	TION TES	T TR	UCK # <u>"</u>				2 3	104		~
Table 4		ile ai	Do nd GVW			d into the	Sparea	d Sheu	h	from !	, selo~	test	es
Axle A			Axle B	Computa	Axl	7	Axle D			Axle E		GV	W
I			П		III		IV			V		V	
			-I		-П		-III			-IV			
V			VI-		VII-	-	VIII-			IX`		X	
-VI			VII		VIII		IX						
												XI	
Avg.													
Table 5.	. Raw	v dat	a – Axle	scales – j	pre-te	est							
Pass		Ax	le A	Axle B		Axle C	Axle l)	A	kle E	Axle	F	GVW
1	<u>-</u>	. (2540	160		3600	778	80	Ì	0670			48100
2		1	0830			4560	1/5	<i>U</i> C:		. () ? OC.			48240
m'			0880	450)() =	1600	75						48500
Average	<u> </u>	. (03467	460	657	958667	7/40	667	10	773 ³		W. Pallan. 100	48280
		5,4	- 645e0	t 0-									
Table 6.	Raw	dat	a – Axle	scales –									
Pass		Ax	le A	Axle B		Axle C	Axle I)	Ax	le E	Axle I	₹	GVW
1													
				1									T

Pass	Axle A	Axle B	Axle C	Axle D	Axle E	Axle F	GVW
1							
2							
3							
Average							

Table 7. Raw data – Axle scales – post-test

Pass	Axle A	Axle B	Axle C	Axle D 54	Axle E	Axle F	GVW
1	16600	4210	4210	4420	4420	Non	47860
2							
3						Approximate the second	
Average	10600	1210	4715	9420	4420		47860

Measured By Work 1. Work	Verified By	know	1 Bho
--------------------------	-------------	------	-------

	et 19	* STATE_CODE	39
	affic Data	* SPS PROJECT ID	0100 + 0200
ev. 08/31/01	TEST TRUCK # <u>3</u>	* DATE 2/3/04	
PART I. 1.* FHWA Class	2.* Number of Axles		
1. 1111/11 Class	2. Indition of Axies	<u>/</u>	
AXLES - units - lbs / 100s lb	os / kg		
3. Empty Truck Axle Weight	4.* Pre-Test Average 5 Loaded Axle Weight	* Post-Test Average Loaded Axle Weight	6.* Measured D)irectly or C)alculated?
В	15410-		D / Ø
C	<u>15840</u> .5785	18305 1858	D / O
D	<u>\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</u>	14500 1486	1 / Q
E	19340 (9535	19.49 1978	D / O
F		44	D / C
GVW (same units as axles)	pre outdirect a	groupmeasure 3	d trass by group
7. a) Empty GVW	*b) Average Pre- *c) Post Test Loa *d) Difference Po		76453 75170 1283
GEOMETRY			
3 a) * Tractor Cab Style - Cab C	Over Engine / Conventional	b) * Sleeper Cab?	Ý) N
9. a) * Make: <u>*neighteinen</u> b	o) * Model: <u>ในวรเ</u>		
0.* Trailer Load Distribution I	Description:		
GLANEL (5	1)		
			
1. a) Tractor Tare Weight (unit	·s)·		
b). Trailer Tare Weight (unit	10).		

	P Traffic Data	* SPS PROJECT ID	100 + 200
	ION TEST TRUCK #3	* DATE	2/3/04
ev. 08/31/01			' (
12.* Axle Spacing – units	m / feet and inches / fe	eet and tenths	
A to B 19.5	B to C _ 4.4	C to D 25.3	
	D. E. A.	D : D	
	D to E	E to F	
Wheelbased (measi	ared A to last)	Computed 53.3	
(
13. *Kingpin Offset From .	Axle B (units) + 2	v (Mines)	
	(+is)	to the rear)	
SUSPENSION			
SUSPENSION			
Axle 14. Tire Size	15.* Suspension Descripti	on (leaf, air, no. of leaves,	taper or flat leaf, etc.
A 1122.5			-
		THE STATE OF THE S	
B 216 754 22 5			
C 295 1754 22.5	AIC		
D 112 22.5			
E 112225	LEAF -1		
F			-11/4
<u> </u>			
16. Cold Tire Pressures (psi) – from right to left		
-			
Steering Axle Axle	B Axle C	Axle D	Axle E

* STATE_CODE

* SPS PROJECT ID

39

Sheet 19

LTPP Traffic Data
*CALIBRATION TEST TRUCK #3

Sheet 19	* STATE CODE 39
LTPP Traffic Data	* SPS PROJECT ID 100 = 200
*CALIBRATION TEST TRUCK # 3	* DATE 213104
ev. 08/31/01	

'ev. 08/31/01

PART II

Table 1. Axle and GVW computations - pre-test

Axle A	1	Axle B		Axle C	,	Axle I)	Axle I	Ξ	GVW	
I	10980	II -I	15420	· III -II	15840	IV -III	14900	V -IV	19760	V	76,900
V -VI	10960	VI- VII	15400	VII- VIII	15840	VIII- IX	14600	IX`	18920	X	75,720
										XI	76,740
Avg.	10970	154	00 15410	15840		14-	150	19340		76453	

Table 2. Raw Axle and GVW measurements

Axles	Meas.	Pre-test Weight	Post-test Weight
A	I	10980	10620
1 + B	п	24380 26400	15520
A + B + C	Ш	47220	40840
A + B + C + D	IV	52120 10	55100
A + B + C + D + E (1)	V	2490	75180
B+C+D+E	VI	1 L5900 /60	64560
C + D + E	VII	Den Sop	47 060
D + E	VIII	34660 500	34340
Е	IX	19750 18920	19 430
A + B + C + D + E (2)	X	75720	75160
A + B + C + D + E (3)	XI	76740	

Table 3. Axle and GVW computations - post -test

Axle A	<u> </u>	Axle B		Axle C		Axle D		Axle E		GVW		
I	10620	II -I	1.500	III -II	15320	IV -III	14 8 ¢ V	V -IV	19480	V	75180	
V VI	10620	VI- VII	14870	VII- VIII	15290	VIII- IX	14880	IX`	19500	X	75160	
										XI		
Avg.	10620	116	95	15	15305		14870		19 190		75170	

Sheet 19	* STATE CODE 39	
LTPP Traffic Data	* SPS PROJECT ID 100 4 200	
*CALIBRATION TEST TRUCK # 3	* DATE 2/3/04	

ev. 08/31/01

Data entered I no the Spreadsheets from below tables

Table 4. Axle and GVW computations -

Axle A	Axle B	Axle C	Axle D	Axle E	GVW
I	п	III	IV	V	V
	-I	-II	-III	-IV	
V	VI-	VII-	VIII-	IX,	X
-VI	VII	VIII	IX		
					XI
Avg.					

Table 5. Raw data - Axle scales - pre-test

Pass	Axle A	Axle B	Axle C	Axle D	Axle E	Axle F	GVW
1	1.0580	15400	15840	14500	15760		169.00
2	10560	15400	15840	14600	6770		15720
	107.80	15410	15670	14750 7	19530		76740
Average	10(733	15410	157853	14750	195367	and and	-76453.8

^{*} Split based on Vagass 1. 2

Table 6. Raw data – Axle scales –

Pass	Axle A	Axle B	Axle C	Axle D	Axle E	Axle F	GVW
1							
2							
3							
Average							

Table 7. Raw data – Axle scales – post-test

		501.	† SO:50	50	60:50	T	
Pass	Axle A	Axle B	Axle C	Axle D	Axle E	Axle F	GVW
1	.0620	12080	15080	17150	11.40		75.60
2	10620	ن. ت	15110	17170	17:70	*	75.80
3							
Average	10620	·5 095°	,5093	1.80	:7780		75170

Measured By	Gran	J. WOLF	Verifi	ed By km	1/Bho
					· 1

		Sheet 20 TPP Traffic			* STATE_CODE 34 *SPS PROJECT_ID 5.2av2							
Speed an	d Classif	ication Che	cks *	of*		E COLC I		1200	,			
Rev. 08/3	1/2001			* Colibrati	DAL	<u> </u>	<u> </u>	(/ 0 1/	/ <u>, a o</u>			
WIM speed	WIM class	WIM Record	Obs. Speed	Obs Class	WIM	WIM class	WIM Record	Obs. Speed	Obs Class			
54	<u> </u>		56	9	54	9		52	9			
58	9		57	9	50	5		53				
55	9		35	9	53	9		54	4			
58	9		58	9	58	1.0		58	15			
1.7	G		5 :	9	53	G		<u> </u>	9			
61	9		60	9	50	9		52	9			
61	<u> </u>		60	9	55	9		53	9			
53	5		55	5	58	5		59	9			
50	<u> </u>		57	9	59	9		54	9			
55	<u>ૄ</u>		(8	54	9		51	9			
55	5		57	5	57	9		14	574			
60	9		56	9	34	6		-3 1	6			
68	6		51	5	53	9		53	9			
50	3		51	5	5.0	9		56	9			
51	3		52	5	3 60			54	9			
52	Ľį .		12	9	39	3		62	5			
5.	9		53_	9	50.	9		59	7			
56	4		-55	4	7.8	9		57	9			
547	- 5		55	5	51	9		57	9			
55	9		54	9	4-7	9		46	9			
61	9		61	9	59	8		54	8			
6.9	5		39	9	57	4		57	4			
39	2		56	9	62	4		61	4			
, Ç,			58	9	49	9		49	9			
			22	M	56	9		54	9			
corded by	V	VR	Direc	tion/\	Lane /	Time from	om 3:12	fo				

	N								THE STEEL STORY & T. T. S. A. S. S. A. A. L. S. S. S. A. A. L. S.
		Sheet 2			* STAT	E_CODE	3		39
	L'	TPP Traffic	Data			ROJECT	ID		0200
Speed a	and Classif	fication Che	ecks * <u>2</u>	of* 2	* DATE	3	0 2	1031	2004
WIM	/31/2001 WIM	WIM	101	Noth	· r				
speed	class	Record	Obs. Speed	Obs Class	WIM speed	WIM class	WIM Record	Obs. Speed	Obs Class
56	9		55	9	60	3		59	5
58	9		58	9	54	6		54	6
55	9		52	9	59	5		59	9
52	9		56	9	55	9		54	9
52	9		52	9	56	9		55	9
53	9		52	9	57	9		28	9
34	! !		57	11	59	9		59	9
58	9	ļ	58	9	59	9		57	9
55	8		55	8	63	9		62	9
61	9		6.1	9	2.6	9		56	9
58	3	ļ	56	5	54	9		52	9
50	9		58	9	56	3		57	4
53	9		53	9	54	9		54	9
57	9		56	9	55	4		22	5
54	9		54	9	52	9		52	9
56	مک		54	6	55	9		52	9
53	9		54	9	34.	9		54	9
58	9		28	.9	59	9		59	9
59.	9		60	9	57	9		58	9
56	(/		28	1/	53	9		54	9
59	9		60	9	55	9		55	9

S4 9 Recorded by S 9 | Time from Direction _____ to

tock 3 20g= 76,536/248 truck 2 strangs 50, 984/34.5 Checked by truck 1 day = 34, 607/33.7

				E-F space	47.3	19.6	9 7	L.11.+	J. 9	1.4.7	9 +	= +	
		j		D-E space	20	٠,٧١	23 61	E. W.	&	0 M	80 %	4 5.5	
7	0 00	7007		C-D space	33.5	23. 3	\$ 45	33 &	₩ % ₩	31.9	34.2	33.2	
		0		B-C space	A	4 2	43	27	7.0	2 %	7.5	7.4	
	- 1	02/		A-B space	ر د	79	9	ره ۲	4	4.9/	17.5	-9	
ODE	E E		r.	GVW	02812	27/640	21,560	02858	2//5	36260	04615	35100	
* STATE CODE	*SPS PROJECT	* DATE	Call brehin	Axle F right / left weight.									
* S.	*Sp	, * D	1	Axle E right / left weight.	4440	0998	4520	2500	4750	0058 QRE 2	0019	07.02	
			S.	Axle D right / left weight.	4700	02.5%	4580 \$580	3280 3280	5760	3/50 3/40	2540	32.80	
1			,	Axle C right / left weight.	4600	5570	4300 5700	32 so	0684	3180	23.50 S3.20	71 3	l by
		g	\$ \$	Axle B right / left weight.	0 7 7 80	3,000	5520 \$520	<i>9</i> 00€ € \$00	4600 5300 5380	3000	00h5	91.5% 0915	Checked by
	- 1	IO	MORTH	Axle A right / left weight.	5240	6780 5160	0295 07/5	4420 8660	5620	9989 6340	43 5260 5760	A420 Spec	
12	ic Data	cords		Speed	44	43	44	67. 143	hh-	42	43	84	
Sheet 21	LIFF ITAINC Data	I I uck Ke		Record No.	7240)	7283)	7425	14.43	119L	7632	28cc	to the state of th	
	tom Tect	WIM System 1 est 1 mck Records		Time	2570			Mr. Co. C.	1192 30:11	# 50.77 11.03.25	H+16	THE THE STATE OF STAT	
	WIN Care	W LIVI Oys		Pass	and the second s		i i	2	M	ω	2	7	100/4
				Truck	7	And the second second	7	77 mm s.c.	2 Dave	1000	2 DAVE	10001	land
		10001	Kev. 08/31/2001	Radar Speed									led by
] 00	Kev. 08	Pvmt temp	8	27		er er	~	6		V.	seconded by

the 5 = 16 453 /25.3

truck 1: 31,620/34.5 truck 2: 48, 280/350

				E-F space	4 5.2	, i	11+ S : 11+	25.4	<u>~.</u> +	4.51+	15.7	\\ \frac{\lambda}{\rightarrow} \\ \frac{\rightarrow}{\rightarrow} \\ \rightarrow	
				D-E space	بر وي	99 ~`	0 . 4	ب م	7.5	4.4	4 %	67	
o C	200	0	35.0	C-D space	34 6	24.9	37.2	345	24.7	7.1%	34 8	24 %	
		150		B-C space	4.2	4.2	4.0	4.2	4.2	4.2	4.2	4.2	
		02/	25.3	A-B space	L []	12°C	17.8	8.7.1	(9.)	16.4	17.8	7. 6.7	
JDE	CT ID	•	2	gvw	03205	75540	35260	00% a25	60697	35540	51020	0891	
* STATE CODE	*SPS PROJECT ID	* DATE		Axle F right / left weight.			3120						
*	*SP	* D	34.5	Axle E right / left weight.	4580	9555	1220	4820	7440	2400	4720	9640	1220
				Axle D right / left weight.	4680 5720	9000	3340	4660	7750	3020	4560	79 BS	Km8/
1				Axle C right / left weight.	4560	7940	3420	09 65	ممدر مممه	282° 3500	4530 5060	7820 8030	lby
		ę	MORTH	Axle B right / left weight.	4760	7080	ويمار الامار	4760 5000	075%	2560 3630	4500 5340	6660 8350	Checked by
	f I	2 of		Axle A right / left weight.	5040 C440	4420	4410	5240 560	0715 6 830	4520	5200 5760	5320 5 46 0	
21	ic Data	scords		Speed	2	44	25	5	100	47	46	47	
Sheet 21	LTPP Traffic Data	Truck Re		Record No.	80 × 08	18087	\$4+8	A 25 %	4553 5453	2385 N.W.SI	250	8503	
	E	WIM System Test Truck Records		Time	P. 7. 4.	11:27 8087 11:00:31	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	74.45	1200	15.75.II	\$ 1.50 M	1557	1000
		WIM Sy		Pass	7-7		72	و	7	و		~ ~	•
				Truck	2	~		~	W		\sim	2	kno
			Rev. 08/31/2001	Radar Speed				44			40	47	ाल कर ज
			Rev. 0	Pvmt	37.8			5	5	33	%	87	seconded by

				E-F space	+ 	+4.91	+	1 2 +	15.0	4,06	600	
U	0	5		D-E space	3.6	3,	2.9	2.9	% co	3,9	2.7	
5	020	200		C-D space	33.7	346	24 8	32.2	34.4	24.9	309	
		100		B-C space	4.2	4.2	4. 2	4 2	4.2	4.2	41	
		020		A-B space	5.0	5.77	19.7	1,4	17.3	19.7	2	
ODE	ECT ID			@CW	35200	20110	76590	35740	00107	0 27L	34420	
* STATE CODE	*SPS PROJECT_ID	* DATE		Axle F right / left weight.								
* *	IS*	*		Axle E right / left weight.	23.60	4560	7560	2840	4380	4780	2140 3400	kna 103w
				Axle D right / left weight.	3020 3 \$ 80	4360	9000	3060	4160 5700	9020	2810 3300	hus
			F	Axle C right / left weight.	3640	4300 4300	08/7 04:8	2580	4460 5440	7520	009E	Jby
	- 1	9	NIRTH	Axle B right / left weight.	28 40 3720	65.50	0002	2860	4400 5700	6720	3720	Checked by
	7	OI		Axle A right / left weight.	4:40 5:100	5540	5000	4400	4980 5520	C140 5740	\$100 5440	
21	ic Data	ecords		Speed	7	200	47	77	48	47	<u></u>	
Sheet 21	LIFF ITATHC Data	1 TUCK K		Record No.	8639	2887	2832	5398 5398	9/6×	423	742	
-	[.]	wild system lest truck records		Time	17:07	12.50.IV	12:11:24	12:48 12:11:12	2.36:15	12.35 59.25	7	pro/
	WING C.	w IM Sys		Pass		00	4	00	0	5	5	Mary /
				Truck		N	رم		7	\sim		
		Dox, 09/21/2001	1/2001	Radar Speed		3						led by
		Doy, Oo	Nev. Us	Pvmt	8	5	37	5	33	27	5	Recorded by

シニュ +43 P.9 + .9 E-F space 5.5+ +3.9 1.74 <u>.</u> آ _ 1 $\frac{\infty}{\phi}$ N N ىلە خە d Ci <u>د</u> د D-E space o À 6.4 en en 0 0 0 0 256 ار اح 67 67 5 2 0 34. C-D space 9 CI 2:5 ロチー 5 3 اب نو *ب* ک مرا نو ۔ خ B-C space 20 7 15. < 16.2 17.6 5.5 77142 19.5 17.7 A-B space 50360 M. 6 7 32,850 50920 76,030 سي (جال 35 200 *SPS PROJECT_ID GVW * STATE CODE 29.0 Axle F right / left weight. ζ, * DATE 7970 1000 े 3 (1) 24.49 300 000 955 886 958 5 C 8160 Pro Axle E right / left weight. 768 Z 5720 6060 3 64 2660 1180 7850 4340 (K) 4330 5820 Axle D right / left weight. S 0 80 200 ٠ - نان 7540 1925 2620 25.5 7 5000 4380 4860 s S 5360 5520 8330 9830 Axle C right / left weight. 7:4 2 200 N S S C 2380 Sath ر الا الا 246 **S** 09.2% 5 658 200 ر دن در OST W 2. 22 0.0 weight. Axle B right / left 3 o5740 57.5 575 5930 - S.C. ogov 5 E S , ; Axle A right / left weight. of 042 1240 2 = 5 125 WIM Speed <u>5</u> 5 LTPP Traffic Data 5 T. C WIM System Test Truck Records 74 Sheet 21 せまれ 2:03 4559 10001 15675 13:41:19 10659 1367 HX.+ 1-12/ 10269 Record No. Ch601 81:35:21 13:4:64 P322 3.39.12 10620 3:27:11 Joges 12:42:38 10723 13.20 Time ح $\frac{\mathcal{L}}{\mathcal{L}}$ Pass 0 0 2 (3 Truck 1 \sim N \sim N 3 Rev. 08/31/2001 0 \lesssim 5 \lesssim و م Radar Speed ع 5 79° 75.5 29,0 ر ج د 29.0 **C ∕** Pvmt temp 57 N

1

Kard 103 w

1+6.3 7,2+ E-F space +104 4,2 46.6 +5,4 +4.1 -: -5 7 3 D-E space C ir (~) 500 U" 130 ø 32.1 * 0 -... (5° C (~) C-D space Sing. ħ 4 ., j B-C space 9 D 4 و چاسته 4 Ĵ GN <u>...</u> e Mei <u>رم</u> 7 so Ĉ A-B space نون س , D \$*** *** 25.5 3. ... 16580 33.53 50282 į SE SE *SPS PROJECT ID GVW * STATE CODE 2960 Axle F right / left weight. * DATE 000 103.00 38.0 10215 5720 ,5° Axle E right / left weight. 6 63 ووقع 77/2 7 Ē £14 S. S. 30 1927.6 1560 و و د \$ 1.00 m 5 ないの 3 Axle D right / left weight. 2060 7660 - 500 6977 353 £ 6 355 - P. S. C. 7663 300 Axle C right / left weight. ¥. 3 Z 6760 762 35 ď. 2390 Axle B right / left weight. 4842 ASO 48.60 まれ S. O. S. 2150 NAK E 800 20%07 \$7.55 000 1660 7(860 of 5540 3 ₹ Se 25 Axle A right / left weight. 3 8 \setminus 01 2 2 WIM Speed 2 LTPP Traffic Data 7 5 5 WIM System Test Truck Records ψ~ `~ Sheet 21 1750 14:30 H 75:1 Record No. 了北十五九 81411 8C:51:41 14:45:36 12199 <u>8</u> = Stitul Chillians はなりなど 5/5/ 14.33:3611801 P2811 17. 12. 11 された 17:07:51 14.15.29 2 of H.H Time 7 <u>5</u> 0 5 Pass $\tilde{\omega}$ σ 2 Truck A Oh 3 Rev. 08/31/2001 Radar Speed S 0 Q./ 5 $\tilde{\mathcal{S}}$ Ŝζ $\overline{\sim}$ 5 79.0 € 0 **1**12 O 280 \$\frac{1}{2}\text{\$\frac{1}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}{2}\text{\$\frac{1}\text{\$\frac{1}\text{\$\frac{1}\text{\$\frac{1}\text{\$\frac{1}\text{\$\frac{1}\te Pvmt temp è K 8 ₹ (* **** do

1

Checked by Love 10 50

100/ DE-

seconded by

29 0 5 * STATE CODE *SPS PROJECT ID * DATE o o LTPP Traffic Data WIM System Test Truck Records Sheet 21 Rev. 08/31/2001

			 ·				
E-F space	4.2	3.4					
D-E space	633	5					
C-D space	27% : 	F-3					
B-C space	A S	9, 2					
A-B space	(4.)	Š					
@vw	76670	3342					
Axle F right / left weight.							
Axle E right / left weight.	7660	38					Kord /034
Axle D right / left weight.	33.	2 8			·		k. 3
Axle C right / left weight.	7500	628					1.15.5
Axle B right / left weight.		25,					Checked by
Axle A right / left weight.	468 5 × 53	5 38					
WIM	7.	70					
Record No.	2240 1256	125					
Time	14:52:17 12240 2:56 1255	27.77.74				100	3
Pass		7					Km8/022
Truck	\sim	~				•	
Radar Speed	50					:	<u> </u>
Pvmt temp	3	0					Ka babaa bi

5

tock 3 20g= 76,536/248 truck 2 strangs 50, 984/34.5 Checked by truck 1 day = 34, 607/33.7

				E-F space	47.3		19.6	9	L.11+	J.	1.4.7	9 +	= +	
	ر م ا			D-E space	20		,,,,	53 61	E. S.	00 00	0 M	80 %	4,5,5	
7	0 000	100		C-D space	33.5		23. 3	W 4.5	33 %	₩ %	31.9	34.2	33.2	
	1	0		B-C space	4)		4 2	4;	2 2	2,	23	7.5	7.4	
		021		A-B space	ر بر		5.9	9	ره م	4	4.9/	17.5	-9	
ODE	CT ID		Į,	GVW	02812		21/640	21560	02858	8//5	36260	04615	32100	
* STATE CODE	*SPS PROJECT	* DATE	Cali brehin	Axle F right / left weight.										
* S.	*SP	* D	Pre- G	Axle E right / left weight.	4440		0992	4520	0935 0852	4750	0058 0842	0019	0792	
			$Q_{\mathcal{L}}$	Axle D right / left weight.	4700		025%	0355	32.80 32.80	4308 5760 5760	3/50	4680	30.0%	
1	į		,	Axle C right / left weight.	4600		9556	4300 5700	•25.6 •25.6	06 / S	3180	23.50 S3.20	777	l by
		g	\$ X	Axle B right / left weight.	440	2600	3,600	5520 \$520	<i>0</i> 00€5	4600 5300 5380	3000	00h5	01.5% 09.15	Checked by
	- 1	₩ -	NOCTH	Axle A right / left weight.	5240		6300 S160	0295 07/5	4420 \$ ⁶ 6.3	5620	0h85	43 5260 5760	A420 Spec	
12	ic Data	cords		Speed	44		43	44	er.	-44	745	43	84	
Sheet 21	LIFF ITAINC Data	I TUCK Ke		Record No.	() 2 () () () () () () () () (:0.7)	7283)	7425	The state of the s	7197	7632 7632	28cc	李龙	
	LI tem Test	wild system lest linck kecords		Time	10:45	8. 5.6		A STATE	This Care	11.05 76.71	4.07 11.03.25	H+16	THE THE STATES	
	WING Care	W IIVI Sys		Pass				in.	2	M	ω	2	7	4/000
				Truck	7		man parameter of the state of t	2	7 77.2	2 save	1000	2 DAVE	1000 I	lone
		10001	Kev. 08/31/2001	Radar Speed										led by
			Kev. 08	Pvmt temp	8		رد		er or	~	<i>C</i>		50	esconded by

the 5 = 16 453 /25.3

truck 1: 31,620/34.5 truck 2: 48, 280/350

				E-F space	4 5.2	, i	11+ S : 11+	25.4	<u>~.</u> +	4.51+	15.7	\\ \frac{\lambda}{\rightarrow} \\ \frac{\rightarrow}{\rightarrow} \\ \rightarrow	
				D-E space	بر وي	99 ~`	0 . 4	ب م	7.5	4.4	4 %	67	
o C	200	0	35.0	C-D space	34 6	24.9	37.2	345	24.7	7.1%	34 8	24 %	
		150		B-C space	4.2	4.2	4.0	4.2	4.2	4.2	4.2	4.2	
		02/	25.3	A-B space	L []	12°C	17.8	8.7.1	(9.)	16.4	17.8	7. 6.7	
JDE	CT ID	•	2	gvw	03205	75540	35260	00% a25	60697	35540	51020	0891	
* STATE CODE	*SPS PROJECT ID	* DATE		Axle F right / left weight.			3120						
*	*SP	* D	34.5	Axle E right / left weight.	4580	9555	1220	4820	7440	2400	4720	9640	1220
				Axle D right / left weight.	4680 5720	9000	3340	4660	7750	3020	4560	79 BS	Km8/
1				Axle C right / left weight.	4560	7940	3420	09 65	ممدر مممه	282° 3500	4530 5060	7620 8030	l by
		ę	MORTH	Axle B right / left weight.	4760	7080	ويمار الامار	4760 5000	075%	2560 3630	4500 5340	6660 8350	Checked by
	f I	2 of		Axle A right / left weight.	5040 C440	4420	4410	5240 560	0715 6 830	4520	5200 5760	5320 5 46 0	
21	ic Data	scords		Speed	2	44	25	5	100	47	46	47	
Sheet 21	LTPP Traffic Data	Truck Re		Record No.	80 × 08	18087	\$4+8	A 25 %	4553 5453	2385 N.W.SI	250	8503	
	E	WIM System Test Truck Records		Time	P. 7. 4.	11:27 8087 11:00:31	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	74.45	1200	15.75.II	\$ 1.50 M	1557	1000
		WIM Sy		Pass	7-7		72	و	7	و		~ ~	•
				Truck	2	~		~	W		\sim	2	kno
			Rev. 08/31/2001	Radar Speed				44			49	47	ाल कर ज
			Rev. 0	Pvmt	37.8			5	5	33	%	87	seconded by

				E-F space	+ 	+4.91	+	1 2 +	15.0	4,06	600	
U	0	5		D-E space	3.6	3,00	2.9	2.9	% co	3,9	2.7	
5	020	200		C-D space	33.7	346	24 8	32.2	34.4	24.9	309	
		100		B-C space	4.2	4.2	4. 2	4 2	4.2	4.2	41	
		020		A-B space	5.0	5.77	19.7	1,4	17.3	19.7	2	
ODE	ECT ID			BVW GVW	35200	20110	76590	35740	00107	0 27L	34420	
* STATE CODE	*SPS PROJECT_ID	* DATE		Axle F right / left weight.								
* *	IS*	*		Axle E right / left weight.	23.60	4560	7560	2840	4380	4780	3100	kna 103w
				Axle D right / left weight.	3020 3 \$ 80	4340	9000	3060	4160 5700	9020	2810 3300	hus
			F	Axle C right / left weight.	3640	4300 4300	08/7 04:8	2580	4460 5440	7520	009E	Jby
	- 1	9	NIRTH	Axle B right / left weight.	2840 3720	65.50	0002	2860	4400 5700	6720	3720	Checked by
	7	OI		Axle A right / left weight.	4:40 5:100	5540	5000	4400	4980 5520	C140 5740	\$100 5440	
21	ic Data	ecords		Speed	7	200	47	77	48	47	<u></u>	
Sheet 21	LIFF ITATHC Data	1 TUCK K		Record No.	8639	2887	2832	2983 1398	9/6×	423	742	
-	[.]	wild system lest truck records		Time	17:07	12.50.IV	12:11:24	12:48 12:11:12	2.36:15	12.35 59.25	7	pro/
	WING C.	w IM Sys		Pass		00	4	00	0	5	5	Mary /
				Truck		N	رم		7	\sim		
		Dox, 09/21/2001	1/2001	Radar Speed		3						led by
		Doy, Oo	Nev. Us	Pvmt	8	5	37	5	33	27	5	Recorded by

シニュ +43 P.9 + .9 E-F space 5.5+ +3.9 1.74 <u>.</u> آ _ 1 $\frac{\infty}{\phi}$ N N ىلە خە d Ci <u>د</u> د D-E space o À 6.4 en en 0 0 0 0 256 ار اح 67 67 5 2 0 34. C-D space 9 CI 2:5 ロチー 5 3 اب نو *ب* ک مرا نو ۔ خ B-C space 20 7 15. < 16.2 17.6 5.5 77142 19.5 17.7 A-B space 50360 M. 6 7 32,850 50920 76,030 سي (جال 35 200 *SPS PROJECT_ID GVW * STATE CODE 29.0 Axle F right / left weight. ζ, * DATE 7970 1000 े 3 (1) 24.49 300 000 955 886 958 5 C 8160 Pro Axle E right / left weight. 768 Z 5720 6060 3 64 2660 1180 7850 4340 (K) 4330 5820 Axle D right / left weight. S 0 80 200 ٠ - نان 7540 1925 2620 25.5 7 5000 4380 4860 s S 5360 5520 8330 9830 Axle C right / left weight. 7:4 2 200 CM S S C 2380 Sath ر الا الا 246 **S** 09.2% 5 658 200 ر دن در OST W 2. 22. 0.0 weight. Axle B right / left 3 o5740 57.5 575 5930 - S.C. ogov 5 E S , ; Axle A right / left weight. of 042 1240 2 = 5 125 WIM Speed <u>5</u> 5 LTPP Traffic Data 5 T. C WIM System Test Truck Records 74 Sheet 21 せまれ 2:03 4559 10001 15675 13:41:19 10659 1367 HX.+ 1-12/ 10269 Record No. Ch601 81:35:21 13:4:64 P322 3.39.12 10620 3:27:11 Joges 12:42:38 10723 13.20 Time ح $\frac{\mathcal{L}}{\mathcal{L}}$ Pass 0 0 2 (3 Truck 1 \sim N \sim N 3 Rev. 08/31/2001 0 \lesssim 5 \lesssim و م Radar Speed ع 5 79° 75.5 29,0 ر ج د 29.0 **C ∕** Pvmt temp 57 N

1

Kard 103 w

1+6.3 7,2+ E-F space +104 4,2 46.6 +5,4 +4.1 -: -5 7 3 D-E space C ir (~) 500 U" 130 ø 32.1 * 0 -... (5° C (~) C-D space Sing. ħ 4 ., j B-C space 9 D 4 ernig. 4 Ĵ GN <u>...</u> e Mei <u>رم</u> 7 so Ĉ A-B space نون س , D \$*** *** 25.5 3. ... 16580 33.53 50282 į SE SE *SPS PROJECT ID GVW * STATE CODE 2960 Axle F right / left weight. * DATE 000 103.00 38.0 10215 5720 ,5° Axle E right / left weight. 6 63 ووقع 77/2 7 Ē £14 S. S. 30 1927.6 1560 و و د \$ 1.00 m 5 ないの 3 Axle D right / left weight. 2060 7660 - 500 6977 353 £ 6 355 - P. S. C. 7663 300 Axle C right / left weight. ¥. 3 Z 6760 762 35 ď. 2390 Axle B right / left weight. 4842 ASO 48.60 まれ S. O. S. 2150 NAK E 800 20%07 \$7.55 000 1660 7(860 of 5540 3 ₹ Se 25 Axle A right / left weight. 3 8 \setminus 01 2 2 WIM Speed 2 LTPP Traffic Data 7 5 5 WIM System Test Truck Records ψ~ `~ Sheet 21 1750 14:30 H 75:1 Record No. 了北十五九 81411 8C:51:41 14:45:36 12199 <u>8</u> = Stitul Chillians はなりなど 5/5/ 14.33:3611801 P2811 17. 12. 11 された 17:07:51 14.15.29 2 of A.A Time 7 <u>5</u> 0 5 Pass $\tilde{\omega}$ σ 2 Truck A Oh 3 Rev. 08/31/2001 Radar Speed S 0 Q./ 5 $\tilde{\mathcal{S}}$ Ŝζ $\overline{\sim}$ 5 79.0 € 0 **1**12 O 280 \$\frac{1}{2}\text{\$\pi_{\text{2}}}\text{\$\pi_{\text{2}}} Pvmt temp è K 8 ₹ (* **** do

1

Checked by Love 10 50

100/ DE-

seconded by

29 0 5 * STATE CODE *SPS PROJECT ID * DATE o o LTPP Traffic Data WIM System Test Truck Records Sheet 21 Rev. 08/31/2001

			 ·				
E-F space	4.2	3.4					
D-E space	633	5					
C-D space	27% : 	F-3					
B-C space	A S	9, 2					
A-B space	(4.)	Š					
@vw	76670	3342					
Axle F right / left weight.							
Axle E right / left weight.	7660	38					Kord /034
Axle D right / left weight.	33.	2 8			·		k. 3
Axle C right / left weight.	7500	628					1.15.5
Axle B right / left weight.		25,					Checked by
Axle A right / left weight.	468 5 × 53	5 38					
WIM	7.	70					
Record No.	1250 1250	125					
Time	14:52:17 12240 2:56 1255	27.77.74				100	3
Pass		7					Km8/022
Truck	\sim	~				•	
Radar Speed	50					:	<u> </u>
Pvmt temp	3	0					Ka babaa bi

5

WAY 36 WM 3:37

				E-F space									_
2		3]	D-E space	8	9.9	90 Pri	è	+ 0	d	o Š	3	
6	J	0		C-D space	35.2	25:3	35.1	46 67	251	5.5	in the second	3	
		1,0		B-C space	+ * 5	5 5	4	3	3	3	#	2°	
		120		A-B space	2.8	20.3	17.2	0 20	200	13.23	24	25	7
DE	CT ID			GVW	46180	70862	31900	2994	70780	3118	46040	70263	-
* STATE CODE	*SPS PROJECT ID	4TE	2	Axle F right / left weight.									7
TS *	*SP	* DATE	CALIBERTO	Axle E right / left weight.	4330 4560	7260	2310	500	7380	2020	83	5.5. Z	KMA/DIW
			,	Axle D right / left weight.	454 U 4760	750	27.40	0,34	220	25cm	\$ 25 J	27.52	Z
1			POST	Axle C right / left weight.	4520	7230	3060	(4680)	7420	3/80	\$ & 5 5	3520	Į) y
		7		Axle B right / left weight.	4620	0892	2965	9 6 9	6740	200		65%	Checked by
		ot	ئى: ئى	Axle A right / left weight.	4280	486C	4460	4940	0282	\$ \$ \$ \$	1	कर के दें करके दें	
1	c Data	cords	7	WIM	15	25	15	25)5	25	2	25	
Sheet 21	LTPP Traffic Data	Fruck Re	the the	Record No.	476	4737	9759	10010	1,001	3 (ott6)	18811	10357	
	LTI	WIM System Test Truck Records	#	Time	12.22.21	12.18.19	1222	12.00	12:45:55	12.4.33	12:52	3/5	M = 0/
		VIM Syst		Pass	_			7	7	2	M	~	My Smy
		Λ		Truck	7	ω		d	M	-	N	6 4	3
	Rev. 08/31/2001			Radar Speed				9	0	5	5	رب ح	id by
		100	Rev. 08/	Pvmt temp	36	136	36	36	36	76	· ·	37	seconded by
-	<u>-</u> -						منتصنر	· · · · · · · · · · · · · · · · · · ·					

			E-F space									
G-			D-E space	ch c)	Ç-3	9		Tark.	0	٩		
	- 1	0	C-D space	138	9 5 63	25.55	350	35.0	0 7	2		
	1		B-C space		۲۱ خ	M ;	نو. نو		3	3		
	,	3	A-B space	16.9	<u>%</u>	20.3	1.01	Š	\$. \$\tilde{\pi}\$	6.9		
ODE	1. 1.2		GVW	3, 5	9 Jan	76460	3 %	48653	33.2	25		:
* STATE CODE	*NATE		Axle F right / left weight.									
* S.	* *	2	Axle E right / left weight.	25.2	55.8	323	2260 3000	1,830	7300	22% 2200 3620		Km4/07W
			Axle D right / left weight.	2680	426.0	27563 2543 2543	2560	47.40	76.30	25620		
		えるて	Axle C right / left weight.	350	654 6454	77450	3080	4520	7445	2320 200 200		ýq
	A	1 4	Axle B right / left weight.	2880 Show	6956	678	3.33 280	967 987	68169 8120	2012		Checked by
	J&C	+	Axle A right / left weight.	m(),	99 54, 64, 5h		6954)	5060	5 9 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	3.5°		. ,
21 C Data	cords	Theoko	Speed	5	52	S	~	40	2	5		
Sheet 21 I TPP Traffic Data	Truck Re		Record No.	6 23.53	10578	3:07:59 10621 1. 19:00 106214	20301	113.14	1368	11.61		
	WIM System Test Truck Records		Time	12.37.14	13:05:15	13.07.59 10621	13:05:45 10659 1-13:00 10652	18:37:38/13/4	13:35:19	13.45.54 11 41.4 1.74.00 [14.26		;
	WIM Sys		Pass	~	4	4	4	\searrow	>	~	,	KMB/07W
			Truck		2	~		7	\sim	Constant.		3
		Rev. 08/31/2001	Radar Speed	<u>ئ</u> ون خ		ζ,	5	55		85	-	ed by
		Rev. 08	Pvmt	3	2	3)	2	36	92	6.2 •		ita orded by

				E-F space																	
				D-E space	do ~	2.9	57	3.€	6	c in	2.9	2.0	60	3,9		5.5	du cs	5	3.7	3.9	
6		15		C-D space	34.6	22.0	34.	24.8	50	0.7.7	34.6	24.0	35.0	35.3		33.5	34.3	5.42	34.4	S 4 60	
M	3 6	007		B-C space	نی	¢.3	M	5.3	7.5	5.A	4.2	7.7	2.3	2.5		۳.	45	4.2	2.2	M	
		150		A-B space	15.0	ني	16.7	17.9	19.8	6.3	17.7	9.6	16.7	(7.7)		16.5	- - - -	19.8	16.6	17.9	
		02/		G/W	e4654	73440	34300	0498h	72860	34960	9 4 154	13 (E)	3498	48620		34740	49280	73240	34420	4837	
5->				Axle F weight																	
* STATE_CODE	*SPS PROJECT ID			Axle E weight.	44.63	228	250	43.40		f .		9220	25.5	555		2840	4360	37.6	2720	7660	
STATE	SPS PR	* DATE		Axle D weight.	200	7380	27.40	252			ch E.S 04 Eh	04.63	3180	2.2 2.2 2.5 2.5	2 2 4	29 m	55.60	7300 8860	828 326	528	
*	*	*	NOW	Axle C weight.	25			L	26.26 A6.26	3/43	oheh cheh	27L	04.28 04.88	450		326°	6)(2) (48)(80)	7460	3300	096h	
				Axle B weight.	£ &	1	326°		5600 8260	ent i	262	8920	a318	4460	The state of the s	3000	4640	2.8	2360	48.00	
		71 Jo		Axle A weight.	52.47	6967	60 St.	50.40	4960	६३३८ ०५५५	12.5	5020 5260	0977	50.40	The water displayed to the principal	4565	5020 5320	25 E	4240	3.5	
		(C)		Speed	60	5	ζ.	5	5	\$	بر ح	6		7.4	e mempens and the state of	24.	بر پر	ەل ج	73	SA	
21	fic Data	ecords		Record No.	289	134.1	7	T A I	- 1				<i>t</i> -	SIERT	Apple and the contract of the contract of the	-H	12	- Server	12836	435TE	<u>13058</u>
Sheet 21	LTPP Traffic Data	WIM System Test Truck Records		Time	22.28	04.C	13:57:37	12:05:54	かれた	14:01.71	14:18:06	22.5	12.20	ではなって	diblogram, personal displayment	3.5.7	から	からいろ	25.2.50	J. J.	850E1 07:05:H
	LT	m Test		Pass	o e	\$	૭	7	C	2	Ó	8	مل	8	4	0	0)	0	0/	=	_
		M Syste	01	- ruck	7	~)	_	2	\sim 1	~	d	C ^		2	c)	-	2	cı	_	4	
		WI	08/31/2001	Speed		9			9			54				5			3	53	
		1	- 1	rvmt temp	3%	36	36	37	36	35	30	90	967	3		· C 7	36	~) ~	73	36	,

Checked by knak

Recorded by KMA/DIM Checked

				E-F space															
				D-E space	6		3.5	C M	C	(m	6	00	5. c4	Ø.		3			
500	C) }		C-D space	S.	33	34.5	2	32.6	C-1	25.3	40 T CO	35.0	24.8	% %3 %3	3			
(0)	27	rl e		B-C space	ن	ئے	4.3	2	4	À	25	5	<u>ئ</u> ئ	ر خ	هم نو				
		1 50		A-B space	19.6	7.9	17.7	20.5	2 3	15.9	19.8	30.9	17.7	19.6	6.3				
		120		GVW	3020	292	09684	23/28	3370	22 227	725m	37.50	37.3	72600	32428				
	a a			Axle F weight	·									, -				- 7 !!	
CODE)JECT			Axle E weight.	226	325	528	350	25.5	\$760 \$750	2.5°	2.20	6.43 2.643 2.653	32.5	\$ P				
* STATE CODE	*SPS PROJECT ID	* DATE		Axle D weight.	263	36.20	4140 8758	2,620	223			 	538 500						
*	× *	*	اد	Axle C weight.	2682	3240	5 540 5 8 8 6	2698	312	\$ 65 5 7	220	<u> </u>	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	7680	2000	,			
			NOAK	Axle B weight.	288	2220	\$ 600 P	6680 7780	2560	5275 5350 5350	6883 7689	50 to	1. S.	7660	8				
		of G		Axle A weight.	4740	0260	47265	4640	4.260	33,	2	923)	55 E	5500 4 660	33				
	ŀ	او		WiM	5.6	2	54	56	2	2	5	\tilde{x}	7 24	5	*				
21	ic Data	ecords		Kecord No.	1203	92177	120	13335	23.25	1562	13(3) E	が記	13862	13911	13920	13906			
Sheet 21	LIPP Traffic Data	ruck R	j j	e E	14.20.46 A-15.5	100	200	10:01 N	375		14.	12,12.55		222	3:2	90651 20:02:51			
I		WIM System Test Truck Records	2000	ss Ss	2	_	7		2	~	7	~	5	2	*				
		1 Syster	7.10	¥ S S S	ω		7	:~)		Ci	c-/)	elikang i jo _{lor} -	4	W	_				
		MIW N	U8/31/200	Speed	55	24	.7.	55	54	23	56	3	Q	5	7	· · · · · · · · · · · · · · · · · · ·			
			٠.	temp	35	25	r-14	E	35	5	'a	S	S.	000	7.4				

Checked by Knd 105c

Recorded by KMA/ CTW