Validation Report

Florida, SPS-5

Task Order 8, CLIN 2 March 2 and 3, 2005

1 Executive Summary	1
2 Corrective Actions Recommended	3
3 Post Validation Analysis	3
3.1 Temperature-based Analysis	5
3.2 Speed-based Analysis	5
3.3 Classification Validation	8
4 Pavement Discussion	8
4.1 Profile analysis	8
4.2 Distress survey and any applicable photos	9
4.3 Vehicle-pavement interaction discussion	9
5 Equipment Discussion	9
5.1 Pre-Validation Diagnostics	10
5.2 Calibration Process	
5.2.1 Calibration Iteration 1	
5.3 Summary of Traffic Sheet 16s	11
5.4 Projected Maintenance/Replacement Requirements	12
6 Pre-Validation Analysis	12
6.1 Temperature-based Analysis	16
6.2 Speed-based Analysis	17
6.3 Classification Validation	20
7 Data Availability and Quality	21
8 Data Sheets	25
9 Updated Handout Guide and Sheet 17	26
10 Updated Sheet 18	
11 Traffic Sheet 16(s)	26

List of Tables

Table 3-1 Post-Validation Results - 120500 – 03 Mar 2005
TILL 2.2 D. (VIII) C. D. L. L. G. LD. 120700 02 M. 2007
Table 3-2 Post-Validation Results by Speed Bin – 120500 – 03 Mar 2005 5
Table 4-1 Long Range Index (LRI) and Short Range Index (SRI) - 120500 -07-Apr-2004
9
Table 5-1 Calibration Iteration 1 Results - 120500 - 03 Mar 2005 (beginning 4:49 PM) 11
Table 5-2 Classification Validation History - 120500
Table 5-3 Weight Validation History - 120500
Table 6-1 Pre-Validation Results - 120500 – 02 Mar 2005
Table 6-2 Pre-Validation Results by Temperature Bin - 120500 – 02 Mar 2005 16
Table 6-3 Pre-Validation Results by Speed Bin - 120500 – 02 Mar 2005
Table 6-4 Truck Misclassification Percentages for 120500 – 02 Mar 2005
Table 6-5 Truck Classification Mean Differences for 120500 – 02 Mar 2005
Table 7-1 Amount of Traffic Data Available for 120500
Table 7-2 GVW Characteristics of Major Sub-groups of Trucks - 120500 – 03 Mar 2005
23
List of Figures
Figure 3-1 Post-Validation GVW Percent Error vs. Speed by Truck – 120500 – 03 Mar
Figure 3-1 Post-Validation GVW Percent Error vs. Speed by Truck – 120500 – 03 Mar 2005
20054
2005
2005
2005
2005
2005
2005
2005
2005
2005
2005
2005
Figure 3-2 Post-Validation Speed vs. Spacing - 120500 – 03 Mar 2005
2005
2005
2005
2005
2005

Figure 6-6 Pre-Validation Steering Axle Error vs. Temperature by Group $-120500 - 0$	2
Mar 2005	
Figure 6-7 Pre-Validation GVW Percent Error vs. Speed Group – 120500 – 02 Mar 200	
Figure 6-8 Pre-Validation GVW Percent Error vs. Speed by Truck – 120500 – 02 Mar	
2005	. 19
Figure 6-9 Pre-Validation Steering Axle Percent Error vs. Speed Group - 120500 – 02	
	. 19
Figure 6-10 Pre-Validation Steering Axle Percent Error vs. Speed by Truck - 120500 –	-
02 Mar 2005	20
Figure 7-1 Expected GVW Distribution Class 9 – 120500 – 03 Mar 2005	. 23
	. 24
	. 24
	. 25
6 1	. 25
	_

1 Executive Summary

A visit was made to the Florida SPS-5 on March 2nd and 3rd, 2005 for the purposes of conducting a Validation of the WIM system located on US Route 1, 4.5 miles north of SR 706. The validation procedures were in accordance with LTPP's SPS WIM Data Collection Guide (SPS WIM DCG) dated August 21, 2001. The LTPP lane is identified as Lane 4 in the WIM controller.

This is the second validation visit we have made to this site, the first being December 18, 2003. At that time, this site met the precision requirements for research quality data.

This site was successfully validated on March 3, 2003 and is currently providing research quality WIM data and is considered to be providing research quality classification information as defined in the SPS WIM Data Collection Guide.

The site is instrumented with Kistler quartz piezo sensors installed in asphalt concrete pavement and IRD/PAT Traffic electronics.

The validation used the following trucks:

- 1) 3S2 FHWA Class 9 with a tractor having an air suspension drive tandem and trailer with standard rear tandem and air suspension loaded to 78,300 lbs.
- 2) 2D FHWA Class 5 with tapered spring leaf suspension loaded to 23,640 lbs.

The validation speeds ranged from 34 to 56 miles per hour. The pavement temperatures ranged from 73 to 77 degrees Fahrenheit for the final validation.

Table 1-1 Post-Validation Results – 120500 – 03 Mar 2005

SPS-1, -2, -5, -6 and -8	95 %Confidence	Site Values	Pass/Fail
	Limit of Error		
Loaded single axles	±20 percent	1.7% <u>+</u> 10.0%	Pass
Loaded tandem axles	±15 percent	-3.0% <u>+</u> 5.9%	Pass
Gross vehicle weights	±10 percent	-1.6% <u>+</u> 6.5%	Pass
Vehicle speed	<u>+</u> 1 mph [2 km/hr]	N/A	Pass
Axle spacing length	<u>+</u> 0.5 ft [150 mm]	0.0 <u>+</u> 0.0 ft	Pass

This site meets the overall classification requirement of less than two percent unclassified. It does not meet the less than two percent trucks misclassified criteria. The errors are attributed to heavy or long Class 3 vehicles being identified by the classification algorithm as Class 5 vehicles. The State's algorithm is length and weight-based, characteristics that cannot be determined with visual examination. The observer, using FHWA definitions distinguishes these types by the number of

tires on the rear axle, a characteristic the equipments sensor array is not designed to capture.

MACTEC field staff worked with the agency representative to compute factor adjustments. The agency representative made all equipment changes. This was expected given the information on the Traffic Sheet 18 completed as part of the assessment and previous validation visits held in December 2003.

The pavement condition was satisfactory for conducting a validation. There were no distresses observed that would influence truck motions significantly. A visual survey determined that there is no discernable bouncing or avoidance by trucks in the sensor area.

The WIM index was not exceeded at any location at this site. This site meets the LTPP pavement smoothness requirements for WIM locations.

2 Corrective Actions Recommended

The left side section of the leading WIM sensor indicates a low insulation resistance. Although the value recorded is below the manufacturer's recommended tolerance, the sensor appears to be working properly. This sensor should be checked periodically and the data from the site should be reviewed on at least a monthly basis. Data that reflects variability and imbalance when comparing left and right axles may indicate that this sensor has failed.

3 Post Validation Analysis

This final analysis is based on test runs conducted March 3, 2005 from mid-day to early afternoon at test site 120500 on US Route 1, 4.5 miles north of SR 706. This SPS-5 site is located on the southbound, right hand lane of a divided four-lane facility. No auto-calibration was used during test runs and auto-calibration is not used during normal site operations.

The two trucks used for testing were:

- 1. 3S2 (FHWA Class 9) with a tractor having an air suspension drive tandem and a trailer with standard rear tandem and air suspension loaded to 78,300 lbs.
- 2. 2D (FHWA Class 5) with tapered spring leaf suspension and loaded to 23,640 lbs.

Each truck made a total of 20 passes over the WIM scale at speeds ranging from approximately 34 to 56 miles per hour. Pavement surface temperatures recorded during the test runs ranged from about 73 to 77 degrees Fahrenheit. The computed values of 95% confidence limits of each statistic for the total population are within Table 3-1.

As shown in Table 3-1, the site passed all of the performance criteria for weight and spacing. No post-calibration speed checks were considered necessary given the validation of speed measurement pre-calibration and the consistent spacing validation.

Table 3-1 Post-Validation Results - 120500 – 03 Mar 2005

SPS-1, -2, -5, -6 and -8	95 %Confidence	Site Values	Pass/Fail
	Limit of Error		
Loaded single axles	±20 percent	1.7% <u>+</u> 10.0%	Pass
Loaded tandem axles	±15 percent	-3.0% <u>+</u> 5.9%	Pass
Gross vehicle weights	±10 percent	-1.6% <u>+</u> 6.5%	Pass
Vehicle speed	<u>+</u> 1 mph [2 km/hr]	N/A	
Axle spacing length	<u>+</u> 0.5 ft [150 mm]	0.0 <u>+</u> 0.0 ft	Pass

The test runs were conducted primarily during the mid-day to early afternoon, resulting in a very narrow range of pavement temperatures. Given that the site passed pre-validation analysis over a 25 degree Fahrenheit temperature range and the post-validation was a

result of calibration to improve data quality rather than bring the site into conformance, temperature differentiation in the runs was not critical to the post-validation analysis. The runs were conducted at various speeds to determine the effects of these variables on the performance of the WIM scale.

To investigate speed effects, the dataset was split into three speed groups. The speed groups were divided as follows: Low speed = 34-40 mph, Medium speed = 41-48 mph and High speed = 49+ mph.

A series of graphs was developed to check visually for any sign of a relationship between speed and the scale performance.

Figure 3-1 shows the by truck GVW percent error vs. speed graph for the population as a whole. Diamonds are used to identify the Class 5 truck. The equipment underestimates the GVW for this truck at low and high speeds and overestimates the GVW at medium speeds. The Class 9 truck is represented by squares and tends to have GVW underestimated at all speeds. There is less scatter for GVW errors at the medium range speeds.

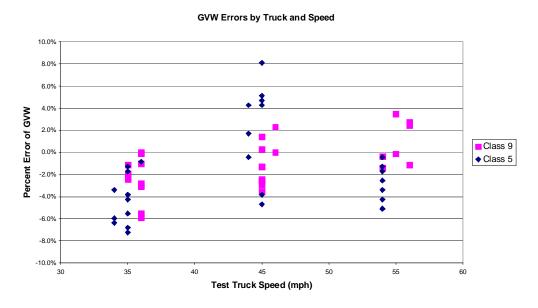


Figure 3-1 Post-Validation GVW Percent Error vs. Speed by Truck – 120500 – 03 Mar 2005

Figure 3-2 shows the lack of relationship between the spacing errors in feet and speeds. The graph indicates that the errors in tandem spacings for the test trucks were not affected by changes in speed. The speed limit at this site is 55 mph and the prevailing speed is higher than the posted Speed Limit. The information in Figure 3-2 infers that spacing errors should probably not exist at the higher speeds more typical of vehicles at this site.

Drive Tandem Spacing vs. WIM Speed

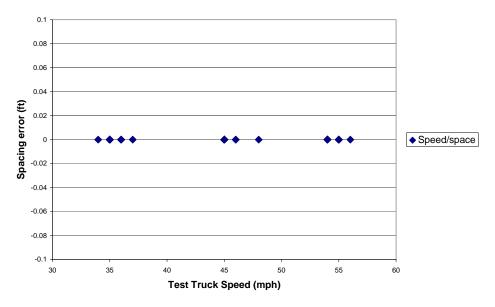


Figure 3-2 Post-Validation Speed vs. Spacing - 120500 - 03 Mar 2005

3.1 Temperature-based Analysis

A temperature based analysis was not performed for the validation runs due to the very narrow temperature range achieved during the post calibration runs. The performance of the system during the pre-validation temperature-based analysis which showed no significant relationship for weight and spacing errors versus a range of temperatures, made collection for such analysis non-critical.

3.2 Speed-based Analysis

The speed groups were divided as follows: Low speed = 34 to 40 mph, Medium speed = 41 to 48 mph and High speed = 49+ mph.

Table 3-2 Post-Validation Results by Speed Bin – 120500 – 03 Mar 2005

Element	95% Limit	Low Speed 34-40 mph	Med. Speed 41-48 mph	High Speed 49+ mph
Single axles	<u>+</u> 20 %	-1.3% <u>+</u> 6.9%	2.6% <u>+</u> 12.3%	4.2% <u>+</u> 9.3%
Tandem axles	<u>+</u> 15 %	-2.9% <u>+</u> 6.9%	-4.0% <u>+</u> 4.4%	-1.9% <u>+</u> 7.2%
GVW	<u>+</u> 10 %	-2.7% <u>+</u> 4.9%	0.1% <u>+</u> 8.5%	-2.2% <u>+</u> 6.0%
Speed	<u>+</u> 1 mph	N/A	N/A	
Axle spacing	<u>+</u> 0.5 ft	0.0 <u>+</u> 0.0 ft	0.0 <u>+</u> 0.0 ft	0.0 <u>+</u> 0.0 ft

From Table 3-2 and Figure 3-3, it appears that the GVW variability is higher at the medium and high range speeds. It appears that the gross weights are generally underestimated at the low and high range speeds and estimated fairly accurately at medium range speeds.

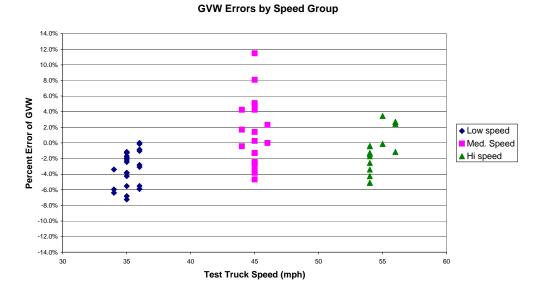


Figure 3-3 Post-Validation GVW Percent Error vs. Speed Group - 120500 - 03 Mar 2005

As shown in Figure 3-4 the WIM equipment underestimated the Class 9 GVW at all speeds. The GVW for the Class 5 truck was underestimated at the low and high range speeds and overestimated at the medium range speeds. The scatter appears larger at the medium range speeds than at the low and high range speeds. The scatter of GVW error for each truck remained fairly consistent throughout the entire speed range.

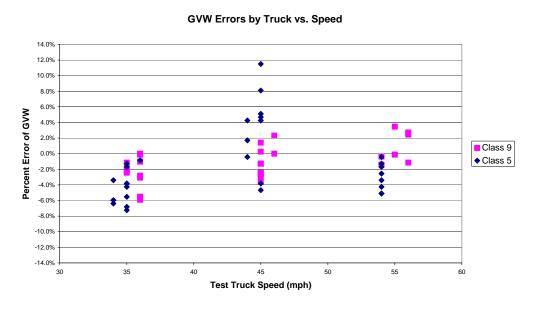


Figure 3-4 Post-Validation GVW Percent Error vs. Speed by Truck – 120500 – 03 Mar 2005

From Figure 3-5 it appears that the WIM equipment over estimates the steering axle weights at the low speeds, and then produces a progressively higher overestimation as the

speed of the test trucks increase. Scatter appears larger at the medium range speeds than at the low and high range speeds.

Figure 3-5 Post-Validation Steering Axle Percent Error vs. Speed Group - 120500 - 03 Mar 2005

From Figure 3-6 it appears that when the steering axle weight errors are grouped by truck, the steering axle weights are estimated accurately at the low speed range and then are progressively overestimated as the speeds of the test trucks increases. The scatter of the steering axle errors appears to be larger at the medium range speeds than at the low and high range speeds for both trucks.

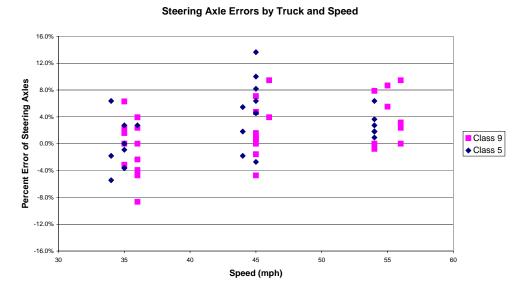


Figure 3-6 Post-Validation Steering Axle Percent Error vs. Speed by Truck - 120500 – 03 Mar 2005

3.3 Classification Validation

The agency uses a modified FHWA 13 bin classification scheme. The modification utilizes a Class 15 for unknown vehicles.

Post-validation classification validation was not performed as the pre-validation classification only had errors for Class 5 vehicles. The errors are attributed to heavy or long Class 3 vehicles being identified by the classification algorithm as Class 5 vehicles. The State's algorithm is length and weight-based, characteristics that cannot be determined with visual examination. The observer, using FHWA definitions distinguishes these types by the number of tires on the rear axle, a characteristic the equipments sensor array is not designed to capture.

A sample of 100 trucks was collected at the site. Video was taken at the site to provide ground truth for the evaluation. Based on a 100 percent sample it was determined that there are zero percent unknown vehicles and zero percent unclassified vehicles.

4 Pavement Discussion

The pavement is in good condition and does not significantly influence truck movement across the sensors. There does not appear to be any significant changes in the pavement condition since the last validation visit on December 18, 2003.

4.1 Profile analysis

The WIM site is a section of pavement that is 305 meters long with the WIM scale located at 274.5 meters from the beginning of the test section. An ICC profiler was used to collect longitudinal profiles of the test section with a sampling interval of 25 millimeters. The Long Range Index (LRI) incorporates the pavement profile starting 25.8 m prior to the scale and ending 3.2 m after the scale in the direction of travel. The Short Range Index (SRI) incorporates a shorter section of pavement profile beginning 2.7 m prior to the WIM scale and ending 0.5 m after the scale.

Profile data was collected at the SPS WIM location by Fugro/BRE, Inc. on April 7, 2004 and were processed through the LTPP SPS WIM Index software (Alpha version). This WIM scale is installed on a flexible pavement. The results are shown in Table 4-1.

A total of 8 profiler passes were conducted over the WIM site. Since the issuance of the LTPP directive on collection of longitudinal profile data for SPS WIM section, the requirements have been a minimum of 3 passes in the center of the lane and one shifted to each side. For this site the RSC has done 4 passes at the center of the lane, 2 passes shifted to the left side of the lane, and 2 passes shifted to the right side of the lane. Shifts to the sides of the lanes were made such that data were collected as close to the lane edges as was safely possible. For each profiler pass, profiles were recorded under the left wheel path (LWP) and the right wheel path (RWP).

Table 4-1 shows the computed index values for all 8 profiler passes for this WIM site. The average values over the four passes only at the center of the lane at each path were calculated, as shown in the right most column of the table. The average values over the

two passes at the right side and left side of the lane are not calculated because of the lower reliability associated with the average of only two passes. Values above the index limits are presented in italics.

Table 4-1 Long Range Index (LRI) and Short Range Index (SRI) - 120500 -07-Apr-2004

Profiler	Passes		Pass 1	Pass 2	Pass 3	Pass 4	Ave.
	LWP	LRI (m/km)	0.580	0.573	0.621	0.575	0.587
Center	LWF	SRI (m/km)	0.404	0.308	0.474	0.489	0.419
Center	RWP	LRI (m/km)	0.715	0.594	0.589	0.626	0.631
	KWP	SRI (m/km)	0.559	0.403	0.354	0.415	0.433
Left	LWP	LRI (m/km)	0.591	0.555			
Shift	LWF	SRI (m/km)	0.702	0.394			
SIIII	RWP	LRI (m/km)	0.589	0.579			
	KWF	SRI (m/km)	0.496	0.489			
	LWP	LRI (m/km)	0.535	0.509			
Right	LWF	SRI (m/km)	0.447	0.450			
Shift	RWP	LRI (m/km)	0.725	0.720			
	KWP	SRI (m/km)	0.407	0.628			

All of the passes in both the LWP and RWP were below the WIM Index value of 0.789 m/km as can be seen in the table. When all values are less than 0.789 it is presumed unlikely that pavement conditions will significantly influence sensor output. **Based on the profile data analysis, the Florida SPS-5 WIM site meets the requirements for WIM site locations.** No pavement remediation is required at present for this site.

4.2 Distress survey and any applicable photos

The pavement is in a good condition. The trucks' movement over the site did not appear to be affected by any pavement distresses.

4.3 Vehicle-pavement interaction discussion

The trucks do not appear to be displaying any significant vertical movement while approaching, traversing or exiting the WIM scale area. Trucks track down the wheel path. Daylight is not apparent between the tires and any of the sensors for the equipment.

5 Equipment Discussion

The traffic monitoring equipment at this location includes Kistler quartz piezo sensors and an IRD/PAT Traffic DAW-190 controller. The sensors are installed in a staggered array, sixteen feet apart in asphalt concrete pavement.

Since the last Validation visit on December 18, 2003 the agency instituted a new classification scheme that is a modified FHWA 13-bin scheme. The modification includes Class 15 for unclassified vehicles. The algorithm previously used has been modified to address the axle spacings for Class 3 and Class 5 vehicles. This adjustment was made in an attempt to prevent cross-classification of these vehicle types.

5.1 Pre-Validation Diagnostics

A complete electronic and electrical check of all system components including in-road sensors, electrical power, and telephone service were performed immediately prior to the evaluation. The left side section of the leading WIM sensor indicates a low insulation resistance. Although the value recorded is below the manufacturer's recommended tolerance, the sensor appears to be working properly. This sensor should be checked periodically and the data from the site should be reviewed on at least a monthly basis. Data that reflects variability and imbalance when comparing left and right axles may indicate that this sensor has failed.

All other sensors and system components were found to be within operating parameters.

A complete visual inspection of all WIM system and support components was also performed. All components appear to be in good physical condition.

5.2 Calibration Process

The equipment underwent one-iteration of the calibration process between the initial 60 runs and the final 40 runs. The calibration adjustments were done at the Agency's request in order to further improve data quality at the site. All calibration adjustments were made by the agency representative.

5.2.1 Calibration Iteration 1

The results of the 60 pre-calibration runs performed by the two test trucks produced a range of -9.0% to +6.1% for the average GVW error, with the largest underestimation at the lower range speeds. The factor to be adjusted was the low speed compensation factor, which is modified so that if weights are underestimated at the lower speed range they are increased. If weights are overestimated they are decreased. The adjustment increment used was the absolute value of the mean percent error at the low speed range. The value of the low speed compensation factor was increased by 2.0% from 995 to 1015 to reduce the size of the underestimate for GVW at the lower speed range.

The first 20 calibration runs were performed by the two test trucks and produced an average error of -1.1% for GVW. Based on this result and the values for the single and tandem axles it was determined that no further adjustments were needed.

Table 5-1 and Figure 5-1 show the results of Calibration 1 adjustment based on 20 post-calibration runs. These runs were conducted at the predetermined test speeds. The tendency to underestimate GVW decreases with increasing speed. The Agency elected to make no further adjustments to the equipment.

Table 5-1 Calibration Iteration 1 Results - 120500 - 03 Mar 2005 (beginning 4:49 PM)

SPS-1, -2, -5, -6 and -8	95 %Confidence Limit of Error	Site Values	Pass/Fail
Loaded single axles	±20 percent	1.9% <u>+</u> 11.1%	Pass
Loaded tandem axles	±15 percent	-2.8% <u>+</u> 6.1%	Pass
Gross vehicle weights	±10 percent	-1.1% <u>+</u> 6.9%	Pass
Vehicle speed	<u>+</u> 1 mph [2 km/hr]	N/A	
Axle spacing length	<u>+</u> 0.5 ft [150 mm]	0.0 <u>+</u> 0.0 ft	Pass

GVW Errors by Truck and Speed

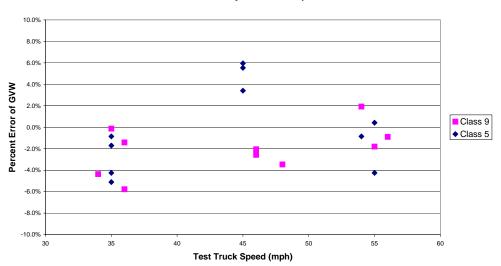


Figure 5-1 Calibration Iteration 1 GVW Percent Error vs. Speed Group - 120500 - 03 Mar 2005(beginning 4:49 PM)

5.3 Summary of Traffic Sheet 16s

This site has validation information from previous visits as well as the current one in the tables below. Shaded blocks indicate the dates when a research data quality determination was made.

Table 5-2 Classification Validation History - 120500

Date	Method		Percent			
		Class 9	Class 8	Other 1	Other 2	Unclassified
3/2/05	No. of Trucks	0	0			0
12/4/03	No. of Trucks	0	0	36		

Table 5-3 Weight Validation History - 120500

Date	Method	Mean Error and SD			
		GVW	Single Axles	Tandem Axles	
3/3/05	Test Trucks	-2.1 (3.2)	0.1 (5.0)	-3.2 (3.0)	
3/2/05	Test Trucks	1.7 (3.6)	0.4 (4.4)	-2.0 (3.1)	
12/18/03	Test Trucks	-5.9 (2.0)	-6.6 (3.8)	5.4 (2.4)	

Since the initial installation of the equipment in 1997 the WIM system has utilized an IRD/PAT Traffic controller. The in-road sensors in the LTPP lane were changed from BL piezo sensor to Kistler quartz sensors in 2003. At that time the WIM controller was also upgraded.

Calibrations of the equipment at this site have been performed by the vendor or a state contractor since the installation of the equipment.

5.4 Projected Maintenance/Replacement Requirements

The left side section of the leading WIM sensor indicates a low insulation resistance. Although the value recorded is below the manufacturer's recommended tolerance, the sensor currently appears to be working properly. **As funds become available this sensor should be replaced.**

6 Pre-Validation Analysis

This initial analysis is based on test runs conducted late morning to mid evening on March 2, 2005 and mid-morning to mid-day on March 3, 2005 at test site 120500 on US Route 1, 4.5 miles north of SR 706. The split between days was made to obtain a wider temperature range.

For the initial validation each truck made a total of 30 passes over the WIM scale at speeds ranging from approximately 34 to 56 miles per hour. Pavement surface temperatures were recorded during the test runs ranging from about 69 to 95 degrees Fahrenheit. The computed values of 95% confidence limits of each statistic for the total population are within Table 6-1.

As seen in Table 6-1 the site passed all of the performance criteria for research quality data. Given the trend in underestimation of GVW with speed, additional work was agreed on to provide an opportunity to improve the site's data quality.

Table 6-1 Pre-Validation Results - 120500 - 02 Mar 2005

SPS-1, -2, -5, -6 and -8	95 %Confidence Limit of Error	Site Values	Pass/Fail
Loaded single axles	±20 percent	2.0% <u>+</u> 8.8%	Pass
Loaded tandem axles	±15 percent	-1.8% <u>+</u> 6.1%	Pass
Gross vehicle weights	±10 percent	-1.2% <u>+</u> 7.3%	Pass
Vehicle speed	<u>+</u> 1 mph [2 km/hr]	0.2 <u>+</u> 0.5 mph	Pass
Axle spacing length	<u>+</u> 0.5 ft [150 mm]	0.0 <u>+</u> 0.0 ft	Pass

The test runs were conducted primarily during the mid-evening hours to the late morning over the course of two days, resulting in a fairly wide range of pavement temperatures. The runs were also conducted at various speeds to determine the effects of these variables on the performance of the WIM scale. To investigate these effects, the dataset was split into three speed groups and three temperature groups. The distribution of runs within these groupings is illustrated in Figure 6-1. The desired equitable distribution across speed and temperature combinations was achieved. The speed groups were divided as follows: Low speed = 34 to 40 mph, Medium speed = 41 to 48 mph and High speed = 49+ mph. The three temperature groups were created by splitting the runs between those at 69 to 76 for Low temperature, 77 to 85 for Medium temperature and 86 to 95 for High temperature.

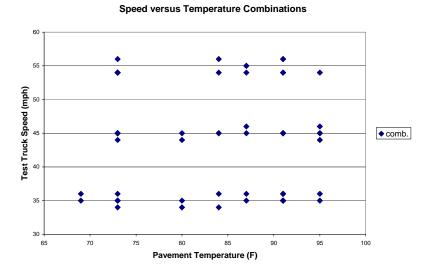


Figure 6-1 Pre-Validation Speed-Temperature Distribution – 120500 – 02 Mar 2005

A series of graphs was developed to check visually for any sign of a relationship between speed or temperature and the scale performance.

Figure 6-2 shows the by truck GVW percent error vs. speed graph for the population as a whole. From the figure it appears that the GVW for both trucks was similarly underestimated at the low speed range. The GVW for the Class 5 truck was overestimated at the medium speed range and was underestimated at the high range speeds. The scatter of the GVW errors for the Class 5 truck is larger at the medium speed

range than at the low and high speed ranges. The Class 9 GVW shows decreasing underestimation with increasing speeds.

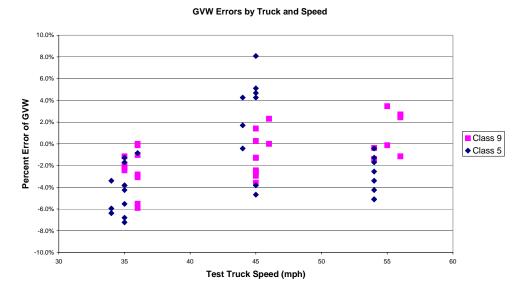
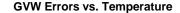



Figure 6-2 Pre-validation GVW Percent Error vs. Speed by Truck – 120500 – 02 Mar 2005

Figure 6-3 shows the relationship between temperature and GVW percentage error. From the figure, it appears that when the GVW errors for both test trucks are combined they are underestimated more at the low temperature range than at the medium and high temperatures. The scatter for combined GVW errors appears larger at the medium and high temperatures than at the low temperature.

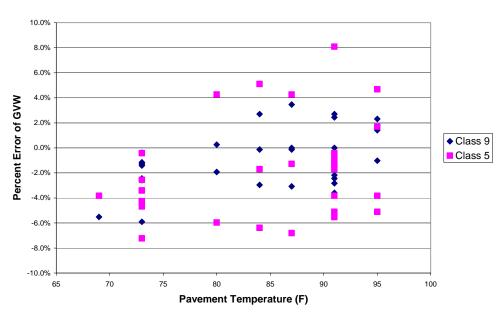


Figure 6-3 Pre-Validation GVW Percent Error vs. Temperature by Truck – 120500 – 02 Mar 2005

Figure 6-4 shows the relationship between the spacing errors in feet and speeds. From the figure it appears that errors in tandem spacings for the test trucks were generally not affected by changes in speed.

Drive Tandem Spacing vs.WIM Speed

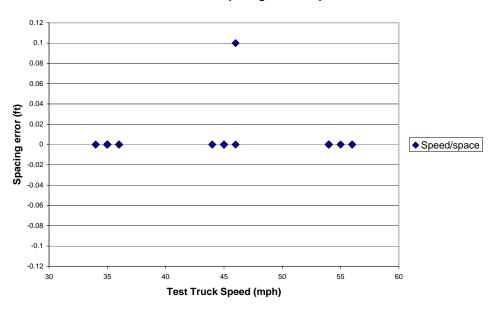


Figure 6-4 Pre-Validation Speed vs. Spacing – 120500 – 02 Mar 2005

6.1 Temperature-based Analysis

The three temperature groups were created by splitting the runs between those at 69 to 76 degrees Fahrenheit for Low temperature, 77 to 85 degrees Fahrenheit for Medium temperature and 86 to 95 degrees Fahrenheit for High temperature.

From Table 6-2 it appears that the GVW and tandem weights are underestimated at all temperatures, and the steering axle weights are underestimated at low temperatures and overestimated at the medium and high temperatures.

Table 6-2 Pre-Validation Results by Temperature Bin - 120500 - 02 Mar 2005

Element	95% Limit	Low Temp. 69-76F	Medium Temp. 77-85F	High Temp. 86-95F
Single axles	±20 %	-0.4%±9.9%	3.7%±7.7%	$2.5\% \pm 8.7\%$
Tandem axles	±15 %	-3.2%±5.9%	-1.1%±6.1%	-1.0%±6.3%
GVW	±10 %	-2.4%±7.9%	$-0.7\% \pm 8.9\%$	$-0.7\% \pm 7.0\%$
Speed	±1 mph	N/A	N/A	N/A
Axle spacing	±0.5 ft	0.0±0.0 ft	0.0±0.0 ft	0.0±0.1 ft

Figure 6-5 it can be seen that the equipment underestimates the test truck GVW at all temperatures with higher underestimation at the lower range temperatures. The scatter of GVW errors appears larger at the lower temperatures range than at the medium and high temperature range.

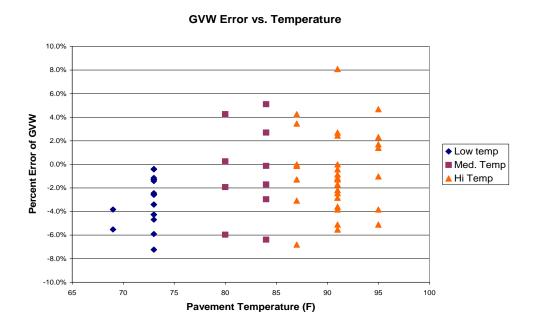


Figure 6-5 Pre-Validation GVW Percent Error vs. Temperature by Group – 120500 – 02 Mar 2005

Figure 6-6 shows that the equipment estimates steering axle weights comparatively accurately at all temperatures. It appears that the scatter of the steering axle errors is smaller at the medium temperatures than at the low and high temperatures.

16.0% 12.0% 12.0% 12.0% 12.0% 12.0% 12.0% 12.0% 13.0% 14.0% 14.0% 15.0% 16.0% 16.0% 16.0% 17.0% 18.0% 18.0% 19.0%

Steering Axle Errors vs. Temperature

Figure 6-6 Pre-Validation Steering Axle Error vs. Temperature by Group – 120500 – 02 Mar 2005

6.2 Speed-based Analysis

The speed groups were divided as follows: Low speed = 34 to 40 mph, Medium speed = 41 to 48 mph and High speed = 49+ mph.

Table 6-3 shows the error statistics by speed group. The table indicates that the equipment underestimates all weights at the low speeds. At the medium speeds the steering axle and GVW weights are overestimated by 3.7 percent and 0.9 percent respectively and the tandem weights are underestimated by 2 percent on average. At the high speeds, the single and tandem weights are overestimated by 3.5 percent and 0.3 percent respectively, and the GVW is underestimated by 1.0 percent. The variability for tandem axle weights is fairly consistent through the entire speed range while the variability of single and GVW weights is slightly higher at the medium speeds.

Table 6-3 Pre-Validation Results by Speed Bin - 120500 – 02 Mar 2005

Element	95%	Low Med.		High	
	Limit	Speed	Speed	Speed	
Single axles	<u>+</u> 20 %	-0.6% <u>+</u> 7.9%	3.7% <u>+</u> 9.6%	3.5% <u>+</u> 6.7%	
Tandem axles	<u>+</u> 15 %	-3.0% <u>+</u> 5.8%	-2.0% <u>+</u> 5.7%	0.3% <u>+</u> 6.3%	
GVW	<u>+</u> 10 %	-3.4% <u>+</u> 4.6%	0.9% <u>+</u> 8.8%	-1.0% <u>+</u> 5.9%	
Speed	<u>+</u> 1 mph	N/A	N/A	N/A	
Axle spacing	<u>+</u> 0.5 ft	0.0 <u>+</u> 0.0 ft	0.0 <u>+</u> 0.1 ft	0.0 <u>+</u> 0.0 ft	

From Figure 6-7, it appears the mean GVW errors are underestimated at the low and high range speeds and slightly overestimated at the medium range speeds. The scatter for GVW error is larger at the medium range speeds than at the low and high range speeds. The high speed range has an upper limit by the speed limit. This value is slightly lower than the median speed for the traffic stream.

GVW Errors by Speed Group 14 0% 12.0% 10.0% 8.0% 6.0% Percent Error of GVW 4.0% \blacksquare 2.0% ◆ Low speed 0.0% Med. Speed ▲ Hi speed -2.0% -4.0% -6.0% -8.0% -12.0% -14.0% 30 35 55

Figure 6-7 Pre-Validation GVW Percent Error vs. Speed Group – 120500 – 02 Mar 2005

Test Truck Speed (mph)

From Figure 6-8 it appears that the GVW error and variability trends illustrated in Figure 6-7 are dissimilar to those of individual trucks. The Class 5 exhibits larger scatter and overestimation rather than underestimation of GVW for the medium speed than it does for high and low speeds. For the ends of the test range, the Class 5s GVW tendency and scatter are very similar. By contrast, the scatter for Class 9 GVW remains similar over the speed range while the level of underestimation decreases. The dissimilarity in the vehicle response is reflected in the larger variability at medium speeds in Table 6-3.

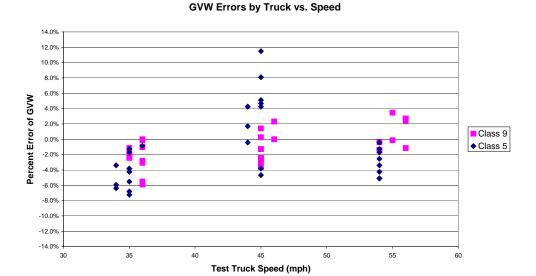


Figure 6-8 Pre-Validation GVW Percent Error vs. Speed by Truck – 120500 – 02 Mar 2005

From Figure 6-9, it appears that the steering axle weights are estimated accurately at the low range speeds, and then are increasingly overestimated as the speeds of the test trucks increase. The scatter of the steering axle weight errors is larger at the medium speed range than at the low and high range speeds.

Figure 6-9 Pre-Validation Steering Axle Percent Error vs. Speed Group - 120500 - 02 Mar 2005

From Figure 6-10, it appears that the steering axle weight errors and scatter trends illustrated in Figure 6-9 remain consistent when the steering axle errors of the test trucks are evaluated separately.

Steering Axle Errors by Truck and Speed

16.0% 12.0% 12.0% 12.0% 12.0% 12.0% 10.0%

Figure 6-10 Pre-Validation Steering Axle Percent Error vs. Speed by Truck - 120500 – 02 Mar 2005

6.3 Classification Validation

The agency uses a modified FHWA 13 bin classification scheme. The modification utilizes a Class 15 for unknown vehicles.

A sample of 100 trucks was collected at the site. Video was taken at the site to provide ground truth for the evaluation. Based on a 100 percent sample it was determined that there are zero percent unknown vehicles and zero percent unclassified vehicles.

The second check is the ability of the algorithm to correctly distinguish between truck classes with no more than 2% errors in such classifications. The Class 5 misclassification errors are a result of a difference between the classification identification process utilized by the observer which is strictly by number of axles and whether or not the rear axle contains dual wheels. The system classification algorithm utilizes not only the number of axles, but also the axle spacing and the weight of the vehicle. Therefore, Class 5 vehicles that may be classified properly when compared with the system algorithm may be identified properly; the classification test observer does not have the capability to make the same differentiation between Class 3 and Class 5 vehicles. In this case, the discrepancy of Class 5 misclassification does not appear to be a significant problem and does not constitute a failure of the system in providing research quality classification data. The following are the classification error rates by class:

Table 6-4 Truck Misclassification Percentages for 120500 – 02 Mar 2005

Class	Percent	Class	Percent	Class	Percent
	Error		Error		Error
4	0	5	4.8	6	N/A
7	0				
8	0	9	0	10	N/A
11	N/A	12	N/A	13	N/A

The misclassification percentage is computed as the probability that a pair containing the class of interest does NOT include a match. Thus if there are eight pairs of observations with at least one Class 9 and only six of them are matches, the error rate is 25 percent. The percent error and the mean differences reported below do not represent the same statistic. It is possible to have error rates greater than 0 with a mean difference of zero.

Table 6-5 Truck Classification Mean Differences for 120500 – 02 Mar 2005

Class	Mean Difference	Class	Mean Difference	Class	Mean Difference
4	N/A	5	-5	6	N/A
7	0				
8	0	9	0	10	N/A
11	N/A	12	N/A	13	N/A

These error rates are normalized to represent how many vehicles of the class are expected to be over- or under-counted for every hundred of that class observed by the equipment. Thus a value of 0 means the class is identified correctly on average. A number between -1 and -100 indicates at least that number of vehicles either missed or not assigned to the class by the equipment. It is not possible to miss more than all of them or one hundred out of one hundred. Numbers 1 or larger indicate at least how many more vehicles are assigned to the class than the actual "hundred observed". Classes marked Unknown are those identified by the equipment but no vehicles of the type were seen the observer. There is no way to tell how many more than those that might actually present exist. N/A means no vehicles of the class recorded by either the equipment or the observer.

7 Data Availability and Quality

As of March 3, 2005 this site does not have at least 5 years of research quality data. Research quality data is defined to be at least 210 days in a year of data of known calibration meeting LTPP's precision requirements.

Data that has validation information available has been reviewed in light of the patterns present in the two weeks immediately following a validation/calibration activity. A determination of research quality data is based on the consistency with the validation pattern. Data that follows consistent and rational patterns in the absence of calibration information may be considered nominally of research quality pending validation information with which to compare it. Data that is inconsistent with expected patterns and has no supporting validation information is not considered research quality.

The amount and coverage for the site is shown in Table 7-1. The value for months is a measure of the seasonal variation in the data. The indicator of coverage indicates whether day of week variation has been accounted for on an annual basis. As can be seen from the table only 1994 and 1997 to 2003 have a sufficient quantity of classification data to be considered complete years of data. The years 1998, 1999, 2002 and 2003 have sufficient quantity of weight data to be considered complete years of data. Together with the previously gathered calibration information it can be seen that at least 5 additional years of research quality data are needed to meet the goal of a minimum of 5 years of research weight data. As of this time, no data has been submitted from this site for 2004.

Upon submission and review of the 2004 data, we may only need 4 additional years to meet the goal of 5 years of research quality data, as this site was successfully validated in December of 2003.

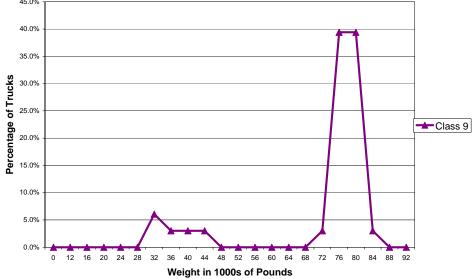
Table 7-1 Amount of Traffic Data Available for 120500

Year	Classification	Months	Coverage	Weight	Months	Coverage
	Days			Days		
1991	32	3	Full Week	14	2	Full Week
1992	183	8	Full Week	21	3	Full Week
1993				7	2	Full Week
1994	243	8	Full Week	16	3	Full Week
1995	57	2	Full Week			
1996	104	5	Full Week	84	7	Full Week
1997	280	10	Full Week	21	3	Full Week
1998	359	12	Full Week	345	12	Full Week
1999	257	9	Full Week	270	9	Full Week
2000	356	12	Full Week	31	1	Full Week
2001	355	12	Full Week			Full Week
2002	243	9	Full Week	336	12	Full Week
2003	261	10	Full Week	267	11	Full Week

GVW graphs and characteristics associated with them are used as data screening tools. As a result classes constituting more that ten percent of the truck population are considered major sub-groups whose evaluation characteristics should be identified for use in screening. The typical values to be used for reviewing incoming data after a validation are determined starting with data from the day after the completion of a validation.

Class 9s, Class 6s and Class 5s constitute more than 10 percent of the truck population. Based on the data collected from the end of the last calibration iteration the following are the expected values for these populations. The precise values to be used in data review will need to be determined by the Regional Support Contractor upon receipt of the first 14 days of data after the successful validation. For sites that do not meet LTPP precision requirements, this period may still be used as a starting point from which to track scale changes.

Table 7-2 GVW Characteristics of Major Sub-groups of Trucks - 120500 – 03 Mar 2005


	Class 9	Class 6	Class 5
Percentage Overweights	0	0	0
Percentage Underweights	0	0	0
Unloaded Peak (lbs.)	32,000	20,000	8,000
Loaded Peak (lbs.)	76,000 or 80,000	36,000	24,000

The expected percentage of unclassified vehicles is 0.

The graphical screening comparison figures are found in Figure 7-1 through Figure 7-5.

The graph in Figure 7-1 for Class 9s is based on 33 vehicles.

45.0%

Class 9 GVW Distribution

Figure 7-1 Expected GVW Distribution Class 9 – 120500 – 03 Mar 2005

The graphic in Figure 7-2 for Class 6s is based on 9 vehicles.

Class 6 GVW Distribution

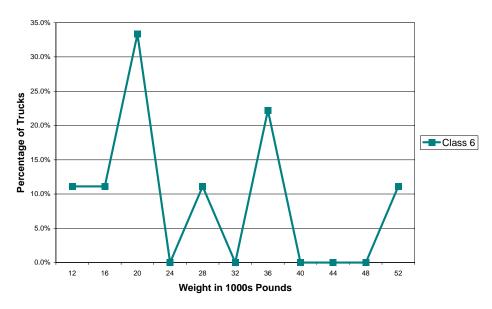


Figure 7-2 Expected GVW Distribution Class 6 - 120500 - 03 Mar 2005

The graph in Figure 7-3 for Class 5s is based on 99 vehicles.

Class 5 GVW Distribution

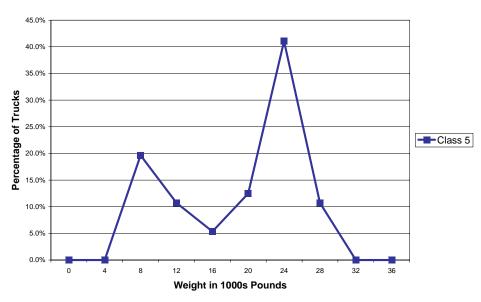


Figure 7-3 Expected GVW Distribution Class 5 - 120500 - 03 Mar 2005

As illustrated in Figure 7-4, Classes 9 and 6 are just over the 10 percent cut-off for potential comparison classes. Due to the limited numbers in the sample, more than these vehicles may not be present in sufficient numbers in the comparison period to generate comparison data sets.

Vehicle Distribution Trucks (4-20)

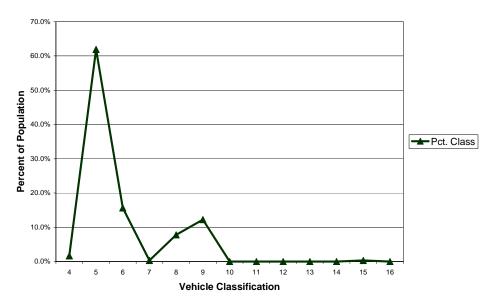


Figure 7-4 Expected Vehicle Distribution – 120500 – 03 Mar 2005

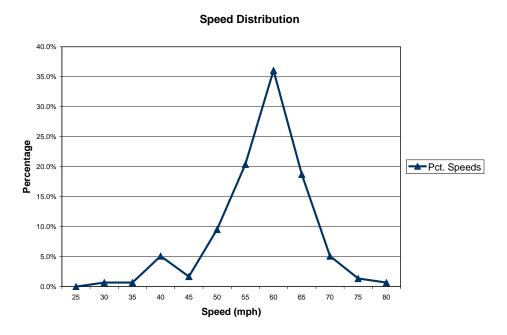


Figure 7-5 Expected Speed Distribution - 120500 - 03 Mar 2005

8 Data Sheets

The following is a listing of data sheets incorporated in Appendix A.

Sheet 19 - Truck 1 - 3S2 fully-loaded with air suspension (4 pages) Sheet 19 - Truck 2 - 2D fully-loaded with spring suspension (4 pages) Sheet 20 – Speed and Classification verification pre-validation (2 pages)

Sheet 21 – Pre-validation (8 pages)

Sheet 21 – Calibration Iteration 1 – (3 pages)

Sheet 21 – Post-validation (5 pages)

Calibration Iteration 1 Worksheet – (1 page)

9 Updated Handout Guide and Sheet 17

A copy of the handout has been included following page 26. It includes a current Sheet 17 with all applicable maps and photographs. There are no significant changes in the information provided.

10 Updated Sheet 18

A current Sheet 18 indicating the contacts, conditions for assessments and evaluations has been attached following the updated handout guide.

11 Traffic Sheet 16(s)

Sheet 16s for the pre-validation and post-validation conditions are attached at the very end of the report.

POST-VISIT HANDOUT GUIDE FOR SPS WIM VALIDATION

STATE: Florida

SHRP ID: 0500

1.	General Information	1
2.	Contact Information	
3.	Agenda	1
4.	Site Location/ Directions	
5.	Truck Route Information	3
6.	Sheet 17 – Florida (120500)	4
Di ~	and a	
rig	ures	
Di ~	are 4-1: Site 120500 in Florida	2
rig 	.ire 4-1. Site 120000 iii Fiorida	
	ure 5-1: Truck Route map of 120500	
Fig	ure 6-1: Site Map of 120500	8

1. General Information

SITE ID: 120500

LOCATION: US 1 South, 4.5 miles North of SR 706

VISIT DATE: March 2 and 3, 2005

VISIT TYPE: Validation

2. Contact Information

POINTS OF CONTACT:

Validation Team: Dean J. Wolf, 301-210-5105, djwolf@mactec.com

Sam Wah, 301-210-5105, swah@mactec.com

Highway Agency: Walton Jones, 850-414-4726, walton.jones@dot.state.fl.us

Mike Leggett, 850-414-4727, Michael.Leggett@dot.state.fl.us

FHWA COTR: Debbie Walker, 202-493-3068, <u>deborah.walker@fhwa.dot.gov</u>

FHWA Division Office Liaison: Norbert Munoz, 850-942-9650, ext. 3036,

norbert.munoz@fhwa.dot.gov

LTPP SPS WIM WEB PAGE: http://www.tfhrc.gov/pavement/ltpp/spstraffic/index.htm

3. Agenda

BRIEFING DATE: *None requested.*

ONSITE PERIOD: March 2 and 3, 2005

TRUCK ROUTE CHECK: N/A

4. Site Location/ Directions

NEAREST AIRPORT: Palm Beach International Airport, West Palm Beach, Florida or Fort Lauderdale/Hollywood International Airport, Fort Lauderdale, Florida.

DIRECTIONS TO THE SITE: 4.5 miles north of SR 706, near Tequesta.

MEETING LOCATION: On Site – 8:00 a.m., March 3rd, 2005

WIM SITE LOCATION: US 1 (Latitude: 26.99734; Longitude: -80.09726)

WIM SITE LOCATION MAP: See Figure 4.1

Figure 4-1: Site 120500 in Florida

5. Truck Route Information

ROUTE RESTRICTIONS: None

SCALE LOCATION: Brown Mayflower Moving and Storage, 1900 Old Okeechobee Rd., West Palm Beach, FL. \$10.00 per run, open M-F, 8:00am to 4:45pm. Contact – Henry Wilkinson, 561-686-1400. Located off of Okeechobee Blvd.

TRUCK ROUTE:

- Northbound Turnaround: 1.779 miles from the site (27° 00.783' North and 80° 06.246' West).
- Southbound Turnaround: 0.52 miles from site (26° 59.399' North and 80° 05.659' West).

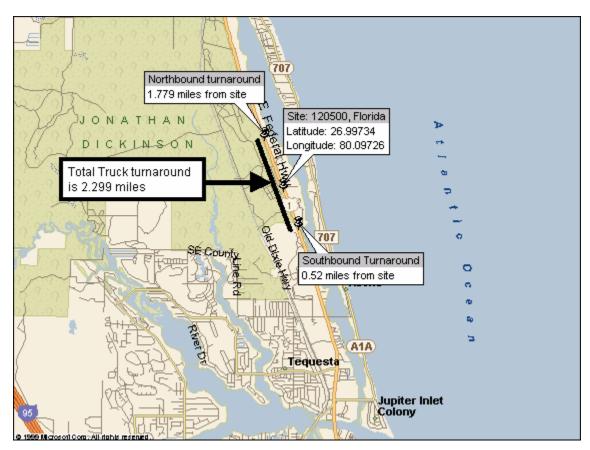


Figure 5-1: Truck Route map of 120500

6.	Sheet 17 – Florida (120500)
1.*	ROUTE <u>US 1</u> MILEPOST <u>N/A</u> LTPP DIRECTION - N \underline{S} E W
2.*	WIM SITE DESCRIPTION - Grade< 1 % Sag vertical Y / N Nearest SPS section upstream of the site _0554_ Distance from sensor to nearest upstream SPS Section182_ ft
3.*	LANE CONFIGURATION Lanes in LTPP direction2_ Lane width _12_ ft
	Median - $ \begin{array}{cccccccccccccccccccccccccccccccccccc$
	Shoulder width4 ft
4.*	PAVEMENT TYPEAsphalt Concrete
Da Da	te _12-04-03_ Photo Filename Downstream_TO_2_12_13A_0500_12_04_03.JPG te _12-04-03_ Photo Filename _Upstream_TO_2_12_13A_0500_12_04_03.JPG te * SENSOR SEQUENCEQuartz Sensor – Loop – Quartz Sensor
7. [•]	REPLACEMENT AND/OR GRINDING/ REPLACEMENT AND/OR GRINDING/ REPLACEMENT AND/OR GRINDING/
8. 1	Intersection/driveway within 300 m upstream of sensor location Y / N distance Intersection/driveway within 300 m downstream of sensor location Y / N distance Is shoulder routinely used for turns or passing? Y / N
9.	DRAINAGE (Bending plate and load cell systems only)
	1 – Open to ground 2 – Pipe to culvert 3 – None
	Clearance under plate in Clearance/access to flush fines from under system Y / N

10. * CABINET LOCATION Same side of road as LTPP lane Y / N Median Y/N Behind barrier Y / N Distance from edge of traveled lane _3_ _2_ ft Distance from system __1_2_9 __ ft TYPE _____334 B_____ CABINET ACCESS controlled by LTPP / STATE / JOINT Contact - name and phone number _____Kip Jones (850) 414-4726__ Alternate - name and phone number Michael Leggett (850) 414-4726 11. * POWER Distance to cabinet from drop ___ _ _5_ ft Overhead / underground / solar / AC in cabinet? Service provider _____ Phone number _____ 12. * TELEPHONE Distance to cabinet from drop _____2___0__ftOverhead / <u>under ground</u> / cell? Service provider _____ Phone Number _____ 13.* SYSTEM (software & version no.)- _____PAT DAW 190 Ver. 3.18 4/2/03__ Computer connection – RS232 / Parallel port / USB / Other 14. * TEST TRUCK TURNAROUND time ___6__ minutes DISTANCE _3.4__ mi. 15. PHOTOS **FILENAME** _ Solar_Panels_TO_2_12_13A_0500_12_04_03.JPG Power source Telephone Drop TO 2 12 13A 0500 12 04 03.JPG Phone source Cabinet exterior Cabinet Interior 1 TO 2 12 13A 0500 12 04 03.JPG Cabinet interior __Leading_Quartz_Sensor_TO_2_12_13A_0500_12_04_03.JPG Weight sensors Classification sensors Loop Sensor TO 2 12 13A 0500 12 04 03.JPG Other sensors Description _____ Downstream direction at sensors on LTPP lane Downstream_TO_2_12_13A_0500_12_04_03.JPG _____ Upstream direction at sensors on LTPP lane Upstream TO 2 12 13A 0500 12 04 03.JPG

COMMENTS	GPS Coordinates: Latitude: 26.99734; Longitude: -80.09726
Ame	nities:
	rious Hotels, Restaurants, Gas Stations located 5 miles South of site
in Jupiter	
Types of	f Trucks: One Class 9 and One Class 5
	d Weight Ranges: For Class 9 – 72,000 to 80,000 lbs.; For Class 5:
Speeds t	o be run: 45 to 55 mph
COMPLETED BY _	Dean J. Wolf
PHONE 301-210-	5105 DATE COMPLETED 0 3 / 0 2 / 2 0 0 5

Sketch of equipment layout

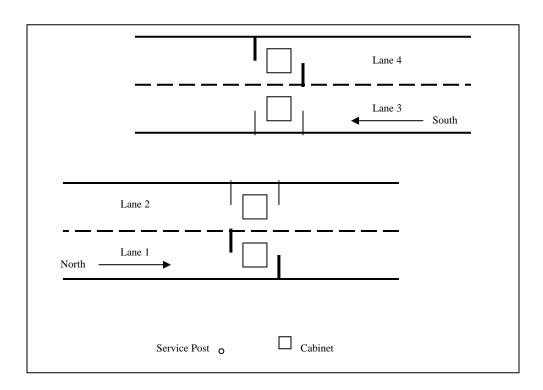


Figure 6-1: Site Map of 120500

Downstream_TO_2_12_13A_0500_12_04_03.JPG (Distress Photo 1)

Upstream_TO_2_12_13A_0500_12_04_03.JPG (Distress Photo 2)

Solar_Panels_TO_2_12_13A_0500_12_04_03.JPG

Telephone_Drop_TO_2_12_13A_0500_12_04_03.JPG

Cabinet_Interior_1_TO_2_12_13A_0500_12_04_03.JPG

Leading_Quartz_Sensor_TO_2_12_13A_0500_12_04_03.JPG

Loop_Sensor_TO_2_12_13A_0500_12_04_03.JPG

SHEET 18	STATE CODE [_12]
LTPP MONITORED TRAFFIC DATA	SPS PROJECT ID [_0500_]
WIM SITE COORDINATION	DATE: (mm/dd/yyyy) _12 / _30 /2003
Rev. 05/25/04 1. DATA PROCESSING — a. Down load — ■ State only	
☐ LTPP read only ☐ LTPP download ☐ LTPP download and copy to st	tate
 b. Data Review – ■ State per LTPP guidelines □ State – □ Weekly □ Twice a M □ LTPP 	Month □ Monthly □ Quarterly
 c. Data submission – □ State – □ Weekly □ Twice a n ■ LTPP 	nonth ■ Monthly □ Quarterly
2. EQUIPMENT –a. Purchase –■ State□ LTPP	
 b. Installation – Included with purchase □ Separate contract by State □ State personnel □ LTPP contract 	
 c. Maintenance – ☐ Contract with purchase – Expi ☐ Separate contract LTPP – Expi ☐ Separate contract State – Expi ☐ State personnel 	iration Date
d. Calibration –■ Vendor□ State□ LTPP	
e. Manuals and software control – ■ State □ LTPP	
f. Power – i. Type – □ Overhead □ Underground ■ Solar	ii. Payment — □ State □ LTPP ▼ N/A

	WIM SITE COORDINATION	DATE: (mm/dd/yyyy) _12 / _30 / _2003
Rev. 05/2	30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	DATE. (IIIII) dd yyyy) _12 / _30 /2003
į	g. Communication – i. Type – ■ Landline □ Cellular □ Other	ii. Payment – ■ State □ LTPP □ N/A
	PAVEMENT – a. Type – □ Portland Concrete Cement ■ Asphalt Concrete	
1	 b. Allowable rehabilitation activities – ☐ Always new ■ Replacement as needed ☐ Grinding and maintenance as n ☐ Maintenance only ☐ No remediation 	eeded
(c. Profiling Site Markings – □ Permanent ■ Temporary	
	ON SITE ACTIVITIES — a. WIM Validation Check - advance no	tice required14 ■ days □ weeks
1	 b. Notice for straightedge and grinding i. On site lead – ■ State □ LTPP 	check4 □ days □ weeks
	ii. Accept grinding –■ State□ LTPP	
(c. Authorization to calibrate site − ■ State only □ LTPP	
(d. Calibration Routine – ☐ LTPP – ☐ Semi-annual ☐ State per LTPP protoco ☐ State other –	l – ☐ Semi-annually ☐ Annually

STATE CODE

SPS PROJECT ID

SHEET 18

LTPP MONITORED TRAFFIC DATA

[_12]

[_0500_]

		WINI SITE COORDINATION	Ditte. (Inneday)	77) _12 / _30 /2003
Rev. 05	/25/0	/04		
	e.	Test Vehicles i. Trucks – 1st – Air suspension 3S2 2nd – Air Suspension 3S2 3rd – 4th –	☐ State ☐ State ☐ State ☐ State	■ LTPP ■ LTPP □ LTPP □ LTPP
		ii. Loads –	□ State	■ LTPP
		iii. Drivers –	☐ State	■ LTPP
	f.	Contractor(s) with prior successful ex	00	calibration in state:
		FTE, DTS, MACTEO	Ckinc	
	g.	Access to cabinet i. Personnel Access – ■ State only □ Joint □ LTPP		
		ii. Physical Access –■ Key□ Combination		
	h.	State personnel required on site -	■Yes □No	
	i.	Traffic Control Required -	□Yes ■No	
	j.	Enforcement Coordination Required	- □Yes ■No	
5.		TE SPECIFIC CONDITIONS – Funds and accountability –		
	b.	Reports –		
	c.	Other –		
	d.	Special Conditions –		
6.	CC	ONTACTS –		
	a.	Equipment (operational status, access	, etc.) –	
		Name:Michael Legg	ett Phone:	(850) 414-4727
		Agency:		

STATE CODE

SPS PROJECT ID

DATE: (mm/dd/yyyy) _12__ / _30__ / __2003_

[_12] [_0500_]

SHEET 18

LTPP MONITORED TRAFFIC DATA

WIM SITE COORDINATION

-	SHEET 18	STATE CODE	[_12]
LTF	PP MONITORED TRAFFIC DATA	SPS PROJECT ID	[_0500_]
	WIM SITE COORDINATION	DATE: (mm/dd/yyyy) _12/_30/2003
5/25/			
b.	Maintenance (equipment) –		
	Name:Kip Jones	Phone:	(850) 414-4726
	Agency:		· · · · · · · · · · · · · · · · · · ·
c.	Data Processing and Pre-Visit Data -		
	Name:Richard Ree	l Phone:	(850) 414 4709
	Agency:		
d.	Construction schedule and verification	n –	
	Name:Kip Jones	Phone:	(850) 414-4726 _
	Agency:		
e.	Test Vehicles (trucks, loads, drivers)	_	352 748 4066
	Name: Palm Beach Equip	Ment Rental Phone:	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	Agency: Gibham T	rucking lines	Coleman, FL 33521
f.	Traffic Control –	•	
	Name:	Phone:	···
	Agency:		
g.	Enforcement Coordination –		
	Name:	Phone:	
	Agency:		
h.	Nearest Static Scale		
	Name: Brown Mayflower	Moving and Storag	ge Location: 1900 Old

Okeechobee Rd., West Palm Beach, FL. open M-F, 8:00am to 4:45pm

Phone: Contact - Henry Wilkinson, 561-686-1400. Located off of

Okeechobee Blvd.

Page 4 of 4

SHEET 16 LTPP MONITORED TRAFFIC DATA SITE CALIBRATION SUMMARY


SITE CALIBRATION INFORMATION

1.	* DATE OF CALIBRATION (MONTH/DAY/YEAR) [_0_3_ / _0_2_ / _2_0_0_5]
2.	* TYPE OF EQUIPMENT CALIBRATED _X_WIMCLASSIFIERBOTH
	* REASON FOR CALIBRATION REGULARLY SCHEDULED SITE VISIT RESEARCH EQUIPMENT REPLACEMENT TRAINING DATA TRIGGERED SYSTEM REVISION NEW EQUIPMENT INSTALLATIONX_OTHER (SPECIFY)SPSWIM Validation
	* SENSORS INSTALLED IN LTPP LANE AT THIS SITE (CHECK ALL THAT APPLY): BARE ROUND PIEZO CERAMIC BARE FLAT PIEZO BENDING PLATES CHANNELIZED ROUND PIEZO LOAD CELLS X_ QUARTZ PIEZO CHANNELIZED FLAT PIEZO X_ INDUCTANCE LOOPS CAPACITANCE PADS OTHER (SPECIFY)
5.	EQUIPMENT MANUFACTURERController – IRD/PAT Traffic ; Sensors - Kistler
	WIM SYSTEM CALIBRATION SPECIFICS**
6.**	CALIBRATION TECHNIQUE USED: TRAFFIC STREAMSTATIC SCALE (Y/N)X_ TEST TRUCKS
	NUMBER OF TRUCKS COMPARED2 NUMBER OF TEST TRUCKS USED
	3_0 PASSES PER TRUCK TRUCK TYPE SUSPENSION TYPE PER FHWA 13 BIN SYSTEM 19 1 SUSPENSION: 1 - AIR; 2 - LEAF SPRING 25 2 3 - OTHER (DESCRIBE) 3 =
7.	SUMMARY CALIBRATION RESULTS (EXPRESSED AS A PERCENT) MEAN DIFFERENCE BETWEEN DYNAMIC AND STATIC GVW12_ STANDARD DEVIATION36_ DYNAMIC AND STATIC SINGLE AXLES2_0_ STANDARD DEVIATION44_ DYNAMIC AND STATIC DOUBLE AXLES18_ STANDARD DEVIATION31_
8.	NUMBER OF SPEEDS AT WHICH CALIBRATION WAS PERFORMED
9.	DEFINE THE SPEED RANGES USED (MPH)30 - 40 mph, 41-48 mph, 49-56 mph
10.	CALIBRATION FACTOR (AT EXPECTED FREE FLOW SPEED)9_9_5
11.*	* IS AUTO-CALIBRATION USED AT THIS SITE? (Y/N)N IF YES, LIST AND DEFINE AUTO-CALIBRATION VALUE:
	CLASSIFIER TEST SPECIFICS***
12.*	** METHOD FOR COLLECTING INDEPENDENT VOLUME MEASUREMENT BY VEHICLE CLASS: VIDEOX_ MANUAL PARALLEL CLASSIFIERS
13.	METHOD TO DETERMINE LENGTH OF COUNT TIMEX_ NUMBER OF TRUCKS
14.	MEAN DIFFERENCE IN VOLUMES BY VEHICLES CLASSIFICATION: *** FHWA CLASS 9 FHWA CLASS
	*** PERCENT "UNCLASSIFIED" VEHICLES:
	RSON LEADING CALIBRATION EFFORT:Dean J. Wolf NTACT INFORMATION:(301) 210-5105 rev. November 9, 199

SHEET 16 LTPP MONITORED TRAFFIC DATA SITE CALIBRATION SUMMARY

SITE CALIBRATION INFORMATION

1. *	DATE OF CALIBRATION (MONTH/DAY/YEAR) [_0_3_ / _0_3_ / _2_0_0_5]
2. * '	TYPE OF EQUIPMENT CALIBRATED _X_WIMCLASSIFIERBOTH
	REASON FOR CALIBRATION REGULARLY SCHEDULED SITE VISIT RESEARCH EQUIPMENT REPLACEMENT TRAINING DATA TRIGGERED SYSTEM REVISION NEW EQUIPMENT INSTALLATION X_ OTHER (SPECIFY) SPSWIM Validation
	SENSORS INSTALLED IN LTPP LANE AT THIS SITE (CHECK ALL THAT APPLY): BARE ROUND PIEZO CERAMIC BARE FLAT PIEZO BENDING PLATES CHANNELIZED ROUND PIEZO LOAD CELLS X_ QUARTZ PIEZO CHANNELIZED FLAT PIEZO X_ INDUCTANCE LOOPS CAPACITANCE PADS OTHER (SPECIFY)
5. E0	QUIPMENT MANUFACTURERController – IRD/PAT Traffic ; Sensors - Kistler
	WIM SYSTEM CALIBRATION SPECIFICS**
6.**C	ALIBRATION TECHNIQUE USED: TRAFFIC STREAMSTATIC SCALE (Y/N)X_ TEST TRUCKS
	NUMBER OF TRUCKS COMPARED2 NUMBER OF TEST TRUCKS USED
	3_0 PASSES PER TRUCK TRUCK TYPE SUSPENSION TYPE PER FHWA 13 BIN SYSTEM 191 SUSPENSION: 1 - AIR; 2 - LEAF SPRING 252 3 - OTHER (DESCRIBE) 3
7.	SUMMARY CALIBRATION RESULTS (EXPRESSED AS A PERCENT) MEAN DIFFERENCE BETWEEN DYNAMIC AND STATIC GVW
8.	NUMBER OF SPEEDS AT WHICH CALIBRATION WAS PERFORMED
9.	DEFINE THE SPEED RANGES USED (MPH)30 - 40 mph, 41-48 mph, 49-56 mph
10.	CALIBRATION FACTOR (AT EXPECTED FREE FLOW SPEED)1_0_1_5
11.**	IS AUTO-CALIBRATION USED AT THIS SITE? (Y/N)N IF YES, LIST AND DEFINE AUTO-CALIBRATION VALUE:
	CLASSIFIER TEST SPECIFICS***
12.***	METHOD FOR COLLECTING INDEPENDENT VOLUME MEASUREMENT BY VEHICLE CLASS: VIDEO MANUAL PARALLEL CLASSIFIERS
13.	METHOD TO DETERMINE LENGTH OF COUNT TIME NUMBER OF TRUCKS
14.	MEAN DIFFERENCE IN VOLUMES BY VEHICLES CLASSIFICATION: *** FHWA CLASS 9 FHWA CLASS
	FHWA CLASS
	SON LEADING CALIBRATION EFFORT:Dean J. Wolf
CON	TACT INFORMATION: (301) 210-5105 rev. November 9, 199

	Shee	t 19	* STATE CODE	12
	LTPP Tra	ffic Data	* SPS PROJECT ID	0500
	*CALIBRATION T	TEST TRUCK # 1	* DATE	03 02 2005
PART I. 1.* FHWA	Class9	2.* Number of Axles _	5	
AXLES - u	ınits - <u>lbs</u> / 100s lb	s / kg		
A	3. Empty Truck Axle Weight	4.* Pre-Test Average Loaded Axle Weight	5.* Post-Test Average Loaded Axle Weight	6.* Measured D)irectly or C)alculated? D / C
A .				D / 6
В		\5350	15100	D / 🕲
C		15120	15100	D / 🖒
D		17570	17460	D / 🖒
E		(7330	17460	D / (C)
F				D / C
GVW (sam	ne units as axles)			
7. a) Empty	GVW	*c) Post Test	Pre-Test Loaded weight Loaded Weight e Post Test – Pre-test	78300 77480 820
GEOMET	RY			
8 a) * Tract	tor Cab Style - Cab	Over Engine / Convention	al b) * Sleeper Cab?	Y / <u>N</u>
9. a) * Mak	ce: MACK	b) * Model:		
10.* Traile	r Load Distribution	Description:		
,	Concrete block	es distributed evenly or	v length of trailer	
		nits):		

	Sheet 1		* STATE_CODE	12
	LTPP Traffi		* SPS PROJECT ID	0510
Rev. 08/31/01	*CALIBRATION TE	ST TRUCK # 1	* DATE	03/02/2015
12.* Axle Sp	pacing – units m	feet and inches / fee	et and tenths	
A to B	<u>17.3</u> B to	o C4.3'	C to D 32.1	
	D t	о E	E to F	
Whee	elbased (measured A	to last)	Computed 51.8	
13. *Kingpir	n Offset From Axle B	(units) ${(+is)}$	to the rear)	
SUSPENSIO		(
			on (leaf, air, no. of leaves,	-
	24.5	Air Less Spri.	``\$	
B mag	١٤.5	Aic	•	(
C 110	24.5	Aic	A CONTRACTOR OF THE PROPERTY O	
D 110	24.5	Air		
E no	24.5	Air		
F				
16. Cold Tire	e Pressures (psi) – fro	om right to left		
Steering Axl	e Axle B	Axle C	Axle D	Axle E

	-			
			-744	

Sheet 19	* STATE_CODE	12
LTPP Traffic Data	* SPS PROJECT ID	0500
*CALIBRATION TEST TRUCK # 1	* DATE	03 02/2005

Rev. 08/31/01

PART II

Table 1. Axle and GVW computations - pre-test

Axle A	Axle A Axle B		Axle C		Axle D	Axle D		Axle E		7	
I	12920	II -I	15400	III -II	15040	IV -III	17620	V -IV	17360	V	78340
V -VI	13020	VI- VII	15300	VII- VIII	15200	VIII- IX	17520	IX.	17300	X	784100
										XI	78160
Avg.	12970	19	5350	15120		17570		17330		78308	

Table 2. Raw Axle and GVW measurements

Axles	Meas.	Pre-test Weight	Post-test Weight
A	I	12920	12360
A + B	II	28320	7 27460
A + B + C	III	43360	42560
A + B + C + D	IV	60980	60820
A+B+C+D+E(1)	V	78340	77489
B+C+D+E	VI	65320	65 120
C + D + E	VII	50020	50020
D+E	VIII	34820	25445c
Е	IX	17300	17460
A + B + C + D + E (2)	X	78400	77450
A + B + C + D + E(3)	XI	78160	

Table 3. Axle and GVW computations - post -test

Tuole 5. Tikie und G V VV comparations - post-test													
Axle A		Axle B		Axle C	,	Axle D		Axle E		GVW			
I	39 366 965000000	II		III	15160	IV		V		v	77480		
	123,40	-I	15 100	-II	17.4	-III	17460	-IV	n460		7196		
V -VI	129,60	VI- VII	15100	VII- VIII	15:00	VIII- IX	17460	IX,	(7460	X	77480		
- V 1										XI			
Avg.	15350	15	100	15:00		:1869		15, 15, 9		-17490			

	Sho	eet 19	* S	ΓATE_CODE		13
	LTPP T	raffic Data	* SI	PS PROJECT ID	0500	
	*CALIBRATION	TEST TRUCK #	* D.	ATE		03/02/200
Rev. 08/31/01						
Γable 4 . A	xle and GVW com	putations -				
Axle A	Axle B	Axle C	Axle D	Axle E	GVW	
	II	Ш	IV	V	V	
	-I	-II	-III	-IV		
7	VI-	VII-	VIII-	IX	X	
VI	VII	VIII	IX			
					XI	
Δνα						

Axle D

Axle D

Axle D

17460

17460

Axle E

Axle E

Axle E

17460

17460

Verified By

GVW

GVW

GVW

77480

77486

Axle F

Axle F

Axle F

Axle C

Axle C

Axle C

15100

15100

Table 5. Raw data – Axle scales – pre-test

Axle B

Axle B

Axle B

15100

15100

DW

Axle A

Table 6. Raw data – Axle scales –

Axle A

Table 7. Raw data – Axle scales – post-test

Axle A

12360

12360

Measured By

Pass

1

2

3

Average

Pass

1

2

3

Average

Pass

1

2

3

Average

Sheet 19	* STATE_CODE	12
LTPP Traffic Data	* SPS PROJECT ID	0500
*CALIBRATION TEST TRUCK # 2 Rev. 08/31/01	* DATE	3/2/2005
PART I.		
1.* FHWA Class 2.* Number of Axles 2	-	
AXLES - units - lbs / 100s lbs / kg		
Axle Weight Loaded Axle Weight	* Post-Test Average Loaded Axle Weight	6.* Measured D)irectly or C)alculated? D/ C
A	10900	
В	12540	6 / C
C		D / C
D		D / C
E		D / C
F		D / C
GVW (same units as axles)		
7. a) Empty GVW *b) Average Pre-7	Test Loaded weight	23640
*c) Post Test Load	ded Weight	23440
*d) Difference Po	ost Test – Pre-test	200
GEOMETRY		
8 a) * Tractor Cab Style - Cab Over Engine / Conventional	b) * Sleeper Cab?	Y/N
9. a) * Make: <u>International</u> b) * Model: <u>4700</u>		
10.* Trailer Load Distribution Description:		
3 forklift counterweights placed evenly al	long truck bed	
		
11. a) Tractor Tare Weight (units):		
b). Trailer Tare Weight (units):		
- /		

Rev. 08/31/01				
12.* Axle Spacin	ng – units fe	et and inches / fee	et and tenths	
A to B1 1.8	B to C		C to D	,
	D to E		E to F	Acres de Company
Wheelbas	sed (measured A to	last)	Computed 19.8	<u>} </u>
13. *Kingpin Of	fset From Axle B (un	(+ is	to the rear)	_
SUSPENSION				
A 255 756 B 295 756 C D E F	_ 22 . 5 <u> </u>		lest, 10 tests	
16. Cold Tire Pre	essures (psi) – from 1			
Steering Axle	Axle B	Axle C	Axle D	Axle E
· · · · · · · · · · · · · · · · · · ·				

* STATE_CODE * SPS PROJECT ID * DATE

12 0500 3/2/2005

Sheet 19
LTPP Traffic Data
*CALIBRATION TEST TRUCK #_2_

Sheet 19	* STATE_CODE	12
LTPP Traffic Data	* SPS PROJECT ID	0500
*CALIBRATION TEST TRUCK # 2-	* DATE	3/2/2005

Rev. 08/31/01

PART II

Table 1. Axle and GVW computations - pre-test

Axle A	Axle A		Axle B		Axle C		Axle D		r B	GVW	
I	11140	II		III		IV		V	12/11/2	v	23800
	11110	-I		-II		-III		-IV	12660		238000
V	111116	VI-		VII-	,	VIII-		IX'		X	7267.
-VI	11140	VII		VIII		IX			15880		23560
										XI	23560
Avg.	11140							12	660	23	640

Table 2. Raw Axle and GVW measurements

Table 2. Naw Axie allu U v	vv IIICas	urements		
Axles	Meas.	Pre-test Weight		Post-test Weight
A	I	11140	-	10900
A+B	II			
A+B+C	Ш			
A+B+C+D A	IV	11140		10900
A+B+C+D+E(1) A+B	V	23800		23440
B_+C+D+E B	VI	12660		12540
C+D+E	VII		-	
D+E	VIII			
E B	IX	12540		12540
$A + B + C + D + E(2) A^{1/3}$	X	23560		23440
A+B+C+D+E(3)	XI	23560		

Table 3. Axle and GVW computations - post -test

Table 5	. MAIC ai	id G v vv Computa	tions - post-test					
Axle A	r	Axle B	Axle C Axle D		Axle-E	B	GVW	
I		II	III	IV	V	12540	V	2446
	10900	-I	-II	-III	-IV	1/2570		23440
V	109,00	VI-	VII-	VIII-	IX,	12540	X	23440
-VI	(0)	VII	VIII	IX		(00)		47.11
2.							XI	
Avg.	10900					12540	-	23440

	L	Sheet 19 TPP Traffic Da	ta		STATE_CODE SPS PROJECT			050
	*CALIBRA	ATION TEST T			DATE			03/02/
Rev. 08/31/01								
Table 4. A	xle and GVW	/ computation	ns -			· · · · · · · · · · · · · · · · · · ·	Γ	
Axle A	Axle E	B A	xle C	Axle D	Axle	Е	GVW	
I	П	l II	I	IV	V		V	
	-I	-I	I	-III	-IV			
V	VI-	V	II-	VIII-	IX,		X	
·VI	VII	V	III	IX				
							XI	
Avg.								
Гable 5. Ra	w data – Axl	e scales – pre	e-test					
Pass	Axle A	Axle B	Axle C	Axle D	Axle E	Axle F	G	VW
1								
2								
3								
Average								
11101450								
Tahle 6 Ra	w data – Axl	e scales _						
Pass	Axle A	Axle B	Axle C	Axle D	Axle E	Axle F	G	vw
1	AAICA	AXICD	AXICC	AXICD	Axie E	Axie	U	v vv
2						`		
3								
Average								
	w data – Axl							
Pass	Axle A	Axle B	Axle C	Axle D	Axle E	Axle F	G	VW
1								
2								
3								
Average								
Measured B	у	Mn		Verified B	у	***		-

	I T	Sheet 20	Dete			E_CODE			12
Speed o	nd Classific	PP Traffic		of* 2	*SPS PR	OJECT_II			5500
Rev. 08/	31/2001	Cation Chec	KS 1			(E) 1	0 3	102/2	009
WIM speed	WIM class	WIM Record	Obs. Speed	Obs Class	WIM speed	WIM class	WIM Record	Obs. Speed	Obs Class
61	5		61	5	64	3		64	3
59	2	*	59	2	58	5		58	5
55	5		55	5	61	3		61	3
59	2		59	2	52	2		52	2
62	5		62	5	62	2.		61	2
60	3		60	3	51	2		50	2
56	9		55	9	78	2		69	2
54	5		54	5	54	3		53	3
28	2		57	2	55	5		55	5
56	2		57	2	59	2		. 59	2
52	3		52	5	56	3		56	3
52	5		52	5	56	3 '		55	3
53	3		53	3	60	2		60	2
36	9		36	9	61	3		61	3
34	5		34	5	60	2		60	2
44	2		44	2	55	9		55	9
53	2		53	2	54	5		54	5
64	2		67	2	59	5		58	5
47	3		47	3	54	2		53	2
70	8		69	8	57	2		56	2
6!	5		60	5	64	3		64	3
52	2		52	2	34	9		35	9
A	3		68	3	35	5		34	5
45	9	,	45	9	69	2		69	2
45	5		45	5	63	2		63	2
Recorded	l by DJW		Dire	ection S	Lane	1_Time f	rom MK	to 1/2	:28

chiched blo 3/14/2005 for correct outy

		Sheet 20			* STAT	E_CODE			1 2
		PP Traffic			*SPS PR	OJECT_II)		0500
	ınd Classifi		cks * 2	of* 22	* DATE		63		2005
	/31/2001						20 2000		
wim speed	WIM class	WIM Record	Obs. Speed	Obs Class	WIM speed	WIM class	WIM Record	Obs. Speed	Obs Class
60	3		60	3	61	2		61	2
49	3		49	3	65	2		65	2
58	7		58	7	61	3		60	3
54	5		23	5	6Z	5		61	5
55	3		56	3	43	3		be	3
57	3		56	3	64	3 、		63	3
61	2		611	2.	54	3		54	3
56	2		55	2	5%	2_		56	2
46	9		45	9	55	প	P.	55	٩
45	5		45	5	(6)	2		61	2
59	2		59	2 -	54	5		54	5
67	2		66	2	61	3		61	3
52	3		52.	3	58	3		57	3
60	3		60	3	57	3		57	3

Recorded by DIW

Direction & Lane 4 Time from 12:29 to 1:01

×

ohn. 56.06 8:4. *.33 1389

Z

1451 Ches mas - 2 1446

Wim - 56.29 "10

5 com 3 -1 (100; 1.

* 18 20 5 - 1 (... 2. ...

			E-F space									
			D-E space	1-4		- ·		4.0		4:-		
			C-D space	31.9		r.A.		32.14.0		.7 1.22		
	_		B-C space	4.3		4.3		4.3		1		
2.	1 27		A-B space	7.4	8.61	7.5	7.	8.0 7.543	19.8	77.817.4 4.3	19.8	
DE	١٤	1	GVW	t.17 v.18	1.60	1:11	2. 12 C 45	S. c	25. [77.8	K S	
* STATE CODE	* DATE 02 CT		Axle F right / left	weignt								
LS *	T. O.		Axle E right / left	wedgm.		1/3		2/0		व्याहर		
			Axte D right / left	weigh. 2 ∞ / 2.		2/4		3/2		2/0		
		u	Axle C right /	weight.		0/5		11/0		2/0/12		1by
	3	8	\$.50 P	7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.	t/0	4/3	4/200	1/00	10/0	0/1/2	0/10	Checked by
	2 Jo 1		후 분	weign.	2/5	7/15	3/5	2/2	t/0	1/2/2	1/2	
	c Data	1 .	WIM	5	34	45	***	2.0	24	26	77	
Sheet 21	est Truck Records		Record No.	2022	7402	1	1759	1108	21018		1	
	WIM System Test Truck Records		Time	E A 22 St ins 11	1.05.30 7402	1.21:03 7849	1521 1754	1.38 15.95.11	1018 90.22.11	9448445.11	25+8427:11	
	VIM Svs		Pass		_	7	7	(x)	(m)	ţ	t	
			Truck	•	7	,	7	\	17		7	
		Rev. 08/31/2001	Radar Speed									led by
		Rev. 08,	Pvmt temp	° ∞	80	00	08	84	78	**************************************	48	Recorded by

			space									
	310		D-E space	1.7		4.1		4-		1.7		
1 1	y,	0	C-D space	1.2		0 PS	V	7		1:25		
	•	2 / 2 0 / 5 0	B-C space	4.3		4.3		4.7		in t		
	6	50	A-B space		8.61		14.8	17.5	2.00		8.61	
ODE		(2)	GW	421952	8.61 LAE	4779.08	87248	5:52	8.61678	77.9 17.5	17. 7%	
* STATE CODE	* DATE 2/62 0		Axle F right / left weight.									
LS *	4. *		Axle E right / left weight.	2/2		5/5-	-	0/2		0/2		1
			Axle D right / left weight.	مراية		2/2		2/2		20/00		
			Axle C right / left weight.	6/3		1/2		12/0		2/2		lby
	4		Axie B right / left weight.	3/12	3/2	1/2	1/2 rile	1/3	7/2	2/2	7/3	Checked by
	2 of 5	45 2.17	Axle A right / left weight.	فراق	2.4	0/5	5/13	5/20	120	0/2	1/5	
	c Data	`	Speed	45	45	50	24	95	35	00	3.	
Sheet 21	ELIPP Trame Data		Record No.		8088	1116	0516	Lhot	5056		9783	
ļ ļ.	WIM System Test Truck Records		Time	6923 pico:2	8088 biniz1	1116 1511:21	0516m31.21	123535	5056 455:21	29/40/2021	12:4557 9783	
	WIM Svs		Pass	1,5	5	٩	9	^	7	∞	00	Stan
			Truck	•	2	~	N	_	7	_	2	
		Rev. 08/31/2001	Radar Speed									led by
		Rev. 08	Pvmt	#8	78	28	28	28	28	\$	-	Recorded by

E-F space 0 D-E space it 4 2005 7 2.22 000 C-D space 22 3 4.3 n 17.5 4.3 4:3 4,3 B-C space 2 + 6310 17.5 17.4 19.0 17.5 17.6 19.8 A-B space 00 2 75.4 7: 87 7.91 *SPS PROJECT ID 75.7 11.8 75.1 Ø. in 61 * STATE CODE * DATE OF Axle F right / left weight. 1/2 Axle E right / left weight. 7.7 20 6 9.6 2/12 Axle D right / left weight. から Axle C right / left weight. J.D. 6 Checked by 6/6 Axle B right / left weight. 5/2 2 mg 100 4.4 1.1 5 7/10 1. 3 of B First 2/2 Axle A right / left weight. 2/6 100 6.9 6.0 100 130 51 10 2/0 5.0 55 WIM 14.2615 12153 45 45 LTPP Traffic Data 45 WIM System Test Truck Records 3 2 5 73.74:03 10HO1 35 Sheet 21 13:13:42 10389 15:57:59 100 94 Record No. 9691101.20:01 14:08:20 11699 13:27:20 10715 13:27:57/10726 Time Pass SAM 0 4 a 0 2 0 Truck 8 1 0 -1 7 Rev. 08/31/2001 Radar Speed Recorded by 38 87 Pvmt 5 6 6 1 6 6

			E-F space									
	الم		D-E space			1.4		1.5		1.4		
21	2000		C-D space			7.25		1:25		32.1		
	-	1	B-C space			2.7 5%		† †		4.3		
	101201		A-B space	19.5	3%1	57)	19.9	12	9:	125 4-3	19.8	
ODE	- 3		GVW	14.6	200	1:22	33.6	74.7	25.919.1	08	5.00	
* STATE CODE	ATE		Axde F right / left weight.									
S *	Q.		Axle E right / left weight.			2/2		2/2		2/20		
			Axle D right / left weight.			0.6		000		2/2		
			Axle C right / left weight.			1/20	<u>i</u>	2/2		2/2		d by
	40	£	Axle B right / left weight.	4/1/20	1/2	191	0/0	11/6	1/3	7.4	4.7	Checked by
	Sp jo t	First	Axle A right / left weight.	0/2	1/0	i) is 10	i/0	2/0	1/0/20	6/2	1/2	
21 ic Data	ecords		Speed	45	175	(4)	35	7	4	5.0	45	
Sheet 21 LTPP Traffic Data	Truck R		Record No.	4:6:22.2158	12757	1509.313333	13534	3842	9+182/25,92,51	07571 81 hh.51	4355	
	WIM System Test Truck Records		Time	14.26.22	12.05,41	15 09:59	15:10:09/135%	87.51	25,92,51	81'nn.51	355-41 Zhjat; 51	
	WIM Sys		Pass	12	13	14	11	151	51	91	9/	Spm
			Truck	76	N	1	7	/	2		7	
		Rev. 08/31/2001	Radar Speed									led by
		Rev. 08	Pvmt	8	95	95	20	36	95	16	16	Recorded by

					Sheet 21	11					* S.	* STATE CODE	DE			12		
			WIM Su	LIPP ITATIO Date	LIPP ITATIO Data	ic Data	30	Ø			*S.*	*SPS PROJECT ID		0	-	50		
Rev. 08	Rev. 08/31/2001		VE IVI V	SIGIII I GSI	TINCK NE	1		0			ה. ה	- DAIEO//C-	1	20/50	-	002	5	
							ナントンナ	1										
Pvmt	Radar Speed	Truck	Pass	Time	Record No.	Speed	Axle A right / left weight.	Axie B right / left weight.	Axte C right / left weight.	Axte D right / left weight.	Axle E right / left weight.	Axle F right / left weight.	GW	A-B space	B-C space	C-D space	D-E space	E-F space
16		\	11	11:90:91	N.36.71 15.05.0	0	2/1/2	0/2	ili	5.6	3/2			10	4.3	0,	1.	
16		2	11	55051 62.90.91		\S.	in lin	m/t				-	i.j	\$				
16		_	φ	16:23:39	16.23,39 15.577	55	0/0/2	6/2	7/00	1/2	har for		76.0	17.5	4.3	ja Proj	3	
16		7	00	9p,52.91	16:23 440 155:82	54	016.5	10 j	/				8.7.1 9.7.2	17.8				
16		_	6/	6609198,32,91	66091	20	خان	2/2	2/6.	5/2	1/2		19.8	17.5 4.3		327	0.77	•
76		N	12	9119175,86.91	1	75	10/0	i/i					23.4	19.7				
16		_	B	16:51:40 (16:572	16572	in in	1.90	all in	6.60	3/3	100		0.77	5%	4.3	12	4.	
16		2	<i>は</i>	90091 12:25.91	90091	35	10/10	1: ru					23.2	19.8				
Recorded by	ded by		28					Checked by	1 by			1		-				

Sheet 21 LTPP Traffic Date WIM System Test Truck Records	WIM Svetam	WIM Sweter	t tem	Tagt	Sheet 21 LTPP Traffic Data	c Data	J.	0			* SY	* STATE CODE *SPS PROJECT ID	ODE CT ID			200		
Rev. 08/31/2001		DI HIDISAGI MITA	Signi 1	<u>تة ا</u>	S S	Second		137	Rum	0N)	7	+	Sa.	0 2 /	7 0	200	<u>r</u>	
Pvmt Radar Truck Pass Time temp Speed	P SS SS SS		Time	ł	Record No.	Speed	2 P = 5	Axte B right / left weight.	Axle C right / left weight.	Axle D right / left weight.	Axte E right / left weight.	Axle F right / left weight.	GW	A-B space	B-C space	c-D sbace	D-E space	space
1 1					6.14	36	10/2	1.7/2	فالت	2/-	1/1:		73.6	17.4	4-3	<u></u>	7:4	
(4) 2 (7	7			127.9	25	12/2	5/in					9.7.	7.				
7, 7				7	Chis	45	2/2,	7/0	3/3	2/2	2/2		76.4	h://	4	13	4:	
1	لمّ ا			-40	0 252	tri	2/2	i /a					7	4.7				
1 3 10°31.14 60°50°			14. fr. or		097	i.		1/2	2/2				76.8	0.4		7		
15.76.00 \$ 7	2. %. 2. Q	15,72.01	18.72.01	2/11	17. 7.	24	alin	513						2.7.				
stissin H	4		0.35 y	130		<i>C</i> .	3/2	1/1/2					3.47	Ž.				
7000 1000 # 1 CC				,	J. Day	45	1-/0.	1.6	8. 6		J 3.				11		1	
Recorded by 5pm	SAm	2Am] [Checked by	1 by						7			

		space									
	W	D-E space			t-0				7		
200	0	C-D space			0 75				i,		
	2	B-C space			(1) t		7.		7.7		
`	_	A-B space	180. 140.	361	7. 0	6.6		19.0	15%	3.61	
GI ID		GVW	, i	22.7	1	1.33		t Ä	77.6	V-	
S PROJE	AIE	Axle F right / left weight.									
יאר י	<u>a</u>	Axle E right / left weight.			2/2		1/3		2/2		
		Axle D right / left weight.			2007 12°				2/2		
		Axle C right / left weight.			0/0 1/2		2/2		5/3		l by
		Axle B right / left weight.	4/5	2/2	2/2	1/20.	1/2 is / is	1-1:	t / 2	V ; (Checked by
- 1	#	Axle A right / left weight.	فأف	0/2	2/2	in/in/in	5/5	00/V	7/2		
C Data	-	Speed	53	から	5.6	7	\$	th	46	154	
Trick Re	TI NOW IN	Record No.	6658	67.07			2869	916		2011	
tem Test	1631	Time	9. 9. 9. 9. 9. 9. 9. 9. 9. 9. 9. 9. 9. 9	10'W, 28	97, 7 n. a/	Endno	bina.	1.60.75	2.0	is do	
WIM Sue		Pass	n	9	9	1	7	8	00	6	2Am
		Truck	R	0	/	V	-	Const	/	И	
	/31/2001	Radar Speed								*	ed by
	Rev. 08	Pvmt	73	73	73	73		2	73	7	Recorded by
	SPS PRUJECT ID OS &	4 of 8 ** DATE 03 103 120	WIM System Test Truck Records 3 of \$\$ *DATE C C C C C C C C C	WIM System Test Truck Records 4 of \$\$ *DATE Color of Social Page *DATE Color of Social	WIM System Test Truck Records 3 of \$\$ WIM System Test Truck Records 1 of \$\$ WIM System Test Truck Records 2 of \$\$ Speed Truck Pass Time Record Will Axie Axie B Axie C Axie D Axie E Axie F GWV A-B B-C C-D D-E Speed Inght ight ight ight ight ight weight weight weight weight weight weight between the first of the fi	NIM System Test Truck Records 3 of \$	NIM System Test Truck Records 3 of 3	No. No.	No. No.	With States Tuck Pass Time Record With Acts Acts Acts Acts Acts Acts Acts Acts	WIM System Test Track Records 3, 4 of 3 The Record Will Again A March

					Sheet 21						S*	* STATE CODE	DE			12		
			WIM Sv	stem Test	WIM System Test Truck Records	cords	2	0			* D	* DATE OT /OT	(21 lb	02/	120	0500	مال	
Rev. 08/31/2001	31/2001					7								Š	ń d	9		
Pvmt temp	Radar Speed	Truck	Pass	Time	Record No.	WiM	Axle A right / left weight.	Axle B right / left weight.	Axle C right / left weight.	Axle D right / left weight.	Axle E right / left weight.	Axle F right / left weight.	GVW	A-B space	B-C space	C-D space	D-E space	space
12			0	11.03.16	1/3/3/7206		3/5	1/2	- fin	~ 000			2				 	
;			2/	4 C.	7207		1	2/2						1				
12		_	9	11:09:16	722	42	6/0	7/0	1/2	2/2	t/2.		15.9	5.2)	7.4	22	7:0	
		(1)	1/	11/24/22	11:01 527339	3	1/6	15/6					i	19.8				
73		•	8	10.44.03	10:44:03 6756	5	0.7/0	1/10	7.9	3/2	-/5		76.9 17.0		1	73	i	
				r														
Recorded by	ed by		V.	7 / W				Checked by	d by					1				

			1	Sheet 21						*	* STATE CODE	DE			-	2	
		WIM Sys	WIM System Test Truck Records	Truck Re	cords	Jo /	5			TO TO	* DATE 3/c=/	CI ID	03/	03/2	0000	al L	
Rev. 08/31/2001	11				CALI	(ALISPANON	स 2	FNAL H	L EUNS	1							
Pvmt Radar temp Speed	Truck	Pass	Time	Record No.	Speed	Axle A right / left weight.	Axle B right / left weight.	Axle C right / left weight.	Axle D right / left weight.	Axte E right / left weight.	Axle F right / left weight.	GVW	A-B space	B-C space	C-D space	D-E space	E-F space
			(80,3511	377	tri	6	0/2	4/2	3/3	17-			13.4	<i>X</i> :	6:1/	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
20	И		Ž		1	:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\	t/ 1					i i	7	/			
		.5	Theres	Xix	94	0.0	1/4	2/2	1/2/20 10 10 10 10 10 10 10 10 10 10 10 10 10	F/7.		12/2	\(\times \)	4.4	7.72	7 : 5	
		17	17.6.7.2	Satis	101	t/6.	15-9					5.	₹. 				
	\	3		8568	15,/	5/2/	X	113/		+ /		%.%	17.5	5			
	X	N	2250.71	25%	130	in la	-15					12.7	3.6				
77		1	8478 20,40.20	8478	Z,	4.2	100	0/1/	2/2	c/z		77	7.5	7.5	A	7.4	
	N	+/	2.67.4			3							2				
Recorded by		5Am					Checked by	d by									

					Sheet 21	2.1					* S.	* STATE CODE	ODE			7 1		
				5	LTPP Traffic Data	c Data	- 1				*SP		CT ID			0500	٦	
			WIM Sv	WIM System Test Truck Records	Truck Re	cords	2 of S	S			* D.	* DATE 3/3	3/02	03/	03/2	002	5	
Rev. (Rev. 08/31/2001			E		721.12		er L					-					
Pvmt	Radar Speed	Truck	Pass	Time	Record No.	Speed	Axle A right / left weight.	Axle B right / left weight.	Axle C right / left weight.	Axle D right / left weight.	Axle E right / left weight.	Axle F right / left weight.	GVW	A-B space	B-C space	C-D space	D-E space	E-F space
V.S.		**	Ko	17.12.12	8727	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	5/5		4/-	5/5	2/4		S. S.	17.4	k.4	/32.1	- 5	
5			5	RZ:21.21	921	45	0/0						2.42	14.				
77			/0	01,7121	2188	X	فأن	100	0 y	0/2	- X-	,	737	7	6	7	<u>-</u>	
X		N	9	12,16,20		5	2010	5/6/					23.6	<i>2.</i>				
12		~/	1	55,61,7	457855,61	/2 N	1/3/3/	11/2		5/4	10	/	93 11	3/	5.		3/	
X		(4)	15	12)20(7)			0.5	2/3/					17	N N				
1.1		-/	*			10	\$. ² .s								/ 1		
1		7	×	mak m 4c	7.5	7	3/3	(-\S) (-\S)					j,	0.0		/		
Reco	Recorded by		SAM	5				Checked by	d by									

			E-F space				. /					
71	٥	5	D-E space	1.4		ti		1.2	4.0		4.1	
7 7	050	200	C-D space	32.1		2/	,	32	32		32	
		2	B-C space	N. H.		43		4.	4:3		4	
		03/0	A-B space	17.5	12/20/	17.5	19.8	17.4	134	19.8	17.4	
ODE	CT ID	3/03	GWW	1.1	23.3	16.8	7:62	75.33	78.0	22.9	75.9	
* STATE CODE	*SPS PROJECT ID	* DATE	Axle F right / left weight.									
*	*SP	Q *	Axle E right / left weight.	1/8		5/2/	,	0/00	5/5		0/00	
			Axle D right / left weight.	# 1 to		\$13		00/00	6/2		0/00	
			Axle C right / left weight.	6/1/3		1.100		8/00	i/3		0/00	l by
		6	Axle B right / left weight.	7/2/	20.5	5/2	1/2	11/1	2/2	E/6	1/2	Checked by
		to of	Axle A right / left weight.	200	N/S	il is	1/10/	2/6	is is	2/5	0/10	
21	ic Data	Scords	Speed	25	*s	25	35	45	24	55	35	
Sheet 21	LIPP Iraffic Data	Truck Re	Record No.	883	9816	4286	9293	9366	456	C426	9186	
-		WIM System 1 est 1 ruck Records	Тіте	12.32.06	91.25.74	12.36.31	n;36;27	12.40.12 93	12, W.75 9544	17:47:42	9186 45:52	
	o s cura	WIM Sys	Pass	0	6	9/	20	11	12.	11		Ohm
			Truck		7		N	-	_	2	1	
		Rev. 08/31/2001	Radar Speed								,	led by
		Rev. 08	Pvmt	5/	77	X THE STATE OF THE	11	77	11	17	17	Recorded by

E-F space D-E space さ 4.1 41.25 0 0500 20.2 C-D space 1.28 120 4:5 B-C space 4.3 4.7 03 103 00 12.5 7.5 21.5 19.8 00 75.8 17.5 A-B space 23.5 19. 19 2105 23.6 77.7 26.3 *SPS PROJECT ID GW * STATE CODE * DATE 3 Axle F right / left weight. Axle E right / left weight. 16 10 100 Axle D right / left weight. 10/0 Axle C right / left weight. is is 7:6 9.0 9 Axle B right / left weight. 2.6 5,00 6/0 000 0 100 1: is 1 Axle A right / left weight. Jo 0:5 2.6 0.9 15-01 50 1t 100 から らけ t WIM 54 23 LTPP Traffic Data WIM System Test Truck Records から 13:16:21 10214 36 57 35 33 Sheet 21 8286 Record No. 13:04:05 9908 13:12:39 10125 13,1243 10132 2586 1110:21 13,1629 10218 13,05/14 Time 1.5 10 17 Pass 13 10 九 t Truck N N N N Rev. 08/31/2001 Radar 17 Pvmt 17 11 77 77 11

Checked by

SAM

Recorded by

7.5

32.1

21754.3

5

1,0

6.9

7.4

6.3

13:21:23/0329/45

9.0

7.9

6.5)

				E-F space									
		2		D-E space		1.4		2.5		4.0			
17	0 5 0 0	0		C-D space		32.1		32.1		1.22			
		3		B-C space	*	4.3		4.3	# 	43			
		0503 10		A-B space	6.61	54	19.9	421	19.7	17.5	28.	9.61	
ODE	CT ID			GWV	24.6 19.9	75.3	622	78.0	22.0 19,7	75.6	24.3	5.22	
* STATE CODE	*SPS PROJECT ID	* DATE O7 /07	1960	Axle F right / left weight.			•	(Control)					
*	*SP	# D		Axle E right / left weight.		5/2		2/3		0/5		Maria .	J. C.
		7		Axle D right / left weight.		2/2		2/2		0 0 0 0			
				Axle C right / left weight.		0/50		6/20		0/1/8			1 by
		5	,	Axle B right / left weight.	2/5	4/2	2/5	7/8	4:77	1/18	11/0	4/5	Checked by
	1 1	S of	Third	Axle A right / left weight.	1/2	2/00	2/2	2/6.	4.3/8	6.9	3/2	5/0	
21	ic Data	ecords		Speed	45	23	75	E	35	54	tr)	7	
Sheet 21	LTPP Traffic Data	WIM System Test Truck Records		Record No.	JE 5201	02401 83,52:53	13.26.081.042.b	21501	91501	70901	60901	Tital	
	L	stem Test		Time	hEE0165,77.88	13:25,53	13.26.08	13:29,24 (0512	91501 14,62:81	Z09019h/sh's1	13:34:00	IILal hiseies	
		WIM Sys		Pass	91	188	11	61	81	30	61	20	SAM
				Truck	N	•	7	1	2	/	2	2	
			Rev. 08/31/2001	Radar Speed						9		-/	led by
			Rev. 08	Pvmt	11	11	22	22	22	17	77	H	Recorded by

Calibration 1

Start - Speed point 1 (low speed) = 995

Errors (low speed) - - 290

incresse low pred point 995 x 1.02 = 1015

New Factor

Spred point 1 = 1015