LTPP Seasonal Monitoring Program

Site Installation Report for GPS Section 833802 (83B) Glenlea, Manitoba

LTPP Seasonal Monitoring Program

Site Installation Report for GPS Section 833802 (83B) Glenlea, Manitoba

Report No. FHWA-

Prepared by

Braun Intertec Corporation 6875 Washington Avenue South P.O. Box 39108 Minneapolis, Minnesota 55439-0108

Prepared for

Federal Highway Administration LTPP Division, HNR-40 Turner-Fairbanks Highway Research Center 6300 Georgetown Pike McLean, Virginia 22101-2296

January 1996

5. Report Date January 1996 6. Performing Organization Code 8. Performing Organization Report No. DBNX92700-B6-83B 10. Work Unit No. (TRAIS)		
8. Performing Organization Report No. DBNX92700-B6-83B		
DBNX92700-B6-83B		
10. Work Unit No. (TRAIS)		
10. Work Unit No. (TRAIS)		
11. Contract or Grant No. DTFH61-92-C-00009		
13. Type of Report and Period Covered Final Report October 1993 - June 1995		
14. Sponsoring Agency Code		

15. Supplementary Notes

Contracting Officer's Technical Representative - Aramis Lopez, HNR-40

i 6. Abstract

This report contains instrumentation installation details and data collection summaries for GPS test section 833802, which is a core section in the LTPP Seasonal Monitoring Program. This jointed plain concrete (JPC) pavement section on Provincial Highway 75 by Glenlea, Manitoba (24 kilometers south of Winnipeg), was instrumented October 14, 1993. Instrumentation included time domain reflectometry (TDR) probes to estimate moisture content in unbound pavement layers, thermistor probes to measure pavement structure thermal gradients and air temperature, electrical resistivity probe to predict frost/thaw conditions, piezometer to measure water table depth below the pavement surface, snap rings to measure joint opening, and tipping-bucket rain gauge to measure precipitation.

Monitoring data was collected the day after instrument installation and roughly on a monthly basis from October 1993 to June 1995. In addition to temperature and precipitation data that were collected continuously by a datalogger at the site, monitoring data each month usually included Falling Weight Deflectometer data, joint faulting data, joint opening data, TDR probe readings, frost/thaw readings, and piezometer readings. On a less regular basis, longitudinal profile data, pavement surface elevation data, and manual distress data were collected as required by FHWA guidelines. A summary of data collected is included in the report.

17. Key Worth		18. Distribution Semement	
Long Term Pavement Perform	nance, LTPP, Pavement		
Instrumentation, Seasonal Mon	nitoring Program, SMP, Time		
Domain Reflectometry, TDR,	Resistance, Frost, Thaw,		
Temperature, Thermistor, Wa	ter Table, Piezometer, Falling		
Weight Deflectometer, FWD,			
19. Security Classif. (of this report)	20. Security Classif. (of this page)	21. No. of Pages	22. Price

Table of Contents

		<u>Page</u>
I.	Introduction	1
	A. Test Site Location	1
	B. General Test Section Information	1
	C. SMP Test Section Information	2
II.	Instrumentation Installation	3
	A. Pre-Installation Activities	3
	B. Installation Activities	5
III.	SMP Data Collection	9
	A. Initial SMP Data Collection	9
	B. Routine SMP Data Collection	9
IV.	Summary, Conclusions, and Recommendations	12
	A. Instrumentation Installation Highlights	12
	B. Recommendations for Improving Installations	12
App	endix A-1: Test Section Background Information	
App	endix A-2: Pre-Installation Monitoring Data and FWDCHECK Results	
App	endix B-1: Pre-Installation Site Recruitment and Coordination Information	
App	endix B-2: Pre-Installation Equipment Checks/Calibration Information	
App	endix C-1: Instrumentation Installation Information	
App	endix D-1: Initial SMP Monitoring Data Collection	
Appe	endix D-2: Routine SMP Monitoring Data Collection Summary	

LTPP Seasonal Monitoring Program Site Installation Report for GPS Section 833802 (83B) Glenlea, Manitoba

I. Introduction

This report contains information specific to instrument installation and monitoring data collection for the Long Term Pavement Performance (LTPP) General Pavement Study (GPS) section 833802, which is part of the core Seasonal Monitoring Program (SMP) under the Federal Highway Administration (FHWA) LTPP Division. This pavement section was instrumented on October 14, 1993, and had regular data collection through June 21, 1995. The section will be monitored every other year under the LTPP Study for a ten-year period or until it is removed from the study.

A. Test Site Location

GPS section 833802 is located on the northbound driving lane of Provincial Highway 75 in the southeast corner of Manitoba near Glenlea, which is about 24 kilometers south of Winnipeg.

B. General Test Section Information

This four-lane divided highway has a 250-mm thick jointed plain concrete (JPC) surface placed in 1985. The rest of the pavement structure consists of a 125-mm thick crushed gravel base, 150-mm thick lime-treated soil, and a fine-grain subgrade. Additional background information about the section is located in Appendix A-1. This information includes, but is not limited to, the following items:

- ► SMP location map;
- Detailed section location map;
- > SHRP Inventory Data Sheet traffic, design factors, and layer information;
- ▶ SHRP Section Field Verification Form;
- ▶ IMS L05A and L05B tables layer thickness and material type; and
- ▶ LTPP Form S04 base and subgrade moisture data.

Relevant pre-installation monitoring data for the section located in Appendix A-2 includes the following:

- Pre-installation pavement distress data;
- ▶ Pre-installation FWD data (includes tests outside the section limits); and
- FWDCHECK program uniformity analysis results.

C. SMP Test Section Information

The geographic location and existing pavement structure place this section in Cell 19 of the SMP experiment, which is defined by the following parameters:

- ▶ JPC pavement;
- ► Fine-grain subgrade;
- ▶ Freezing environment; and
- ▶ Dry environment.

This was the seventh and final SMP installation in the LTPP North Central Region in 1993, and highlights of the installation are summarized in Section IV of this report. The people involved with the installation are listed on "Data Sheet SMP-I01: List of Installed Instrumentation," which is included in Appendix C-1 along with other SMP installation forms.

Data for this 1993 installation were transferred to forms from the LTPP Seasonal Monitoring Program: Instrumentation and Data Collection Guidelines, April 1994. The 1994 forms were used to keep all installation reports uniform and to facilitate data entry into the IMS database. Data transfer included conversion from English to metric units with some rounding error. On some forms, data are not available regarding procedure modifications adopted in 1994. On these forms the cells are usually blank, and a comment is included on the form to explain the missing data.

II. Instrumentation Installation

A. Pre-Installation Activities

The Manitoba Highways and Transportation, sometimes referred to as "the agency" in this report, currently has a long-term monitoring plan where Benkelman Beam deflection data is collected yearly on the entire highway network from April through May. The deflection data is used for pavement designs and for setting spring load restrictions on secondary highways. In this respect, the agency was very willing to participate in the SMP regarding GPS sections 831801 and 833802.

Mr. Ray Van Cauwenberghe and Mr. Fred Young of Manitoba Highways and Transportation were initially contacted regarding potential sections identified for the seasonal monitoring pilot activities started in 1991 under the Strategic Highway Research Program (SHRP). GPS section 831801 was included in the pilot study, but GPS 833802 was not. Field notes and data analysis results from the SHRP SMP pilot are included in "LTPP Seasonal Monitoring Program Site Installation Report for GPS Section 831801 (83A), Oak Lake, Manitoba."

In 1993, Mr. Dennis Watson of Manitoba Highways and Transportation was contacted to confirm agency support for GPS section 833802 as a core section in experimental Cell 19 of the SMP study administered by the FHWA LTPP Division. The agency agreed to support the section and to defer any pavement rehabilitation at least the five years required to get three years of monitoring data that is collected every other year.

On August 27, 1993, a pre-installation meeting was held with Manitoba Highways and Transportation staff in Winnipeg, Manitoba. Staff involved with instrumentation installation and monitoring activities for both GPS section 831801 and 833802 attended the meeting. A presentation was given on the SMP and arrangements were made for the agency to supply equipment and materials required for the installation. Installation dates were set for agency staff to verify availability of equipment and materials, because the Regional Coordination Office (RCO) was looking at a very tight schedule to complete seven SMP installations before winter weather conditions would prevent any additional installations. The agenda, list of participants, and notes from the meeting are included in Appendix B-1.

After the pre-installation meeting, Mr. Robert Van Sambeek and Mr. Watson stopped at GPS section 833802 to identify any installation concerns with the site and to select which end of the section to monitor. No visit was made to GPS section 831801, because of the distance to the site. Field notes from the site visit for section 833802 are included in Appendix B-1.

At the RCO, pre-installation activities included performing instrumentation checks/calibrations, and incorporating improvements to the installation process based on field notes from previous installations. Improvements to the installation process are listed in Section IV of this report, and results from instrumentation checks/calibration are included in Appendix B-2. The checks were performed according to 1993 guidelines, but the results are reported using 1994 forms, as discussed earlier. The forms include the following:

- Data Sheet SMP-C01: TDR Probe Check;
- ▶ Data Sheet SMP-C02: Thermistor and Air Temperature Probe Check;

- ▶ Data Sheet SMP-C03: Electrical Resistivity Probe Check;
- ▶ Data Sheet SMP-C04: Function Generator, Multi-meter, and Switch Box Checks; and
- Data Sheet SMP-C05: Tipping-Bucket Rain Gauge Calibration.

For the TDR probes, checks/calibrations were done with the cable reader setting for the noise filter at 8.0, which is different than listed in the guidelines. Also, the check in water for TDR probe 4 has a calculated dielectric less than the range specified in the guidelines. However, this was not realized until after the probe had been installed. It is beyond the scope of this installation report to determine what caused the calibration in water to fail or whether data from the probe is reasonable.

With respect to instrument checks on the resistivity probe, Data Sheet SMP-C03 requires "distance from top of probe" for each electrode. However, procedures in 1993 recorded "spacing between electrodes" on two separate lines about 180 degrees apart on the probe. As a consequence, cumulative errors from adding the 35 "spacings" had to be accounted for to transfer the data to the 1994 form. Adjustments were performed as described below to estimate "distance from top of probe" within ± 5 mm:

- 1. Obtained average values for probes checked in 1994 and 1995 for the following:
 - Electrode No. 1 assigned 29 mm (±2 mm) if not measured;
 - Electrode No. 17 in the range 840 mm \pm 3 mm as a check; and
 - Electrode No. 36 assigned at 1,805 mm from the top of the probe.
 - Average electrode spacing is (1805 29)/35, which is 50.74 mm.
- 2. Added the 35 "spacings" measured for the first line, divided the value by 35 to get the average, subtracted 50.74 mm to get adjustment value, and subtracted adjustment value from each "spacing."
- 3. Repeated Step 2 for the second line.
- 4. Added two adjusted "spacings" and divided by two to get "adjusted average spacing."
- 5. Recorded Electrode No. 1 at 29 mm and cumulated "adjusted average spacings" to get "distance from top of probe" for the remaining 35 electrodes.
- 6. Checked "distance from top of probe" for Electrode No. 17 in the range 840 mm ± 3 mm and Electrode No. 36 in the range 1,805 mm ± 2 mm.

For the air temperature probe, no readout device was available while the thermistor probe was checked. Therefore, the only check possible was to compare thermistor and air temperature probe readings obtained overnight with both probes connected to the datalogger. The air temperature probe was within ± 1.0 °C of the average reading on the thermistor probe.

For the resistivity probe, loose electrode wraps were tightened by twisting the lead with a needle-nose pliers, and lead wires sticking out of the potting material for the probe were covered with silicon sealant for protection during installation. Excess potting material was scrapped off the electrodes for better contact with the soil.

Pre-installation activities also required selection of the instrumentation location. From field observations during the August 27, 1993 site visit and FWDCHECK program analysis for FWD testing done June 9, 1993, the five panels from Station 4+42 to Station 5+21 were selected for monitoring, and instrumentation would be placed at Station 5+11, based on the following items:

- Joint at Station 5+00 allowed instrumentation to be placed in panel adjacent to the section limits without having to skip a panel;
- FWDCHECK analysis results were more uniform for both Westergaard based Rigid Thickness and Volumetric Modulus of Subgrade Reaction;
- The datalogger cabinet could be located in line with a 90-mm by 90-mm SHRP sign post marking the section limit at Station 5+00 to help protect the cabinet from vehicles driving in the ditch; and
- This end of the section avoided concern with repairs required for panels just outside Station 0+00 limits for the section.

B. Installation Activities

The SMP instrumentation installation itinerary for Canada included travel, installation, and data collection time for three sites over a two-week period. Two travel days were allowed to make the 1600 kilometer trip from the RCO to the installation in Saskatchewan, which included stops at GPS sections 833802 and 831801 in Manitoba to confirm installation details at the sites and extra time for crossing the international border between the United States and Canada.

Border crossing was delayed one day because of problems encountered for instrumentation that was not returning to the RCO. Eventually, required forms for equipment registration and exemptions from import taxes and duties were completed. The certificate of registration that will allow export of instrumentation used at GPS section 833802 after termination of monitoring is included in Appendix C-1.

Instrumentation installation was completed at GPS section 833802 on October 14, 1993. Some final installation activities continued on the following day. The following installation forms are included in Appendix C-1 along with field notes and photographs of the installation:

- ▶ Data Sheet SMP-I01: List of Installed Instrumentation;
- ▶ Data Sheet SMP-I02: Instrumentation Locations;
- ▶ Data Sheet SMP-I03: Log of Piezometer Hole;
- ▶ Data Sheet SMP-I04: Log of Instrumentation Hole;
- Data Sheet SMP-I05: Field Gravimetric Moisture Contents;
- Data Sheet SMP-I05(A): Lab Gravimetric Moisture Contents;
- ▶ Data Sheet SMP-I05(B): Gravimetric Moisture Comparison;
- ▶ Data Sheet SMP-I06: TDR Moisture Content; and
- ▶ Data Sheet SMP-I07: Representative Dry Density.

Piezometer installation was done according to protocol. A 0.6-m long access tube was set in concrete just below the existing shoulder material to protect the top of the piezometer and provide easy access for measurements. A 3.0-m long grease sleeve was used on this piezometer to isolate the piezometer from frost heave. The grease sleeve extends about 0.2 m up into the access tube and the space between the two is filled with sand. Additional field notes on piezometer installation are included in Appendix C-1.

A 460-mm square for the instrumentation hole and a 100-mm wide trench for the conduit were marked on the pavement surface at Station 5+10 using the edge of the concrete as a transverse reference. FWD testing was done prior to sawing the block and trench, but the testing only included midpanel tests and the test required over the instrumentation hole.

The largest pavement saw available to the agency was used to cut the block and conduit trench, but the saw did not reach through the bottom 6.0 mm of the pavement. RCO and agency staff decided to jack-hammer the block into pieces for removal, and agency staff would locate patching material to repair the pavement.

After the pavement at the instrumentation hole was removed, the "Derric Digger," used by the agency to install sign posts, was moved into position over the hole and material was put into buckets as it was removed in 0.15-m lifts.

TDR probes were placed according to protocol on this site, except that TDR probe 2 was shifted 25 mm to place it mid-depth in the lime-treated soil. It was very time consuming to process subgrade soils to place around the instrumentation, because all the soil had to be manually broken or cut into lumps less than 25-mm diameter. Also, base material was placed and compacted to the original elevation, which required salvaging about the last 30-mm depth of material used in the instrumentation hole from the conduit trench on the shoulder.

For installation reports from the LTPP North Central RCO, "Data Sheet SMP-I05(A): Lab Gravimetric Moisture Contents," is used to report agency laboratory moisture results. Also, "Data Sheet SMP-I05(B): Gravimetric Moisture Comparison" was created to summarize moisture data obtained from field moisture tests, laboratory moisture tests, and interpretation of TDR probe data. These forms, along with a plot of the moisture results, are included in Appendix C-1, and the following assumptions and conclusions were made regarding the moisture data:

- LTPP Directive Number: SM-13 "TDR Trace Interpretation Method for Calibration and Function Checks" dated August 17, 1995 was used to interpret the apparent length of each TDR trace obtained during installation for estimating moisture results. This method was specified for "calibration and function checks," but no other method had been distributed by FHWA LTPP staff. The interpreted apparent lengths are reported on "Data Sheet SMP-I06: TDR Moisture Content" in Appendix C-1.
- Equations on pages II-2 and II-5 of the LTPP Seasonal Monitoring Program:

 Instrumentation Installation and Data Collection Guidelines, April 1994 were used to convert apparent lengths to gravimetric moisture estimates for the base and subgrade materials, and the results are included on "Data Sheet SMP-I05(B): Gravimetric Moisture Comparison," located in Appendix C-1. A plot comparing the TDR probe moisture data to the field and laboratory data is also included in Appendix C-1.

- The field and laboratory moisture results were consistent with an average difference of 1.9 percentage points compared to the average moisture of about 30 percent for all ten of the samples.
- The moisture estimate from TDR probe 1 for the crushed gravel base is 2.3 percentage points lower than the average obtained between the field and laboratory data, and the moisture estimate from TDR probe 2 in the lime-treated soil is 3.4 percentage points higher than the average from field and laboratory data.
- Moisture estimates from TDR probes 3 through 10 in the subgrade soil are all greater than 30 percent, and they are more consistent with the field and laboratory results than results obtained for the crushed gravel base and lime-treated soil. For these TDR probes, moisture estimates average 4.1 percentage points higher than the field and laboratory results.
- Answers to the following questions could help explain the differences seen in the moisture data, but they are beyond the scope of this report:
 - 1. Are the same equations used appropriate for the three materials on this site including fine-grain subgrade, lime-treated soil, and crushed-gravel base?
 - 2. Do materials used for soil stabilization affect TDR probe traces?
 - 3. How much influence does compaction have on the results?

"Data Sheet SMP-I07: Representative Dry Density," was not used in 1993, but it is included in Appendix C-1 to keep the report complete and uniform with other installation reports.

Several items were changed regarding installation of the datalogger cabinet and weather pole as follows:

- RCO staff were not able to get the 9.1-m offset from the lane edge specified on page II-23 and Figure II-12 of the LTPP Seasonal Monitoring Program: Instrumentation Installation and Data Collection Guidelines. April 1994 because the TDR cables provided were too short. The cabinet at this site is offset about 7.6 m and the weather pole is offset about 7.9 m. This places the obstructions inside the normal 9.15-m safety zone for highways. However, FHWA LTPP Division staff approved the two obstructions as break-away objects (page II-32 of manual) for placement inside the safety zone.
- The bottom of the front panel on the datalogger cabinet was notched about 0.1 m so the conduit buried about 0.3 m below the shoulder was easier to get into the cabinet, and it also slightly increased the distance the cabinet could be placed from the roadway.
- The conduit for the air temperature probe and tipping-bucket rain gauge signal wires was cut into the back of the cabinet above ground instead of running the conduit underground as shown in the guidelines. If the cables were run underground, the air temperature probe signal cable would have to be extended using special wire and

resistors to compensate for increased lead resistance. Also, a union coupler was used on the weather pole about 0.3 m above ground to make pole installation easier.

For pavement repairs, the original plan was to epoxy the concrete block back in place; but, as noted earlier, it was destroyed during removal. Pavement repair became more complicated with agency staff unable to find quick-set patching material, and both the block and the trench for the conduit had to be patched with a high-cement content mortar mix. Mortar mix, with most of the small aggregate removed, was also used to bond the pavement thermistor probe into the saw cut made for the probe. The mortar mix was kept warm in a truck, and hot water was used to prepare the patching material to promote faster curing. In addition, the repair was covered with a tarp to keep it warm. However, the lane still had to be closed overnight because the repair had not cured.

On the following day, monitoring activities were modified to keep the FWD and van off the pavement repair, and saw cuts extending from the block and conduit repair were filled flush to the pavement surface with Dow Corning 888 joint sealant.

Additional observations about the pavement repair at the instrumentation hole up to the completion of this installation report only include a slight spall that developed between the trench and the shoulder and minor sealant damage in the saw cuts.

III. SMP Data Collection

A. Initial SMP Data Collection

On October 15, 1993, final wiring of the datalogger in the cabinet was completed, snap rings for monitoring joint openings were installed according to protocol, and the first set of SMP data was collected.

Two cycles of FWD data were collected, as well as faulting data, elevation data, and piezometer data. The RCO had not received a switch box for manual readings on the resistivity probe, and manual readings were not taken until November 15, 1993. Also, no joint opening data were taken until November 15, 1993, because the silicon on the snap rings had not cured. The November joint opening data and resistivity probe readings along with manual data collected October 15, 1993 are included in Appendix D-1 as follows:

- One set of contact resistance data;
- ▶ One set of four-point resistivity data;
- ▶ One ground water table measurement;
- ▶ One set of joint opening measurements;
- ▶ One set of joint faulting measurements; and
- One set of elevation data.

Data from the piezometer should not be entered into the IMS database because extremely low permeability for the soils on this site will require several days for piezometer readings to stabilize.

Computer data files obtained from automated data collection using the dataloggers included the following:

- ► Two sets of TDR traces and CRREL voltages; and
- Temperature and precipitation data collected from the datalogger to verify operation overnight.

Temperature data from the thermistor probe should not be entered into the IMS database because of heat given off by concrete patching material used to repair the pavement and disturbance of material around the probe. In addition, temperature data up to several days after instrument installation will have to be reviewed to determine when the disturbed materials came back to thermal equilibrium. Data affected by the installation will have to be edited from the computer files.

B. Routine SMP Data Collection

Routine data collection was done on the site from October 15, 1993 through June 20, 1995, and Manitoba Highways and Transportation has continued to collect temperature and frost data from the site. LTPP's standard data tracking log, which summarizes the data collected on the site, is included in Appendix D-2.

Events that influenced the data collection and that will influence data interpretation for the site include the following:

- TDR probe 4 calibration result in water was outside guideline limits, and any potential influence on the data collected needs to be addressed.
- Extremely low permeability of the subgrade makes the piezometer data the day after the installation questionable.
- On November 15, 1993, a relay was added to the datalogger at the site, which included a change in the data format for subsequent files.
- On May 16, 1994, the FWD deflection sensor located at the center of the loadplate was not working.
- On August 22, 1994, the tipping-bucket rain gauge funnel was unplugged. See photograph in Appendix D-2.
- Some TDR traces for probes in the fine-grain subgrade have flat signals out the open end of the probe.
- On May 8, 1995, the thermistor 25-mm deep in the pavement failed and never started working again. These temperature data are not available, except for manual readings done during FWD testing roughly one day per month.

Instrumentation and equipment problems at the site include the following:

- Cables for several TDR probes are slightly longer than supplied for other installations in 1993, and the second inflection point on these TDR probe traces is not always captured with the automated data collection equipment. This is especially a problem on the site, because the high moisture content in the fine-grain subgrade produces long apparent probe lengths. On November 15, 1994, manual TDR traces for probes 5 through 10 in the fine-grain subgrade were printed to document the flat signal out the open end of the probe. A copy of the data is included in Appendix D-2 along with screen prints of TDR traces automatically collected that day.
- Cold temperature problems with the cable reader caused vertical shifts in some traces and general failure of the cable reader if temperatures were extremely cold. Screen prints of TDR data are included in Appendix D-2.
- On January 18, 1994, the datalogger cabinet on this site, which regularly has high winds, was packed full of snow. All open bolt holes and cracks were sealed to help keep snow from being drawn into the cabinet by decreased pressure on the down-wind side of the cabinet.
- An obstruction in the piezometer was removed June 20, 1994.

- On August 22, 1994, debris was removed from the tipping-bucket rain gauge funnel. Some precipitation held in the funnel may have evaporated, which would affect both precipitation amount and precipitation intensity recorded. See photograph in Appendix D-2.
- on May 8, 1995, the thermistor 25-mm deep in the pavement failed and never started working again. Screen prints located in Appendix D-2 show the failure mode for the sensor, which included an initial 15°C shift, and then a gradual drift to readings around 90° C over about a period of about 20 days. Alternatives for retrofit thermistors on SMP installations have been discussed with FHWA LTPP Division staff, but no procedure has been implemented up to the date of this report.
- Vertical movement of the piezometer has been documented on other SMP installations with both a piezometer and an agency benchmark. On this installation with a single elevation reference, agency staff have tied the piezometer elevation to another reference on three occasions to help determine the piezometer stability. Elevation data shown on the plot in Appendix D-2 indicates 13.0 mm and 9.0 mm of change in elevation for the piezometer for successive surveys. This indicates one of the references is moving, and elevation data analysis for estimating frost heave will have to account for movement of the reference.

Other problems experienced at the site include failures with switch boxes used to collect manual resistance and resistivity data and failures of the CRREL multiplexer for automated resistance data collection. Print screens showing the failure modes for the CRREL multiplexer are included in Appendix D-2.

IV. Summary, Conclusions, and Recommendations

A. Instrumentation Installation Highlights

The following items are identified by the authors as unique or particular items of interest regarding this section in the SMP.

- This was the seventh and final SMP installation in the LTPP North Central Region in 1993 but only the second installation on a concrete pavement.
- Frost penetration estimates in Manitoba are about 2.3 m, and the resistivity probe can monitor frost penetration to 2.11 m below the concrete pavement surface. However, the small particle size and high moisture content of the subgrade should make frost/thaw data very unique in this cold climate.
- Agency staff are collecting temperature, precipitation, and frost/thaw data at the site to obtain continuous data records instead of typical SMP monitoring data obtained every other year.
- Data for this 1993 installation were transferred to forms from the <u>LTPP Seasonal</u> Monitoring Program: Instrumentation and Data Collection Guidelines, April 1994.

B. Recommendations for Improving Installations

In addition to previous modifications from other installations, the following procedure and equipment changes from protocol were used during this installation or are recommended for future installations:

- Use very low penetration rate on the auger when removing materials from instrumentation hole to keep the material from coming out in large lumps.
 Alternatively, soil processing equipment could be rented to prepare soil for placement around instrumentation; and
- Include hazard markers by the cabinet, but leave room for maintenance equipment to work between the markers and the cabinet.

Appendix A-1: Test Section Background Information

Appendix A-1 contains the following test section background information:

- ► SMP location map;
- ► Detailed section location map;
- ▶ SHRP Inventory Data Sheet traffic, design factors, and layer information;
- ► SHRP Section Field Verification Form;
- ▶ IMS L05A and L05B tables layer thickness and material type; and
- ► LTPP Form S04 base and subgrade moisture data.

TO

GLENLEA

COUNTY MANITOBA

PR 420

75 エ H 1 0.8 km (0.5 mi.)

STRATEGIC HIGHWAY RESEARCH PROGRAM GENERAL PAVEMENT STUDIES

Long-Term Pavement Performance Monitoring Project Information Sheet

MAY 2 5 1990 B.P.T., INC.

RECEIVED

REGION: North Central PAVEMENT TYPE: Jointed Plain Concrete

STATE: Manitoba

1984 Year Open: SHRP Assigned ID: 833802 District: 12 Highway: - 75 Year Traffic: 1984 State Assigned ID: 10 Design Cell ID: 3-67 Length: 3.5 miles
Lanes: 2 AADT: 2616 Trucks: 13.0 %

Shoulder Surface Type: Unspecified Project Status: Approved

DESIGN FACTORS - Moisture: Dry

Temperature: Freeze

Subgrade: 51 - Clay (Liq Lim>50) Fine

Traffic: 117 KESAL/Yr Base Type: Granular Low (200)

PCC Thickness: 11.0 in. High (9.5)

Dowels: No

LAYER CONFIGURATION

LAYER	LAYER	LAYER	LAYER	
NO.	DESCRIPTION	THICKNESS	MATERIAL TYPE	
3 2	3 - Orig Surface 5 - Base Layer 6 - Subbase Layer 7 - Subgrade	6.0 23 6.0 42	 Portland Cement Concrete (JPC Crushed Stone, Gravel, or Sla Lime-Treated Subgrade Soil Clay (Liq Lim>50) 	

PAVEMENT LAYER INFORMATION

PORTLAND CEMENT CONCRETE LAYERS

LAYER NO.	JOINT SPACING		REINFORCING	CRCP STEEL
4	15.0	No 、		,

SECTION FIELD VERIFICATION FORM

Date	_ State Project Code
	State Code \(\frac{\fin}}}{\fint}}}}}}}}{\frac}{\frac{\frac{\frac{\frac}{\frac{\fir}{\firac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac}}}}}}{\firan{\frac{\frac{\frac{\frac}{\frac{\frac{\frac{\
Rater	SHRP Section I.D. 3802
Project	
State District No. 0 2	County or Parish STE AGATHE / RM RITCHOT
Route Signing (Numeric Code)	<u>2</u>
Project and Section Identification State District No. O 2 County or Parish STE MGATNE Rm CTTCHO. Route Signing (Numeric Code) Interstate 1 State 3 Primary 2 Other 4 Route Number 2 TH 7 S LTFF Experiment Code Number of Through Lanes (One Direction) Direction of Travel 3 Westbound 1 Northbound 4 Available Project Length (Without Discontinuities) / ML Start Foint End Point Test Section Milepoints Additional Section Location Information*: PR #420 (Glealea) .8 km (1/2 mile) SOUTH OF PUBLIC Rd. 4/20 RADIO TOWER ON WEST SIDE OF SITE * Include distances from two landmarks (refer to specific procedures outlined in the Initial State Visit Guidelines). Location of monument: Geometric Information Lane Width (Feet) Lane (By Number) Included in Monitoring Section (Lane 1 is Outside Lane, Lane 2 is Next to Lane 1, etc.) Shoulder Data: Outside Shoulder Shoulder Total Width (Feet)	
State Code SHRP Section I.D. 3 8 0 2 Project and Section Identification tate District No. 0 2 County or Parish STE MCATUE RM CATCUO Dute Signing (Numeric Code) Interstate 1 State 3 Primary 2 Other 4 Dute Number IPF Experiment Code Intertion of Travel Eastbound 1 Northbound 3 Westbound 2 Southbound 4 Variable Project Length (Without Discontinuities) / ML Start Point End Point ast Section Milepoints Idditional Section Location Information*: PR #420 (Grales) 8 km (1/2 mile) SOUTH OF CURLUE RD. 1/20 KAPID TOWER ON WEST SIDE OF SITE Include distances from two landmarks (refer to specific procedures outlined in the Initial State Visit Guidelines). Decation of monument: Ceometric Information and Width (Feet)	
Route Number	State Code SHRP Section I.D. 3 8 0 2
LTPP Experiment Code	3
Number of Through Lanes (One	Direction) 2
	
Eastbound 1	Northbound 3
Westbound 2	Southbound 4
Available Project Length (Wi	thout Discontinuities) / mi
	Start Point · End Point
Additional Section Location 8 km (½ mile) SOUTH RHOTO TOWER ON IN * Include distances from two	VEST SIDE OF SITE a landmarks (refer to specific procedures
	cometric Information
•	1
Shoulder Data:	0403240
•	<u> </u>
· · · · · · · · · · · · · · · · · · ·	<u> </u>
Surface Type	<u>.d.</u>
Turf 1	
Granular 2	Surface Treatment 5
Asphalt Concrete 3	Other 6
Additional Data for PCC Show	ılders:
Joints Match Pavement Joi	
(Yes - 1; No - 2)	
•·• -/	

	. ,	LD VERIFICATION St SH 1 Alignment (fro	ate Code RP Section I.D. $\frac{3}{3}$ $\frac{8}{0}$ $\frac{3}{2}$
		<u> </u>	
	l, or At Grade:	f	Fill
_	Cut/Fill at Start	of Section:	5'
Depth of	Cut/Fill at End o	f Section:	5'
	Jo	int Information	for JCP
Average	Contraction Joint Intermediate Sawed of Joints (Feet/L	Joint Spacing (Feet) (JRCP Only)
	CORE	1 (Beginning of	Project)
Layer	Layer		Brief
No.	Types*	Thickness	Material Description
1	Subgrade (G)		Dark Plastic Clay
2	paparage (0)	6′	lime treated
3			Granular
4		11" *	PCC
5			
6			
7			
			
Notes: _	l'oil edge		
	* Core cnt	Through Kex	way
	C	ORE 2 (End of Pr	oject)
Layer	Layer		Brief
No.	Types*	Thickness	Material Description
1	Subarada (C)		
2	Subgrade (G)		
3			
ے د	-		
5		-	
6			
7			
,			
Notes:			
			

^{*}Layer Types: A - HMAC/Surface Treatment, P - PCC Layer, B - Base/Subbase, G - Subgrade

DISTRESS SURVEY FORM PCC Surfaced Pavements (GPS Experiments 3,4,5,9)

Date	State C			<u>83</u>
Rater	SHRP Se	ction I	38	<u>0</u> 2
		Seve Low	rity Level Medium	
 "D" Cracking (Linear Feet of joints, cracks, and free edges affected)* 			-	
<pre>2. Joint Seal Damage** (Number of joints)</pre>	_	· · · · · · · · · · · · · · · · · · ·		
3. Longitudinal Cracking (Linear Feet)	_			
 Patch or Slab Replacement Deterioratio (Number and Sq. Ft.) 	on _		-	
 Pumping (Check highest severity found) 	-			•
6. Transverse Cracking (Number of Cracks)	_			
7. Corner Break** (Number)				
8. Average < 0.4" Faulting** 0.4-0.8" > 0.8"				
* Measured as percent surface area for C ** Not applicable to CRCP.	RCP.			
Comments Joint Chipping @ 14	JoinTs			
				

O E	^	^	8 ° 8 °
ORGANIC % DESC	(CONCRETE NS	GRAVEL NS	(BRN SILT CLAY ay (STF BRN CLAY
SOIL TYPE			49 35 14 A-7-5(6) SANDY CLAY (B) (B) (B) (B) 81 30 51 A-7-5(20) HI PLASTIC CLAY (S)
ASSHTO			49 35 14 A-7-5(6) (6) 81 30 51 A-7-5(20) (59)
LL PL PI			49 35 14
CA CS FS SI CL			8 2 36 34 20
DEPTH	72365 0.00- 0.30	0.30- 0.55	0.55- 0.80 8
SAMPLE NUMBER	72365	72366	subgrade > 72367 Subgrade > 72368
占	ES		To the
HOLE STATION CL NUM	SHRP 633802 1 0+00 £S		lime treated -> 72367 Subgrade -> 72368

SHRP/LTPP LAYER THICKNESS

LOSA - LOSB TABLES

26-AUG-93

			L05	A		STA	. 0	STA	5		L	.05 B REF	RESENTAT	IVE	
		CON	LAYER	DESC	TYPE	THICK	MATL	THICK	MATL	LAYER	DESC	TYPE	THICK	MATL	INVENTORY
}	3802	1	1	7	SS		103		103	1	7	SS		103	1
		1	2	6	TS	4.9	338	6.9	338	2	6	TS	5.9	338	2
		1	3	5	GB	4	304	5.8	304	3	5	GB	4.9	304	3
		1	4	3	PC	9.8	4	9.8	4	4	3	PC	9.8	4	4

83

SHRP REGION	\subset			-LTPP	STAI	TE CODE	00
STATE ME			AND FIELD	rial sampl) LD testing	ing <i>Shri</i>	ASSTONED	10 <u>8</u> 338
LTPP EXPERIMENT G SAMPLE/TEST: (a) B	P5 efor	ROU e Section	TTP /UTOURIAN	75	_ /		x /
OPERATOR B WALE TEST DATE 6-5- DATE OF LAST HAJOR Note: Use additio DEPTH FROM SURFACE THE TOP OF THE LA	CAL nal E TO	MUCLEAR IC IBRATION 12 sheets 1f	-13-89 OFF	GE I.D. 7 ATION 5	7-23 762 3 fe	SHEET NUM	DCG SHEET: IBER / O OF 2 NUMBER 7 /
INCHES (SEE SO3)	IER,	15	5.3/4	21	2	33	/2
TEST TYPE			OURSE TOP t, pcf Dry		SE TOP t, pcf Dry	SUBGR Resul Wet	ADE TOP t, pcf Dry
MATERIAL TYPE: (Unbound-G Other-	r)		•				
IN SITU	1 2	144.2.		109.9	79.9	113.6	85.5
DENSITY, pcf	3	142.9	134.8	<u> </u>	79.9	118.0	90.5
(AASHTO T238-86)	4	1A1.7	134.2	109.9	77.3	118.6	88.6
AVERAGE		143.4	135.3	110.1	79.8	116.7	86.7
Method (A,B,or C)				110.1	77.0	1/6.1	87.8
Rod Depth, inches			1"	4	1 1/1	8	"
	1	9.4 5	7.0	30.0 161	37,5	28.1 43	32.9
IN SITU HOISTURE	2	8.1	6.0	30,0"	37.5	27.5"	.30.4
CONTENT, &	3	7.5	5.5	30,6"	38.6	30.0 "	33.9
(AASHTO T239-86)	4	7.5	5.6	30.6"	38.3	30.0"	34.6
AVERAGE			6.0		38.0		33,0
ENERAL REMARKS:	-	PCC.	BATE	5и	BEATE	y	
rew Chief, Contrac	5 tor		RIFIED AND	•		MONT	H-DAY-YEAR 19
Efiliation: TERIALS AND RESEARCH		Af	RP Represen filiation:_	CACTAG			Date .

I PORTAGE AVENUE (ANNEX)
IPEG, MANITOBA R3G 0T3

HRP REGION /V TATE /// / TIPP EXPERIMENT /S /	<u></u>		ELD MATERI AND FIELD		SHRP	CODE 83	8338	
<pre>IPP EXPERIMENT /s f AMPLE/TEST: (a) Bef</pre>	ore	Section_	(b) At	ter Section	ane <u>/</u>	FIELD SET	NO	
		in situ i	ENSITY AND	MOISTURE	TESTS	D	CG SHEET:	
PERATOR B. WARE HEST DATE 1 - 5 - 5 ATE OF LAST MAJOR (ote: Use additions	ALI	<i>loca</i> bration <u>/2</u> -	NTION: STAT 13-89 OFF:	rion <u>o-</u> set <u>3</u>	チフ	SHEET NUMB: TEST PIT No et from °/s		
DEPTH FROM SURFACE THE TOP OF THE LAYI INCHES (SEE SO3)	- 1	اد	1	3	E 1934		313/4	
TEST TYPE		BASE CO Result Wet	URSE TOP , pcf Dry	SUBBAS Result Wet	SE TOP c, pcf Dry	SUBGRA Result Wet		
MATERIAL TYPE: (Unbound-G Other-T	,			·				
	1	142.3	133.6	123.6	92.4	109.9	78.1	
IN SITU	2	141.7	132.3	124.2	93.0	1/3.0	83.7	
DENSITY, pcf	3	142.3	132.9	123.6	93.6	111.7	81.7	
(AASHTO T238-86)	4	142.3	132.9	111.7	80.5	112.3	83.	
AVERAGE		142.2	132.9	120.8	89.9	111.7	81.6	
Method (A,B,or C)								
Rod Depth, inches		4	/)	4"		8"		
	1	8.7 \$	\$ 6.5	31.2 \$	33.8	31.8 %	40,7	
IN SITU HOISTURE	2	9.4 "	7.1	31.2 "	33.5	29.3	35.0	
CONTENT, &	3	9.4 "	7.1	30,0 "	32.1	30,0 "	36.7	
(AASHTO T239-86)	4	9.4 "	7.1	31.2 "	38.8	29.3"	35.3	
AVERAGE			7.0		34.6		36.9	
ENERAL REMARKS:		PC		BATE		1 B B 43 E	7	
ERTIFIED	2	VE	RIFIED AND	APPROVED		ном	TH-DAY-YEA	
rew Ghief, Contractification: RIALS AND FISHARCH DRIAGE AVENUE (ANNE	· · · · · · · · · · · · · · · · · · ·		RP Represe filiation:			**************************************	19 Date	

Appendix A-2: Pre-Installation Monitoring Data and FWDCHECK Results

Appendix A-2 contains the following pre-installation monitoring data and FWDCHECK analysis results:

- ▶ Pre-installation pavement distress data;
- ► Pre-installation FWD data; and
- ► FWDCHECK program uniformity analysis results.

,•			STATE ASSIGNED ID	
•	SHEET 4		STATE CODE	83
	DISTRESS SURVEY		SHRP SECTION ID	3802
	LTPP PROGRAM		SHRP SECTION ID	
	DISTRESS SURVEY FO	OR PAVEMENTS	SURFACES	
DATE	OF DISTRESS SURVEY (MONTH/DAY/	YEAR)	<u> </u>	6129193
SURVE PAVEM PHOTO	EYORS: B D W, BEFORE SO: OS, VIDEO, OR BOTH WITH SURVEY	F°C; AI	fter <u>82°F</u> °c	
			SEVERITY LEVEL	
DIST	RESS TYPE	LOW	HODERATE	нісн
CRACI	KING	•		
1.	CORNER BREAKS (Number)			
2.	DURABILITY "D" CRACKING (Number of Affected Slabs) ARFA AFFECTED (Square Meters)			
3.	LONGITUDINAL CRACKING (Meters) Length Sealed (Meters)			
4.	TRANSVERSE CRACKING (Number of Cracks) (Meters)		=_=	
	Length Sealed (Meters)	·_		
JOIN	NT DEFICIENCIES			
5a	TRANSVERSE JOINT SEAL DAMAGE Well Sealed? (Y, N) If "Y" Number of Joints * NoT SEALED OUT		14- seeked	<u> </u>
56.	LONGITUDINAL JOINT SEAL DAMAGE Number of Longitudinal Joints Length of Damaged Sealant (Mer	E that have b		or 2) _ o
6.	SPALLING OF LONGITUDINAL JOINT (Meters)			
7.	SPALLING OF TRANSVERSE JOINTS Number of Affected Joints	22.		

	-	Revised Ma	y 29, 1992
•		STATE ASSIGNED ID	
	SHEET 5 DISTRESS SURVEY LTPP PROGRAM	STATE CODE SHRP SECTION ID	83 2 <u>8</u> 02 ———
	DISTRESS SURVEY FOR PARTICION OF PORTLAND CEMENT CONTI	AVEMENTS WITH JOINTED CONCRETE SURFACES (NUED)	
		SEVERITY LEVEL	
DISTR	ESS TYPE	LOW MODERATE	нісн
SURFA	CE DEFORMATION		0
8a.	MAP CRACKING (Number) (Square Meters)	·	
85.	SCALING (Number) (Square Meters)		
9.	POLISHED AGGREGATE (Square Meters)		<u>_</u>
10.	POPOUTS (Number)		
HISC	ELLANEOUS DISTRESSES		_0_
11.	BLOWUPS (Number)	DESCRIPTION OF SHIFT 6	
12.			
	LANE-TO-SHOULDER DROPOFF - REFER		
14.	LANE-TO-SHOULDER SEPARATION - RE	FER TO SHEET 7	

14. PATCH/PATCH DETERIORATION

Flexible

15.

(Number) (Square Meters) Rigid (Number) (Square Meters)

WATER BLEEDING AND PUMPING 16. (Number of Occurrences) Length Affected (Meters)

OTHER (Describe) DIDN'T HAVE FAULTMERER ALONG - NO FAULTING 17. OR DROP OFF MEASUREMENTS

T 1 2 1 2 2 2 1 9 9 1

2:00 " 2:21 " 77:35 "

2.

ETTRA TESTS FOR SMB

08:35 930609

File: C:\FWD\DATA\833802C1.FWD Road: MB-75 NORTHDOUND LANE, 15 MILES SOUTH OF WINNIPEG, MB. Subsection: 833802

FWD S/N : 8002-063 Operator ID : WOREL, BENJAMIN J.

Stationing...: Feet

Diameter of Plate: 11.8 Deflector distances: 8 12 18 24 36 60

SHRP TESTING - RIGID/CRCP - BASIN AND EDGE TEST (J0/C0, J1/C1, J2/C2, J3/C3) Sequence: CCC222233334444

Stn: -21 Sto Hgt psi C 114.2 C 115.9 C 116.5 * 2 88.0 * 2 87.5 * 2 87.5 * 3 116.7 * 3 116.5 * 3 116.4 * 4 149.9 * 4 149.7 * 4 149.6	Lane:J1 Temp: 1bf Df1 Df2 12520 6.03 5.86 12704 5.99 5.90 12768 5.99 5.86 9640 4.40 4.31 9592 4.52 4.40 9600 4.48 4.35 12720 5.99 5.86 12792 5.99 5.86 12792 5.99 5.86 12792 6.03 5.86 12792 6.03 5.86 12784 6.03 5.90 12752 6.03 5.86 16432 7.92 7.67 16416 7.88 7.63 16410 7.88 7.63	5.70 5.49 5.16 5.78 5.49 5.24 5.70 5.45 5.20 4.24 4.01 3.82 4.24 4.09 3.91 4.24 4.05 3.82 5.74 5.49 5.20 5.74 5.49 5.20 5.74 5.49 5.20 5.74 5.49 5.20 7.45 7.18 6.80 7.45 7.13 6.76 7.45 7.13 6.80 7.45 7.13 6.80 7.45 7.13 6.80	PVT: 63 Df6 3.34 4.59 3.32 3.42 2.52 3.38 2.47 4.59 3.30 4.59 3.34 4.59 3.34 4.59 4.22 4.59 4.59 4.22 5.98 4.29 5.98 4.29	08:38
Stn: -4 Sto Hgt psi C 114.6 C 114.5 * 2 86.2 * 2 86.2 * 2 86.2 * 3 114.6 * 3 114.8 * 3 114.8 * 4 148.8 * 4 149.1 * 4 149.0	Lane:J1 Temp: 1bf Df1 Df2 12560 6.20 6.08 12568 6.20 6.03 12544 6.20 6.08 9448 4.65 4.52 9456 4.61 4.48 9448 4.69 4.52 12576 6.16 6.03 12592 6.20 6.08 12592 6.20 6.08 12584 6.20 6.08 12584 6.20 6.08 12584 6.20 6.08 16312 8.00 7.84 16336 8.13 7.89	J/C: Air: 63 Df3 Df4 5.42 5.91 5.66 5.42 5.91 5.70 5.42 4.41 4.26 4.04 4.41 4.26 4.04 4.41 4.26 4.04 4.46 4.22 4.00 4.46 5.87 5.70 5.42 5.91 5.70 5.42 5.91 5.70 5.42 7.67 7.35 6.98 7.71 7.39 7.02 7.67 7.39 7.11	PyT: 63 Df7 4.81 3.47 4.81 2.60 2.60 3.55 3.60 2.65 3.55 2.34 4.81 4.81 4.85 4.81 4.85 6.20 6.20 6.28	08:40
Stn: 9 Sto Hgt psi C 112.8 C 113.5 C 113.5 2 84.8 * 2 84.8 * 2 84.8 * 3 113.5 * 3 113.5 * 3 113.5 * 4 147.5 * 4 147.8 * 4 147.8	Lane: J1 Temp: 1bf Df1 Df2 12368 7.12 6.89 12440 7.25 6.94 12416 7.21 6.94 9296 5.53 5.26 9312 5.49 5.21 9288 5.53 5.17 9296 5.57 5.30 12440 7.29 6.98 12440 7.33 6.98 12416 7.33 6.98 12416 7.33 6.94 12416 7.33 6.94 12416 9.51 9.01 16184 9.51 9.01 16200 9.51 9.05 16208 9.55 9.05	J/C: Air: 63 Df3 Df4 Df5 6.64 6.29 5.91 6.73 6.37 6.00 6.73 6.37 4.49 5.10 4.77 4.49 5.06 4.77 4.49 5.14 4.85 4.58 6.77 6.37 6.00 6.73 6.37 6.00 6.73 6.37 6.00 6.73 6.37 6.00 6.73 6.37 5.96 8.74 8.23 7.78 8.74 8.23 7.78	PvT: 63 Df6 Df7 5.07 3.43 5.16 3.45 5.16 3.43 3.86 2.65 3.81 2.60 3.86 2.65 3.94 2.73 5.16 3.51 5.16 3.47 5.11 3.43 6.67 4.47 6.63 4.47 6.67 4.47	08:43
Stn: 21 Sto Hgt psi C 113.2 C 113.6 C 113.6	Lane:J1 Temp: 1bf Df1 Df2 12416 7.16 6.81 12456 7.29 6.94 12456 7.29 6.89	J/C: Air: 63 Df3 Df4 Df5 6.51 6.12 5.64 6.60 6.25 5.78 6.60 6.21 5.73	PvT: 63 Df6 Df7 4.85 3.25 4.90 3.25 4.90 3.21	08:46

File: C:\FWD\DATA\833802C1.FWD
Road: MB-75 NORTHBOUND LANE, 15 MILES SOUTH OF WINNIPEG, MB. Subsection: 833802 4.27 4.31 4.27 4.73 5.73 5.73 5.49 5.57 5.53 5.49 7.25 5.13 5.17 5.13 5.17 9208 4.60 3.64 2.39 4.93 9272 9232 9224 $\frac{\tilde{2}}{2}$ 2.43 2.39 84.6 84.2 4.97 4.93 4.97 3.64 4.64 3.60 3.64 ¥ 4.60 2333 84.2 4.64 113.6 6.16 3.17 12464 6.85 6.60 4.85 113.6 113.3 113.2 148.3 148.7 7.29 7.29 12456 6.89 6.56 4.85 3.17 6.16 12424 12408 6.21 4.90 6.89 6.60 5.73 7.51 7.56 7.51 7.29 6.56 8.57 4.85 6.28 6.89 6.16 3.21 9.51 9.59 9.59 9.59 16248 8.96 8.10 16304 4 6.33 6.41 9.01 8.65 8.15 4.16 148.4 16272 9.05 8.15 4.218.65 16280 4 148.4 6.33 8.96 8.65 8.10 4.16 Lane:J1 1bf 12336 12400 Stn: 54 Temp: PvT: J/C: Air: 63 63 08:50 Df5 5.56 5.51 5.56 psi 112.5 113.0 Dfi Sto Hgt Df2 Df3 Df4 Df6 Df7 6.62 6.58 6.26 6.21 5.95 5.91 4.85 4.81 3.34 3.30 €.46 6.42 6.38 4.78 4.78 113.0 83.0 82.8 82.9 82.9 4.77 3.55 3.55 5.91 6.49 5.07 5.03 C 12400 6.17 4.63 4.63 3.30 2.47 22 4.43 4.35 4.39 9112 4.18 4.13 9080 2.473.51 3.60 4.72 2 9088 5.03 4.58 4.67 6.13 4.09 4.47 5.78 5.87 5.89 5.07 9096 4.18 45.55600050 45.55577777 6.49 6.58 333 12320 3.21 112.6 112.6 112.6 147.5 148.3 12352 12360 12352 4.77 6.17 6.17 6.26 8.05 6.62 4.85 6.20 6.66 7.68 7.68 7.73 16168 8.71 8.71 8.76 4.29 $6.\overline{20} \\ 6.24$ 16256 16248 8.05 4.29 8.10 148.1 7.296.28 16240 8.71 8.05 7.73 4.29 Stn: 69 Temp: PvT: Air: 63 Lane: J1 J/C: 63 08:52 Df5 5.33 5.29 Dfi 6.37 8.37 Sto Hgt psi 1122.053333525 1122.053333525 1122.122.122 1122.147 lbf Df2 Df3 Df4 Df7 Df6 4.55 4.55 4.55 4.55 3.38 8.68 4.68 12280 12336 12360 5.66 5.66 5.66 3.12 6.16 6.00 3.08 3.12 5.91 5.96 4.37 8.12 С 6.41 4.78 4.78 6.16 4.52 4.57 5.29 2.26 2.30 2.34 9016 2 3.91 4.14 8984 4.41 4.18 3.96 4.61 4.57 6.20 3.96 9040 4.82 4.22 4.41 ¥ $\frac{4.18}{5.70}$ 9024 4.78 4.41 3.96 2.30 6.45 6.37 6.37 6.37 6.42 3 12320 12320 5.38 5.29 4.64 4.55 6.04 3.12 3.08 5.96 5.66 6.16 5.33 5.29 6.93 4.59 4.55 5.98 12328 5.66 6.16 6.00 3.12 5.61 7.43 7.39 7.47 5.91 7.84 12304 6.12 3.08 16184 8.10 4.03 147.8 147.7 16208 8.42 8.06 7.80 6.93 5.94 3.99 8.50 16200 * 8.10 7.84 7.02 6.02 4.08 * 148.0 16216 8.46 7.80 7.43 8.06 6.93 5.98 4.03 98 Stn: Lane: J1 Temp: PvT: J/C: Air: 63 63 08:55 Df5 5.20 5.20 5.20 5.20 Hgt C psi 112.2 112.3 112.5 82.3 82.0 Df2 5.95 5.95 5.90 Df3 5.74 5.74 5.74 4.28 Df4 5.45 5.49 5.45 Sto 1bf 12296 Dfi Df7 6.07 3.12 12312 12328 9032 Č 6.07 6.07 3.12 3.12 3.39 2.39 2.39 2.39 4.57 4.57 4.57 4.57 4.44 4.09 44.28 44.28 44.28 55.70 6 9016 4.44 4.09 3.87 3.87 3.87 5.20 5.20 8984 4.44 4.09 82.0 8992 4.40 4.05 112.6 112.9 112.3 112.6 147.8 12344 12376 12312 12360 5.95 6.07 5.49 6.07 5.45 5.45 5.90 5.90 7.71 6.07 5.16 4.46 3.08 5.66 7.50 7.54 7.50 5.40 5.16 6.71 6.85 4.46 6.03 3.08 16208 8.00 3.99 16256 16272 148.3 4 7.80 7.76 7.18 5.89 8.09 4.08 148.4 8.04 5.89 4.03 7.18 6.80 16232 148.0 8.09 7.84 7.58 7.22 6.85 5.98 4.12 Stn: 113 Air: 63 4 Df5 2 4.76 Sto Hgt C Lane: J1 J/C: PvT: 63 08:59 Df2 5.39 psi 112.3 1bf 12312 Dfi Df3 5.23 Df4 Df7 Df6 5.45 5.53 5.02 4.25 3.12 4.29 112.6 12344 4.80

08:59 930609 File: C:\FWD\DATA\833802C1.FWD
Road: MB-75 NORTHBOUND LANE, 15 MILES SOUTH OF WINNIPEG, MB. Subsection: 833802 4.42 3.46V 3.25 3.25 4.29 5.52 4.18 4.05 4.09 3.30 2.65V 2.34V 2.43 5.57 4.23 5.19 3.93V 3.71 3.80 4.89 3.73V 3.51 3.64 5.40 112.9 12376 04143 908777774 908777774 908777774 22 8976 81.9 4.11 ¥ 81.9 8976 82.2 82.0 2293333 9016 2.43 3.17 3.17 4.09 4.09 5.39 5.39 7.00 3.80 8992 3.60 4.19 112.3 112.3 112.3 112.3 12312 12312 12312 12312 12312 5.07 5.02 5.07 5.49 4.80 4.29 4.29 4.80 4.80 4.76 6.27 6.27 6.22 6.31 5.49 4.25 5.55 5.55 5.55 5.45 5.02 6.59 ¥ 16192 4.12 7.25 7.25 7.25 7.25 16224 16224 148.0 $4.1\bar{2}$ 4 7.11 * 6.63 6.94 148.0 148.0 7.07 7.11 6.90 6.94 6.59 6.63 * 4 4.08 5.63 16224 4.16 'ACCEPT TEST WITH VAR. Air: 63 74 Df5 28 5.02 23 5.02 Stn: 154 Temp: PvT: 63 09:01 Lane:J1 J/C: Df1 5.74 5.78 5.78 4.23 4.32 Df4 5.28 5.23 5.32 5.93 5.97 Sto Hat 1bf 12360 12360 psi 112.8 112.8 Df2 Df3 Df6 Df7 5.60 3.30 3.34 3.34 2.47 2.56 5.48 5.44 5.53 4.42 4.42 4.46 3.38 3.34 3.29 5.64 5.07 112.6 12344 81.93.93.5 82.93.5 82.5 112.2 112.37 22 3.69 3.78 3.73 3.69 8968 4.18 4.07 9024 4.22 4.11 4.27 4.27 5.70 3.97 3.88 2200000 8976 4.18 4.11 ¥ 9024 4.14 4.07 4.14 5.56 5.60 5.53 5.33 7.37 7.37 5.23 5.23 5.23 5.44 5.53 5.48 4.42 12336 4.98 5.78 5.78 5.78 5.70 7.54 7.58 7.50 12304 12296 5.02 4.46 5.02 4.42 4.38 5.76 5.85 5.81 5.81 5.40 5.19 12320 4.98 16304 16336 16304 16352 4.29 4.38 4.34 148.7 6.88 6.49 149.0 148.7 149.1 7.24 7.20 7.20 6.62 6.58 6.53 6.97 4 6.92 6 88

	 1-3.1	10332	7.50	7.27	7.20	0.00	0.55	J.01	4.25	
Sto * * * * * * * * * * * * * * * * * * *		Lane: Ji 1bf 12272 12296 12312 6920 8872 8856 82248 12224 12224 12232 16232 16232 16256	Tei Df1000077722267777755.5777777	22264499970204318 5554444555577777	13000373864087501 15440373864087501 55554443555577777	A f4555840007953114885 555583383555566666	3554449440660344364490 1188866608344364490 118886666083444446666666666666666666666666	P 444333344445555	3 Df955661 222222222233333333333333333333333333	09:04
	 _									

		140.5	16236	7.50	7.20	7.11	6.75	6.40	5.59	3.00	
	: 21 Hgt	psi	Lane:J1	Df1	Df2	J/C: _Df3	Df4	ir: 65 Df5	PvT: 6	Df7	09:09
	000	111.9 112.5 111.7	12272 12336 12256	5.66 5.49 5.57	5.52 5.34 5.47	5.36 5.18 5.31	5.11 4.94 5.07	4.84 4.62 4.76	4.20 3.99 4.16	3.08 2.73 2.95	
*	2 2 2	81.7 82.0 81.9	8952 8992 8976	4.23 4.27 4.19	4.09 4.14 4.05	3.98 4.03 3.94	3.76 3.80 3.76	3.56 3.60 3.56	3.12 3.16 3.08	2.26 2.30 2.21	
* * *	2 3 3	81.9 112.3 112.2	8976 12312 12304	4.19 5.66 5.66	4.05 5.56 5.52 5.47 5.52	3.94 5.36 5.36	3.76 5.11 5.15	3.56 3.56 4.84 4.80	3.08 4.20 4.20	2.21 2.99 2.95	
*	3 3	112.3 112.0 147.4	12320 12280	5.61 5.70	5.47 5.52	5.31 5.40	5.07 5.15	4.76 4.80	4.12 4.20	2.95 3.04	
* *	4 4 4	147.8 147.5	16168 16200 16176	7.42 7.46 7.42	7.20 7.24 7.24	7.03 7.07 7.03	6.67 6.71 6.67	6.27 6.36 6.27	5.46 5.46 5.42	3.82 3.86 3.77	
*	4	147.7	16192	7.42	7.20	6.98	6.67	6.27	5.42	3.77	

File: C:\FWD\DATA\833802C1.FWD Road: MB-75 NORTHBOUND LANE, 15 MILES SOUTH OF WINNIPEG, MB. Subsection: 833802

* 2 81.0 * 2 81.0 * 2 81.0 * 2 81.0 * 3 111.0 * 3 111.0 * 4 148.0 * 4 148.0 * 4 148.0	Lane:J1 Temp: 1bf Df1 Df2 12256 6.20 6.08 12272 6.24 6.16 12248 6.28 6.16 8904 4.65 4.48 8888 4.69 4.52 8888 4.73 4.57 12256 6.24 6.12 12248 6.20 6.08 12240 6.24 6.08 12240 6.24 6.08 12240 6.24 6.08 12240 6.24 6.08 12240 6.24 6.08 12240 6.24 6.08 12240 6.24 6.08 12240 6.24 6.08 12240 6.24 6.08 12240 6.24 6.08 12240 6.24 6.08 12240 6.24 6.08			09:12
Stn: 260 Sto Hgt ps: C 111.6 C 111.6 * 2 80.7 * 2 80.7 * 3 111.6 * 3 111.6 * 4 147.7 * 4 147.5 * 4 148.6	12192 6.16 5.99 12232 6.12 5.99 12232 6.16 5.99 8856 4.52 4.40 8856 4.52 4.44 8856 4.61 4.48 12240 6.16 5.99 12192 6.20 6.03 12192 6.12 5.99 16192 8.17 7.93 16192 8.17 7.93 16184 8.21 7.93 16224 8.13 7.89	5.83 5.53 5.20 5.83 5.53 5.82 4.28 4.09 3.82 4.33 4.14 3.91 5.87 5.53 5.16 5.83 5.53 5.20 5.83 5.53 5.20 5.91 5.57 5.24 5.83 5.53 5.20 7.71 7.26 6.85 7.71 7.26 6.85 7.71 7.26 6.85 7.71 7.26 6.85 7.71 7.26 6.85	4.51 3.47 3.34 2.56 3.38 2.69 3.38 3.42 2.69 4.51 3.55 4.55 4.55 4.55 4.51 4.51 4.51 5.94 4.51 5.94 4.51 5.98 4.47	09:14
Stn: 275 Sto Hgt ps: C 111.3 C 111.4 * 2 80.4 * 2 80.4 * 2 80.4 * 3 111.4 * 3 110.5 * 4 147.3 * 4 147.3 * 4 147.3	12192 5.87 5.73 12168 5.87 5.69 8800 4.48 4.31 8824 4.40 4.27 8824 4.36 4.27 8824 4.36 4.22 12224 5.82 5.69 12192 5.82 5.73 12136 5.78 5.69	5.44 5.23 4.93 5.48 5.28 4.98 7.24 6.88 6.49 7.28 6.92 6.53 7.24 6.92 6.53 7.20 6.92 6.49	PvT: 64 Df6 4.33 2.95 4.33 2.95 4.33 3.25 2.26 3.21 2.21 4.29 2.91 4.29 2.91 4.29 2.91 4.29 2.91 4.29 2.91 5.63 5.63 5.77 5.63 5.73	09:16
Stn: 306 Sto Hgt ps: C 111.3 C 111.3 * 2 80.6 * 2 81.2 * 3 111.3 * 3 111.4 * 4 148.6 * 4 148.6 * 4 148.6	12216 5.74 5.56 12208 5.70 5.56 12208 5.70 5.56 8816 4.23 4.14 8896 4.27 4.14 8896 4.27 4.14 12216 5.70 5.56 12192 5.74 5.60 12256 5.74 5.60 12224 5.78 7.37 16216 7.54 7.33 16232 7.54 7.33	J/C: Air: 65 Df3 Df4 Df5 5.40 5.15 4.89 5.40 5.15 4.89 4.07 3.84 3.64 4.07 3.88 3.64 4.07 3.84 3.64 4.07 3.84 3.69 5.40 5.19 4.93 5.48 5.19 4.93 5.48 5.23 4.93 5.48 5.23 4.93 5.48 5.23 6.49 7.20 6.84 6.44 7.15 6.84 6.49 7.20 6.88 6.49	PvT: 65 Df6 Df7 4.20 2.86 4.20 2.91 3.16 2.21 3.16 2.21 3.16 2.21 3.12 2.21 4.25 2.91 4.25 2.95 4.29 2.95 5.63 3.73 5.59 3.82	09:19

09:19 930609 ε.

File: C:\FWD\DATA\833802C1.FWD
Road: MB-75 NORTHBOUND LANE, 15 MILES SOUTH OF WINNIPEG, MB.
Subsection: 833802

Sto * * * * * * * * * * * * * * * * * * *	# # # # # # # # # # # # # # # # # # #	### 111.22 111.22 111.23 111.23 80.31 80.11 110.9 111.22 110.77 1147.8 148.0 147.5	Lane:J1 1bf 12184 12184 12192 8800 88784 8792 12160 12192 12144 16208 16216 16208 16176	1544445555577777 18833444588877555577777	2278299394040 2218299394040 5555577777	5.5166673737838 5.44445.555.32838	Ai f4362777728281717 5555333335557676	5717383872127222 5555333355556666	PD5195888551914444555555	D.3546666073737777	09:22
Sto: * * * * * * * * * * * * * * * * * * *	# ####################################	110.4 110.9 111.0.07 79.9 110.6 110.6 110.4 147.25	Lane:J1 1bf 12104 12160 12176 8776 8760 8760 12128 12128 12104 16152 16136 16136	33.066661560528 35.06661560528	162226410054 129999323389 1533335555566	J/C: Df3 5.06 5.10 5.27 3.81 3.81 5.14 5.14 6.68 6.68 6.64	14333344444666	22277178777499 433334444666	4.16 4.16 4.16 4.16 4.12 4.12 4.12 4.12 4.12 4.12 4.16 5.16 5.16 5.16 5.16 5.16 5.16 5.16 5	56 Df211172172 33332.454720 33332222.33333.12221 44.4.4.4.4.4.4	09:25
********	# # # # # # # # # # # # # # # # # # #	111.4 799.3 80.0 111.2 111.2 111.4 148.0 148.7	8760 8760 8792 8776 12208 12192	Tem Df13 55.557 4.19 4.11 55.557 77.7 77.7	5.49 5.49 5.91 4.32 4.39 5.39 5.43	J/C: Df3377564V 5.2276440 5.227645771346640 6.996666666666666666666666666666666666	4.98 4.98 3.63V 3.71	4.71 4.71 3.47 3.51 3.82V 4.67 4.71	PVT: 6 0.07 4.12 3.33 3.03 4.12 3.33 4.12 4.10 4.10 4.10 4.10 4.10 4.10 5.33 5.33 5.33 5.33 5.33 5.33 5.33 5.3	Df7 3.08 3.12 2.30V 2.47 2.730V 2.01 2.01 3.112	09:29
Stn: Sto	4 gCCC00000000004	5 psi 111.0 111.0 79.9 79.4 79.6 79.7 111.0 110.7 110.7	Lane: J1 1bf 12176 12184 12176 8760 8712 8728 8744 12176 12120 12144 16208	Tem 514 55.770 55.197 4.127 7777 55.54 4.455.555 7.777 54	p: 1266661954066648	J/C: Df3 5.406 5.903 4.400 34.440 5.555 34.440 5.555 7.000	Df4 5.15 55.11 55.11 5.11 5.11 5.11 5.15 5.15 5.15 5.15 5.15 5.15 5.15 5.15 5.15	65 Df5 4.880 4.880 3.561 4.884 4.884 4.884 4.931	PvT: 6 Df6 4.16 4.16 4.16 2.99 3.12 3.12 4.20 4.20 4.29 5.42	Df7 2.91 2.91 2.137 2.130 2.195 2.995 2.995 2.993	09:31

09:31 930609 7. File: C:\FWD\DATA\833802C1.FWD Road: MB-75 NORTHBOUND LANE, 15 MILES SOUTH OF WINNIPEG, MB. Subsection: 833802 7.58 7.54 7.54 6.75 6.75 6.71 6.36 6.31 6.31 5.46 5.46 3.77 3.73 3.73 7.33 7.28 147.8 16216 7.11 ¥ 4 148.1 16240 148.1 7.28 7.07 5.42 4 16240 Stn: 437 J/C: PvT: Lane:J1 Temp: Air: 65 66 09:34 Df1 5.74 5.82 5.70 Df4 5.23 5.22 5.23 5.23 5.93 Df2 5.56 5.64 5.60 Df5 lbf Sto Hgt psi 111.2 Df3 Df6 Df7 12192 12152 3.12 3.30 3.21 2.52 5.44 5.53 5.48 4.46 4.55 4.51 4.98 110.9 110.3 5.07 12096 5.02 4.33.33.35.55 4.551 4.551 4.551 34.27 4.27 4.27 5.77 5.77 6.77 79.6 79.4 79.6 8720 8704 3.78 3.73 3.73 22 4.18 4.16 4.14 4.07 $\bar{2.47}$ 8728 8704 3.88 3.88 5.28 5.28 5.28 2 2.43 4.14 4.07 2 3 4.07 5.53 5.53 79.4 3.73 2.43 4.18 110.9 12152 12120 5.64 5.07 3.25 3.30 3.25 110.6 5.07 5.69 12120 110.6 5.60 5.48 5.02 110.1 12080 5.74 7.58 7.58 5.60 7.37 7.41 5.44 7.15 3.214.98 6.53 6.53 147.5 16184 6.88 5.85 4.08 7.15 7.24 7.20 88.3 147.4 16160 5.85 4.16 7.62 7.58 16152 6.92 6.92 147.4 5.94 7.41 6.62 147.4 16160 7.41 6.53 5.89 4.16 J/C: Df3 5.57 5.53 Stn: 469 Lane:J1 lbf Temp: Air: 65 PvT: 66 09:36 Df6 4.38 4.38 4.25 3.25 2.25 Dfi D£322337336828781 555533335555566 Sto Hgt psi 110.7 Df2 Df5 Df7 12144 12208 5.95 5.69 5.02 3.04 5.69 5.73 4.27 4.27 111.3 110.7 79.7 5.91 2.99 4.98 12136 8744 8752 8744 5.95 4.36 3.04 2.26 5.61 5.02 3.69 4.11 79.9 79.7 79.9 110.7 2 2.30 2.30 2.26 3.73 4.40 4.16 4.36 5.95 5.91 4.22 4.22 5.69 5.69 $\frac{\overline{2}}{2}$ 4.16 3.69 8752 12144 12144 12136 4.11 5.53 5.57 3.69 24.33332 24.33332 25.533 25.533 25.533 3.08 5.02 4.98 2.95 110.7 5.91 5.69 3.04 4.98 5.57 5.57 7.33 7.20 7.28 5.91 7.75 7.67 7.71 110.6 5.69 7.50 7.37 12120 4.98 6.53 2.99 147.4 147.7 3.90 3.77 16160 16200 6.44 6.53 147.5 16176 7.45 6.97 3.88 147.8 16208 7.71 7,45 7.28 5.63 3.86 6.92 6.49 ---------Stn: 484 Temp: Air: 66 Lane:J1 J/C: PvT: 67 09:39 Sto Hgt Df1 5.78 5.78 Df4 5.23 5.23 5.32 3.97 1bf 12072 Df6 4.29 4.29 Df5 psi 110.1 Df2 Df3 Df7 5.64 5.44 5.44 5.53 4.93 3.17 110.6 110.3 79.1 12128 4.93 3.17 4.29 3.25 3.29 5.69 4.27 4.98 3.73 12088 5.82 4.32 4.32 4.32 5.74 5.78 5.78 5.75 7.58 3.21 8672 4.11 2.47 $4.\bar{27}$ 79.4 8704 8672 4.01 3.88 3.73 2.47 2.39 4.11 79.1 79.3 3.69 3.78 3.21 4.18 4.03 4.31 5.73 5.69 4.01 5.32 5.32 5.23 8688 3.29 4.16 4.38 4.38 4.29 4.29 110.3 12088 5.57 5.02 3.30 5.48 5.48 5.44 5.28 7.28 4.40 110.0 12064 3.Žĭ 4.98 12048 12064 109.9 5.69 4.98 3.25 110.0 147.5 147.5 147.5 5.64 4.89 3.12V 7.45 7.54 7.50 5.59 5.63 16176 6.92 4.08 6.49 6.53 6.53 4 16184 7.01 4.16 16184 5.63 4.12 6.97 147.4 16168 7.62 7.24 7.50 7.01 6.49 5.68 4.12 510 Stn: Temp: Lane:J1 J/C: 66 PvT: 09:42 Što Hat C C 1bf 12024 Df3 5.78 5.78 5.78 psi 109.7 Dfi Df2 Df4 Df5 Df6 Df7 4.55528 4.4.33333344 5.53 5.53 5.49 5.95 5.95 5.90 5.24 5.20 5.20 6.12 6.07 3.25 3.21 109.6 12008 2 109.9 12040 6.07 3.17 8592 8600 4.61 4.57 4.33 4.28 2.43 2.39 2.30 3.87 4.44 4.14 2 78.4 3.82 3.78 3.78 4.44 4.09 4.35 4.35 5.86 5.99 223333 78.4 8600 4.24 4.01 4.48 4.24 5.70 5.87 78.6 8608

4.05

5.45 5.57 5.36

5.66

5.11 5.29 5.07

5.20

4.64 4.42V 4.59 3.30V

3.08

3.2ī

4.48

5.99

6.12

5.91

6.07

5.82

5.95

109.9

109.1

109.4

109.3

12040

11968

12000

11984

File: C:\FWD\DATA\833802C1.FWD
Road: MB-75 NORTHBOUND LANE, 15 MILES SOUTH OF WINNIPEG, MB.
Subsection: 833802

*	4	147.5	16168	8.04	7.76	7.58	7.26	6.80	6.02	4.16
×	7	147 በ	16104	ଅପର	7.76	7.54	7.22	6.85	5.98	4.10
*	4	147.2	16152 16152	7.96	7.76	7.54 7.54	7.22	6.76	5.94	4.12
' AC	CEPT	TEST W	ITH VAR.	7.30	7.71	7.04	,			

Stn: Sto		8 psi 109.6 109.4 109.9 78.3 78.4 78.6 78.8	Lane:J1 1bf 12016 11992 12048 8584 8592 8608 8640	Ter Df1 5.95 5.91 5.95 4.48 4.48 4.48	ap: Df2 5.82 5.77 5.82 4.31 4.27 4.31	J/C: Df3 5.61 5.61 4.20 4.20 4.20 4.20	A: Df4 5.36 5.36 5.40 4.01 4.01 4.01	ir: 66 Df5 5.11 5.07 5.11 3.82 3.82 3.82	PVT:66 4.44664432344 4.323333333333333333333333333333	9 Df7 3.12 3.08 3.12 2.39 2.39 2.43 2.43	09:46
* * * * * *	ფოფო4444	109.4 109.6 109.7 109.6 148.7 148.6 148.4 148.3	12000 12008 12024 12008 16296 16288 16272 16256	5.99 5.95 5.99 7.79 7.79 7.75 7.79	5.86 5.82 5.82 7.58 7.58 7.58	5.70 5.66 5.66 5.41 7.41 7.37	5.45 5.45 5.45 7.03 7.05 7.09	5.16 5.11 5.16 5.71 6.71 6.71 6.71	4.55 4.46 4.51 4.51 5.89 5.85 5.81	3.12 3.17 3.17 4.08 4.03 4.03	

Mileage: -. 004 -> .1

EXTRA TESTS FOR SMF

File: C:\FWD\DATA\833802C2.FWD Road: MB-75 NORTHSOUND LANE, 15 MILES SOUTH OF WINNIPEG, MB. Subsection: 833802

FWD S/N: 8002-063 Operator ID: WOREL, BENJAMIN J.

Stationing...: Feet

Diameter of Plate: 11.8 Deflector distances: 8 12 18 24 36 60

SHRP TESTING - RIGID/CRCP - BASIN AND EDGE TEST (J0/C0, J1/C1, J2/C2, J3/C3) Sequence: CCC222233334444

0 ************************************	108.0 78.1 78.1 78.3 107.7 108.1 108.1 143.5 143.6	Lane: J 1bf 11816 11848 8568 8568 8592 8576 11864 11856 11840 15728 15736 15750	2 Df1 18.009 19.1662863344645645645645645645645656533446455555555	mp: Df2 16.85 16.85 12.988 12.988 12.988 17.09 17.19 22.23 22.23 29	J/O Df3 15.77 15.79 12.08 12.04 12.12 15.98 16.11 20.618 20.78 20.91	Df47 14.354 14.4898 10.993 14.555 14.665 14.665 14.665 14.665 14.665 14.665 14.665	Air: 65 12.89 12.89 12.89 12.89 12.82 9.82 9.87 13.02 13.11 16.97	PvT: Df6 10.31 10.40 7.888 7.844 7.93 10.444 10.61 10.53 13.659 13.69		09:55
- mcCCCQQQQQGGGGGA4444 : HGCCCQQQQGGGGGGGA4444 tno * * * * * * * * * * * * * * * * * * *	109.4 109.9 79.9	Lane: J 1bf 12016 12000 12040 87760 87792 11992 11992 11960 15920 15920 1588	9.38 9.43 7.00	9.266 9.285 9.855 9.228 9.228 9.228 12.32	J/C Df17 9.10048889 9.66886004 0.004004004 122.000	36.650 6.7027 6.4465 6.66.85.767 11.57	64 655 66.227 66.227 66.009 66.1228 66.009 66.1228 10.998 10.999	7.19997.19995.555.55999.57	65 D119999999399399443333344456666666666666666	09:58
Str. HgCCC22223333344444	psi 109.3 109.4 109.4 79.0 78.4 109.3	Lane: J 1bf 11984 12000 11992 8672 86648 8704 12000	2 Te	mp: Df2 11.20 11.20 11.27 8.23 8.23 11.16 11.16 11.16 14.87 14.87 14.91			ir: 64 Df5 9.02 8.93 8.62 6.58 6.58 8.89 8.89 811.73 11.82 11.87 11.78			10:01
Stn: -4 Sto Hgt C		Lane:J: 1bf 11944 11960	Ter Df1 12.11 12.07	ap: Df2 12.02 11.98	J/C Df3 11.78 11.74	: A Df4 11.48 11.40	ir: 64 Df5 10.89 10.85	PvT: 6 Df6 9.75 9.66	54 Df7 7.11 7.03	10:05

10.

File: C:\FWD\DATA\833802C2.FWD
Road: MB-75 NORTHBOUND LANE, 15 MILES SOUTH OF WINNIPEG, MB. Subsection: 833802 11.40 10.80 8.61 8.18 8.70 8.27 8.70 8.27 8.70 8.22 9.62 7.28 11.98 11.94 11.70 8.83 6.94 109.3 11976 5.29 79.0 79.0 2 8672 9.09 9.01 7.41 5.42 5.38 5.38 8.70 8.70 8.70 11.52 8.91 2 8656 9.13 9.05 7.41 9.09 9.13 വവനനനന 8664 79.0 7.36 9.75 9.05 12.06 79.0 8656 9.09 8.87 7.07 12.11 12.19 11960 11.83 10.93 109.1 9.88 9.75 9.75 11.65 11.52 11.48 7.20 11.07 12.15 11.91 109.3 11976 12.11 12.06 12.06 11.83 11.83 10.93 10.93 11944 109.0 12.11 15.96 7.07 11960 15816 109.1 12.74 12.82 12.87 14.27 4 144.3 15816 4 144.3 15832 4 143.9 15784 4 144.1 15800 15.03 15.47 15.55 15.60 9.15 15.77 15.86 15.90 15.94 15.11 15.15 14.36 16.05 $9.\overline{2}4$ 14.40 16.09 15.24 12.91 16.17 14.49 9.28 15.64 J/C:
Df3
19.32 17
19.45 17
19.62 18
15.25 14
15.30 14
15.38 14
15.38 14
19.88 18
20.09 : Air: 65 Df4 Df5 17.73 16.22 17.86 16.31 PvT: 64 Stn: 5 Temp: f1 Df2 Lane:J2 lbf Tem Df1 22.54 22.79 23.00 17.89 17.93 Sto Hgt Df6 13.56 13.56 Df7 psi 106.5 20.42 20.55 20.77 9.07 11688 11672 9.07 106.4 16.45 12.80 12.80 12.80 18.07 13.69 9.11 106.2 11648 7.11 77.2 10.66 Ž 8472 16.12 14.06 16.12 14.06 10.61 7.07 8480 10.66 7.11 14.06 2 8480 16.16 17.97 18.06 23.29 23.50 23.54 30.54 30.75 30.75 14.14 18.24 18.28 7.11 16.24 2333 8488 16.67 13.82 9.20 106.5 106.2 20.98 11680 13.82 21.03 11640 16.67 9.28 16.85 16.85 18.45 13.99 11672 11632 20.09 106.4 20.09 18.45 16.65 15.99 9.28 20.14 18.49 16.85 14.04 9.28 25.66V 23.60V 21.47V 17.85V 11.84V 26.05 23.93 21.82 18.20 12.06 26.22 24.10 21.91 18.28 12.06 26.39 24.31V 22.09 18.46V 12.19 106.1 21.29 27.15V 27.53 27.75 27.92 15568 142.0 15500 15520 15520 15544 141.6 * 4 141.6 15520 * 4 141.7 15544 'ACCEPT TEST WITH VAR. Stn: 12 Lane:J3 Temp: J/C: Air: 64 PvT: 64
Sto Hgt psi lbf Df1 Df2 Df3 Df4 Df5 Df6 Df7
C 109.0 11952 13.11 12.75 12.34 11.74 10.98 9.40 6.29
C 109.0 11960 13.11 12.67 12.25 11.65 10.89 9.31 6.16
C 109.3 11976 13.20 12.80 12.34 11.74 10.98 9.40 6.29
* 2 79.0 8664 9.97 9.57 9.25 8.78 8.22 7.02 4.73
* 2 78.4 8600 9.93 9.57 9.25 8.78 8.22 7.02 4.73
* 2 78.5 8648 9.97 9.52 9.25 8.78 8.22 7.06 4.77
* 2 78.3 8584 9.89 9.57 9.25 8.78 8.22 7.06 4.77
* 3 109.1 11960 13.11 12.67 12.30 11.65 10.89 9.36 6.20 Sto Hgt 11960 13.11 11920 13.20 11944 13.24 15832 17.30 15856 17.43 15832 17.47 12.30 12.38 12.38 12.47 9.36 9.44 12.67 12.75 12.75 11.65 10.89 109.1 11.02 108.8 108.7 11.74 11.78 10.98 9.40 12.75 12.36 11.76 10.96 12.80 12.47 11.82 11.07 16.63 16.11 15.37 14.40 16.68 16.15 15.41 14.40 16.80 16.24 15.49 14.45 16.89 16.28 15.53 14.45 9.49 12.30 12.30 12.35 12.39 6.29 109.0 8.15 144.3 8.15 144.6 4 8.24 4 144.6 4 144.3 8.28 3: Air: 65 Df4 Df5 16.55 14.93 16.59 14.98 17.01 15.38 13.17 11.87 mp: J/C:
Df2 Df3
19.39 18.21 16
19.52 18.34 16
19.95 18.77 17
15.47 14.48 13
15.51 14.52 13
15.51 14.52 13
20.25 19.02 17
20.51 19.28 17
20.47 19.19 17 ______ PvT: 65 Df6 Df7 10:13 Temp: Stn: 19 Lane:J2 Df1 21.74 21.95 22.46 17.43 17.51 17.51 22.00 Df6 12.13 12.13 Sto Hat C C psi 106.4 106.1 lbf 7.81 7.72 7.98 11656 11632 12.48 9.57 9.57 9.62 106.1 77.0 11624 6.12 8440 11.91 2 77.0 13.17 6.16 8440 13.17 13.17 17.31 17.43 17.52 22.37 22.63 77.2 77.0 6.16 11.91 8464 1233 11.87 9.57 8440 12.65 12.78 12.69 15.60 15.78 106.1 11624 22.71 23.00 22.96 23.13 29.58V 29.95 106.2 11648 15.69 8.11 19.19 19.32 20.47 105.9 11616 12.82 8.20 10.54 10.71 15.82 106.1 11632 20.60 16.38 16.59 16.72 24.68 20.18 26.24 141.2 15480 24.98 25.11 20.40 20.58 26.59 26.76 15512 141.4 22.80 10.71 15504 30.16 141.4 140.7 15432 25.15 20.58 10.71 22.84 30.25 26.80

'ACCEPT TEST WITH VAR.

10:13 930609 11.

File: C:\FWD\DATA\833802C2.FWD Road: MB-75 NORTHBOUND LANE, 15 MILES SOUTH OF WINNIPEG, MB. Subsection: 833802

**************************************	79.1 79.1 79.1 79.1 79.1 79.6 109.9 109.9 1109.6 145.8 145.8 145.9	8672 8672 8640 8728 12040 12032 12072 12024 15984 16040 15984 16008	8.30 8.25 8.21 11.14 11.10 11.27 14.75 14.75 14.75	7.93 7.899 10.77 10.89 10.77 10.86 14.22 14.22	10.37 7.671 7.677 7.67 10.37 10.45 10.54 13.84 13.75	9.84 7.226 7.226 9.882 10.13 13.104 13.104 13.104	96.666699999317222 11222	7.84 5.81 5.881 5.68 7.93 7.88 7.97 10.44 10.44	64 Df7 55.16 55.17 33.77 33.77 33.82 55.16 55.12 57.18 6.77 6.77	10:15
Stn: 49t CCC22223333344444 * * * * * * * * * * * * * * * * *	psi 105.4 105.4 105.4 76.4 76.4 76.4 105.2 105.2 105.1 140.7 141.0 TEST	Lane:J 11560 11552 11552 8376 8368 8392 8392 81560 11528 11528 11528 115440 15444 15432 1TH	Te Df1 27.48 27.86 21.91 22.04 228.28.40 28.45 35.66 536.45 V 356.45 V	Tup: Df2 24.56 24.78 19.56 19.52 19.52 19.52 19.52 19.52 25.34 25.34 25.42 31.77 32.53	J/C Df3 23.01 23.26 18.25 18.34 18.39 18.38 23.44 23.89 23.89 29.33 29.33 29.33 29.33 29.33	Df4 20.98 20.98 21.19 16.63 16.67 16.72 21.32 21.461 21.70 27.23 27.653	15: 055 18: 055 18: 022 14: 002 15: 007 19: 247 19: 24: 89 19: 24: 89 24: 89 24: 89 24: 89	PVT: Df6 15.21 15.34 12.03 12.13 12.13 15.568 15.786 19.76 20.10	64 Df70 99.546 99.77.557 77.557 99.144 122.445 122.445	10:18
Sto HGCCC22223333344444	ne i	Lane: J 1bf 11992 12032 12016 8680 8704	3 Te Df1 11.40 11.444 11.487 8.663 8.557 11.48 11.652 11.525 14.221 15.21	mp: Df2 11.12 11.07 11.07 8.27	J/C Df3 10.80 10.80 10.75 8.05	Df4 10.26 10.26 10.26 7.68	ir: 65 Df5 9.65 9.60 9.60 7.25	PyT: Df6 8.32 8.27 8.23 6.20 6.11 6.32 8.32 8.32 8.32 11.00	65 Df77 5.688 5.211 44.258 55.687 77.455	10:20
Stn: 66 Sto Hgt CCC222 * * 223		Lane:J 1bf 11696 11712 11744 8496 8560 8520 8552 11808	2 Ter Df1 21.58 21.79 21.91 16.93 16.97 17.01 17.09 22.29	mp: Df2 19.13 19.30 19.39 14.91 14.99 14.04 15.08 19.69	J/C Df3 17.91 18.04 18.12 13.97 14.01 14.05 14.10 18.42	Df4 16.17 16.29 16.34 12.62 12.58 12.56 12.75 16.63	ir: 65 Df5 14.53 14.58 14.62 11.33 11.29 11.33 11.42 14.89	PvT: 6 Df6 11.65 11.70 11.74 9.05 9.10 9.14 11.96	56 Df7 7.50 7.46 7.46 5.77 55.77	10:23

79.0

```
File: C:\FWD\DATA\833802C2.FWD
Road: MB-75 NORTHBOUND LANE, 15 MILES SOUTH OF WINNIPEG, MB.
Subsection: 833802
                                                                                                                                                                                   7.59
7.59
7.68
9.76
                                                                                                                                         14.93
14.98
15.07
                                                             22.33
22.37
22.50
28.66
                                                                                                   18.47
18.55
18.59
23.56
                                                                                                                       16.63
16.72
                                                                                                                                                            11.96
                                          11720
                                                                                19.73
              333
                      107.0
                                                                                                                                                             12.00
                                                                                19.82
19.91
                      106.8
                                          11712
                                                                                                                                                             12.09
                                                                                                                       16.80
                      106.7
                                          11688
                                                                                                                                                             15.34
15.51
15.73
                                                                                                                                         19.11
19.33
19.60
                                                                                                                       21.36
                                                                                25.29
                                          15528
              4
                       141.6
                                                                                                                                                                                   9.89
                                                             28.99
29.33
29.49
                                                                                 25.64
25.94
                                                                                                                       21.66
21.87
                                                                                                    23.95
                                          15648
                      142.8
                                                                                                                                                                                10.02
                                         15648
15648
                                                                                                    24.16
                      142.8
              4
                                                                                                                                                             15.77
                                                                                                                                                                                 10.02
                                                                                                                                         19.65
                                                                                                                       21.99
                       142.8
                                                                                 25.98
                                                                                                    24,29
                                                                                                                                    Air: 65
                                                                                                                                                                PvT: 65
                                                                                                                                                                                                 10:25
                                          Lane:J3
                                                                                                             J/C:
 Stn: 73
                                                                        Temp:
                                                                                                                          Df4 9.50
                                                                                                                                                                Df6
7.54
                                                             Df1
10.77
10.73
10.77
                                                                                                                                                                                     Df7
                                                                                                   Df3
10.03
                                                                                    Df2
Sto Hot
                      psi
109.4
109.7
                                                                                                                                             8.98
8.89
                                                                                                                                                                                    4.86
                                                                                 10.43
                                          11992
                                                                                                                                                                7.545
7.559
7.559
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
5.550
                                                                                                                         9.46
9.54
7.05
7.05
                                                                                                                                                                                    4.81
                                          12032
                                                                                                    10.03
               Č
                                                                                                    10.07
10.45
7.45
7.37
                                                                                 10.47
7.71
7.71
7.67
                                                                                                                                             8.93
6.62
                                                                                                                                                                                   4.86
                                          12016
                       109.6
                                                                                                                                                                                    3.60
                         78.8
79.0
                                                                7.92
               2
                                             8648
                                                                                                                                             6.62
6.53
                                                                                                                                                                                    3.60
                                                             8.00
7.92
7.92
10.73
               122
                                             8664
                                                                                                                          6.97
                          79.0
                                             8656
                                                                                                                          6.97
                                                                                                                                             6.49
                                                                                 7.63
10.38
10.38
                          79.0
                                             8664
                                                                                                                                                                7.45
7.45
7.54
                                                                                                                          9.50
9.50
9.50
9.50
                                                                                                                                              8.89
                                                                                                     10.03
              3
3
3
3
3
3
3
                       109.6
                                           12016
                                                                                                                                             8.89
                                                                                                     10.03
                                                             10.68
10.73
10.77
14.20
                                           12000
12016
                        109.4
                                                                                                                                                                                    4.81
                       109.6
                                                                                                     10.07
                                                                                 10.47
                                                                                                                                                                                    4.81
6.55V
6.33
6.33
                                                                                 10.47
10.43
13.79
13.79
13.75
                                                                                                                                              8.93
                                                                                                                                                                 7.49
                       109.4
                                           12000
                                                                                                     10.07
                                                                                                                                          11.82
11.78
11.82
                                                                                                                                                              10.05
                                                                                                                        12.62
12.58
12.71
12.71
                                                                                                    13.32
13.28
13.45
                       146.5
146.2
                                           16064
               4
                                                                                                                                                                9.92
                                           16024
                                                              14.12
                                                                                                                                                              10.01
                                                              14.24
14.20
                      146.5
146.7
                                           16072
                                                                                                                                           11.82
                                                                                                                                                              10.01
                                                                                                     13.41
                                           16080
                                                                Temp:
Df1 Df2
15.54 14.35
15.38 14.13
15.71 14.52
                                                                                                                                   Air: 65
6 11.60
                                                                                                                                                             PvT: 66
                                          Lane:J2
lbf
                                                                                                             J/C:
  Stn: 90
                                                                                                 Df3
13.67
13.41
13.84
                                                                                                                        Df4
12.86
12.41
                                                                                                                                                                 Df6
9.70
                                                                                                                                                                                 Df7
  Sto Hgt
                      psi
107.8
                                                                                                                                                                                    6.42
                                                             15.54
15.38
15.71
                                          11816
                                                                                                                                           11.38
11.78
8.85
8.93
                                                                                                                                                                                    6.16
                                                                                                                                                                 9.49
                       108.4
                                           11888
                                                                                                                        12.41
12.83
9.67
9.71
9.62
9.62
                                                                                                                                                                 9.83
                2
                                           11912
                                                                                                                                                                 7.41
                                                                                                                                                                                    4.90
                                             8552
8576
8552
8544
                                                             11.90
                                                                                                     10.41
                                                                                  10.90
                          78.0
                                                                                                    10.41
10.45
10.37
10.37
13.67
13.75
17.81
                                                                                                                                                                                    4.99
                                                                                                                                                                  7.49
                          78.3
78.0
77.8
                                                              11.94
                2
                                                                                  10.94
                                                                                                                                                                  7.41
                                                                                                                                                                                    4.86
                22
                                                                                  10.86
                                                                                                                                              8.80
                                                              11.86
                                                             11.86
15.58
15.67
15.71
15.71
                                                                                  10.86
14.35
14.39
                                                                                                                                                                  7.41
                                                                                                                                                                                     4.90
                                                                                                                                              8.85
                                                                                                                        12.66
12.71
12.75
12.75
16.55
                                                                                                                                                                 9.66
9.75
9.75
9.79
                        108.4
                                                                                                                                            11.60
                                           11880
                                                                                                                                            11.65
                                            11888
                        108.4
                                                                                                                                            11.69
                                                                                  14.39
                        108.3
                                           11864
                                                                                                                                            11.69
                                           11864
15856
15792
                                                                                                                                                                                     6.46
                        108.3
                                                                                  14.43
                                                                                                                                                               12.61
                                                                                                                                            15.07
                                                               20.44
                                                                                  18.66
                        144.6
                                                                                                                                                              12.61
12.56
                                                                                                                        16.63
16.51
16.67
                       144.1
144.5
                                                                                                                                           15.07
                                                              20.44
                                                                                  18.66
                                                                                                                                            15.02
                                                                                                                                                                                     8.15
                                                                                                     17.82
                                            15848
                                                               20.40
                                                                                  18.66
                                                                                                                                                                                     8.20
                                                                                                                                                               12.65
                                                                                                     17.99
                                                                                                                                          15.07
                4 144.2
                                          15816
                                                              20.49
                                                                                  18.74
                                                                                                                                   Air: 65
f4 Df5
34 9.78
                                                                                                                                                                 PvT: 65
                                                                                                                                                                                                   10:31
   Stn: 99
                                                                         Temp:
                                                                                                              J/C:
                                           Lane:J3
                                                                                                     Df3
10.75
10.71
10.71
                                                                                                                        Df4
10.34
10.26
10.30
                                                                                                                                                                 Df6
8.58
8.49
                                                                                                                                                                                      Df7
  Sto Hat
                                                                  Dfi
                                                                                    Df2
                       psi
109.1
                                                lbf
                                                                                                                                                                                     6.03
                                                                                  10.94
                                            11968
                                                              11.19
                                                              11.19
11.23
8.46
                                                                                                                                                                                     5.94
                                                                                  10.94
                                                                                                                                               9.69
                                            12040
                       109.9
                                                                                                                                                                 8.49
6.37
6.41
                                                                                                                                                                                     5.94
                                                                                                                                               9.73
7.25
                       110.0
78.7
78.8
                                            12064
                                                                                  10.94
                                                                                                                           7.68
7.73
7.73
7.68
                                                                                    8.23
8.27
8.27
8.23
                22
                                                                                                        8.01
                                              8632
                                                                                                                                               7.29
                                                                                                         8.05
                                                                  8.46
                                               8648
                                                                                                                                               7.29
7.25
                                                                                                                                                                  6.41
6.37
                        78.8
78.8
109.3
                2200000
                                               8640
                                                                  8,46
                                                                                                        8.05
                                            8640
11984
12008
                                                                  8.42
                                                                                                         8.01
                                                               11.19
11.31
11.14
                                                                                                                                                                  8.49
8.58
8.36V
                                                                                                      10.67
10.75
                                                                                                                         10.26
10.34
                                                                                                                                               9.69
9.78
                                                                                   10.99
                                                                                   11.03
                                                                                                                         10.38
10.38
13.38
13.47
13.59
                                                                                                      10.63
                                                                                                                                               9.60
                         109.4
                                             12008
                                                                                   10.90
                                                               11.35
14.70
14.79
                                                                                  11.12
14.31
14.39
14.52
                                                                                                                                                                  8.62
                                                                                                                                               9.82
                                             12008
                                                                                                      10.84
                         109.4
                                                                                                                                            12.67
12.76
12.85
12.85
                                                                                                                                                                11.09
                                                                                                                                                                                      7.76
                                                                                                      13.97
                         146.5
                                            16064
                                                                                                                                                               11.18
11.26
                                                                                                                                                                                      7.81
                         146.1
146.7
                                             16024
                                                                                                      14.05
                                                                                                                                                                                      7.89
                                                                                                      14.14
                                                               14.91
                                             16088
                 4
    * 4 146.5 16056
'ACCEPT TEST WITH VAR.
                                                                14.87
                                                                                   14.48
                                                                                                       14.14
                                          Lane: J2 Temp:
1bf Df1 Df2
11952 15.21 13.87
11984 15.12 13.70
12024 15.33 13.87
8664 11.65 10.51
                                                                                                                                 Air: 65
                                                                                                                                                                  PvT: 66
                                                                                                                                                                                                       10:34
                                                                                                               J/C:
    Stn: 107
   Sto Hgt
                                                                                                                                                                                       Df7
                                                                                                                          Df4
12.07
                                                                                                                                                                    Df6
                                                                                                           Df3
                      psi
109.0
                                                                                                                                                                                      6.07
5.99
                                                                                                      13.11
                                                                                                                                             10.98
                                                                                                                                                                   9.14
                                                                                                                                                                  9.05
                                                                                                                                           10.89
                                                                                                      12.98
13.15
                                                                                                                         11.95
                         109.3
109.7
                                                                                                                                                                                      6.07
                                                                                                                          12.07
                                                                                                                                                                   9.14
                                                                                                                                                                   6.97
                                                                                                                                                                                      4.68
                                                                                                         9.94
                                                                                                                            9.16
                                                                                                                                               8.36
```

10:34 930609 13.

File: C:\FWD\DATA\833802C2.FWD Road: MB-75 NORTHBOUND LANE, 15 MILES SOUTH OF WINNIPEG, MB. Subsection: 833802 79.0 79.0 79.0 109.3 8664 10.43 10.51 10.47 9.08 8.27 8.36 8.27 11.60 9.90 6.84 4.60 22 11.65 11.56 15.25 15.29 15.33 4.64 4.55 5.99 8656 9.98 6.93 8656 11976 9.08 9.94 13.11 6.89 3333 13.83 13.83 12.03 12.03 10.98 9.10 13.11 10.98 109.1 11960 9.05 6.03 12.12 12.12 15.32 15.32 15.37 109.0 13.20 9.18 11944 13.92 11.02 109.1 11960 13.96 17.62 $13.\overline{24}$ 11.07 9.18 6.12 19.44 11.52 11.57 7.63 7.63 16.62 13.96 145.2 15920 144.6 15864 144.6 15864 144.5 15848 17.62 17.62 16.67 16.71 16.71 19.44 14.00 19.48 13.96 7.63 11.61 11.57 4 144.5 19.44 17.62 14.00 7.68 Stn: 115 Temp: Lane:J3 J/C: Air: 65 PvT: 66 10:37 Sto Hgt C Df5 10.22 10.31 10.22 7.51 Dfi Df6 9.27 9.27 9.23 108.4 Df3 10.97 Df2 1bf Df4 Df7 10.68 10.72 10.72 7.89 11.19 11.27 11.27 11888 11.16 6.94 108.8 11928 6.81 11.20 11.01 11.20 11.20 8.27 8.36 8.36 11.33 109.1 11960 10.97 8.34 8.38 8.42 78.1 78.3 8568 8576 6.76 4.94 8.10 8.18 8.23 8.23 7.60 7.60 7.94 6.84 5.03 $\tilde{2}$ 8568 8576 78.1 5.03 8.02 6.89 2 78.3 8.42 6.93 9.36 8.02 5.07 7.69 10.40 10.27 10.31 10.31 11.31 10.85 10.68 108.6 11904 11.10 6.94 108.3 11864 6.68 10.93 9.18 11.31 11.31 14.79 14.83 14.87 14.87 109.0 10.81 9.31 9.27 11944 11.29 11.05 6.81 11.20 14.74 14.65 108.7 11920 11.05 146.1 16016 13.47 13.42 12.13 12.13 14.44 14.14 9.02 145.2 14.40 15920 14.10 8.89 145.8 145.2 15992 15920 13.51 13.51 12.22 12.22 ¥ 4 14.69 14.48 14.14 8.98 14.74 14.44 14.14 'ACCEPT TEST WITH VAR. Air: 65
Df4 Df5
13.55 12.27
13.51 12.22
13.63 12.36
10.30 9.29
10.34 9.33
10.34 9.33
13.85 12.53
13.93 12.58
14.06 12.71
18.24V 16.45V Temp:
Df1 Df2
17.43 15.77
17.55 15.77
17.76 15.94
13.49 12.06
13.45 12.06 Stn: 149 Sto Hgt PvT: 66 Df6 Lane:J2 J/C: 10:40 psi 108.3 1bf 11872 Df7 6.51 6.51 Df3 10.01 14.82 14.87 15.00 108.6 11904 109.0 78.7 79.0 78.6 78.8 11952 8632 8656 6.46 10.05 11.31 11.35 11.35 11.35 15.21 15.30 15.34 7.58 7.58 7.58 7.54 4.86 222 4.90 13.49 13.49 8608 12.06 12.11 4.86 8640 109.0 108.7 16.16 16.29 16.29 11944 18.01 10.18 11920 18.14 6.59 108.8 11928 11936 18.18 18.31 23.75V 10.22 108.8 16.46 6.68 21.24V 143.9 15784 15712 15752 19.970 16.45V 18.247 13.34 8.59 143.3 23.96 21.41 21.67 20.18 20.39 18.40 18.57 16.62 13.47 8.67 * 4 143.8 15752 * 4 143.2 15696 'ACCEPT TEST WITH VAR. 24.17 24.26 13.60 13.65 16.80 21.76 20.48 18.66 16.85 : Air: 66 Df4 Df5 10.17 9.60 Stn: 157 Lane:J3 Sto Hgt psi lbf Temp: J/C: PvT: 65 10:42 Sto Hgt Df3 10.58 10.45 10.58 Df6 8.36 8.23 8.36 psi 109.3 109.3 Df2 Df7 10.86 10.69 11992 11.06 5.86 5.68 5.77 11976 9.47 10.93 10.00 109.9 79.3 79.4 10.13 7.51 7.47 7.47 12040 11.06 10.82 9.60 8688 8712 8.21 7.84 8.01 7.07 8.17 8.21 8.01 7.80 7.07 6.15 79.1 8672 7.80 7.07 6.15 79.0 8664 8.17 7.97 7.75 7.43 7.02 6.11 109.3 109.3 10.58 10.58 10.58 8.32 8.36 8.32 8.36 11976 11.06 10.82 10.13 9.56 11976 11.10 10.86 10.17 9.60 109.4 12000 11.02 9.51 5.68 10.82 10.13 109.3 145.5 11984 11.10 10.58 10.86 10.17 9.60 5.81 15952 15936 14.58 14.54 14.58 13.34 13.25 13.38 14.22 13.92 12.58 12.58 11.00 145.4 14.18 13.88 10.96 145.4 15944 13.92 12.62 11.05 14.26

13.97

13.47

12.67

14.31

11.05

145.4

15928

14.62

10:45

10:43 930609 File: C:\FWD\DATA\833802C2.FWD Road: MB-75 NORTHBOUND LANE, 15 MILES SOUTH OF WINNIPEG, MB. Subsection: 833802 Temp: Air: 66 PvT: 66 J/C: Lane: J2 Stn: 167 Df3 18.64 17.78 Sto Hgt Df4 Df6 Dfi psi 106.4 lbf 15.20 12.22 16.93 11664 22.16 19.78 14.49 21.16 16.08 106.5 11680 18.87 14.62 ō 11736 19.05

Df7 7.63 7.24 11.65 11.78 8.92 17.70 17.91 13.58 13.58 13.58 17.78 17.78 16.25 12.33 12.33 12.33 7.33 5.55 5.55 5.51 107.0 77.2 77.2 21.32 16.26 14.43 11.07 8464 2 11.11 8.92 16.26 2 8472 14.43 8.92 77.4 77.2 11.07 22 8480 14.43 16.26 8.88 11.70 11.78 5.51 11.07 14.43 8464 16.17 14.58 14.71 16.17 106.5 11680 21.28 18.96 3333 21.28 21.45 21.53 21.58 27.57V 27.82 27.94 7.33 106.8 16.29 16.38 19.09 11704 7.37 19.22 19.22 11.87 14.76 18.04 11688 18.04 18.08 23.05V 23.26 23.39 23.52 14.80 11.91 7.42 16.38 106.8 11704 18.85 19.02 142.9 142.2 142.0 15.21 15672 15584 15568 15568 24.56V 24.73 9.41 20.94V 15.34 15.38 15.47 9.50 21.11 21.23 21.36 9.50 9.59 19.07 24.91 * 4 142.0 19.20 28.11 25.08 ¥ 4 'ACCEPT TEST WITH VAR.

Air: 67 4 Df5 9.07 PvT: 66 Df6 7.93 10:48 Temp: Lane:J3 J/C: Stn: 174 Df4 9.58 9.50 9.50 7.09 7.01 Df1 Df2 10.43 10.21 10.35 10.13 10.35 10.17 7.79 7.58 7.67 7.45 Df7 Df3 Sto Hgt psi 108.6 5.64 10.03 11904 5.51 5.51 4.12 10.13 10.17 7.58 7.545 7.54 10.21 7.84 7.84 8.93 109.1 11968 9.90 9.41 7.33 7.79 9.90 8.98 6.71 Č 109.1 11968 5.89 22 8616 8624 78.6 6.58 4.03 78.7 78.4 78.6 6.62 7.05 7.09 5.81 4.08 7.67 12200000 8592 5.85 7.88 4.12 8616 5.55 10.39 10.35 10.35 10.35 13.70 13.74 13.74 9.54 8.98 109.6 12016 7.80 7.88 9.90 9.98 9.90 9.46 9.54 9.50 8.93 12008 10.08 109.6 8.98 8.98 109.3 109.3 147.2 10.21 11984 7.84 11976 10.17 12.54 12.50 12.54 12.50 10.35 10.31 10.31 11.82 11.78 13.07 13.02 13.07 13.07 7.24 4 16144 16072 13.40 13.31 13.36 13.36 7.16 146.7 ¥ 4 146.2 146.7 11.82 7.2416032 4 10.31 7.20 11.78 16072 Air: 67 PvT: 66 10:51 Lane:J2 Stn: 207 Temp: J/C: Df3 12.60 12.34 12.34 9.55 9.55 9.55 Df1 14.83 14.50 Df2 13.36 13.01 12.97 Df6 Df7 Df4 Sto Hat psi 108.3 108.3 11.48 11.27 11.27 8.70 8.74 8.74 10.45 10.22 10.22 5.64 8.58 8.40 11880 5.55 5.55 4.25 č 11880 8.40 14.45 11.23 108.1 11864 6.50 6.50 7.91 7.91 78.3 78.1 SCHONOSO 8576 10.04 4.2911.27 8560 10.04 7.91 7.82 4.29 6.50 78.4 78.0 8592 11.23 10.08 8.65 11.31 11.31 4.21 6.41 8552 11.19 10.00 11.19 14.50 14.54 14.58 14.54 18.52 18.43 18.56 9.47 12.38 12.38 12.38 12.34 15.72 15.77 10.27 8.45 11888 13.06 108.4 5.55 5.55 5.51 10.27 8.40 11896 13.10 108.6 10.31 11.31 11.27 8.40 11936 11920 13.10 108.8 8.40 10.74 10.74 13.06 10.22 108.7 13.07 6.98 144.9 15888 15824 16.68 14.44 4 6.94 16.59 14.44 14.39 13.07 144.3 ¥ 4 6.94 13.07 144.5 15840 16.68 10.83 13.16 7.03 16.63 15.85 14.48 144.2 15808

PvT: 66 10:54 Air: 67 Temp: J/C: Stn: 215 Lane: J3 Df155 9.551 9.559 7.25 7.26 Df3 9.25 9.17 9.25 9.25 6.98 6.90 lbf 11992 Df4 Df5 Df6 Df7 Df2 Sto Hgt psi 109.4 109.3 7.32 7.55 5.55 5.55 5.55 5.29 5.25 9.48 9.39 9.48 7.07 8.49 8.40 8.86 8.82 Ĉ 11984 8.82 6.63 5.29 109.4 78.7 79.0 8.45 Č 11992 6.31 6.27 6.31 6.22 3.99 22 8632 8656 3.95 6.63 7.07 3.95 6.63 6.59 223 79.0 8664 7.02 6.90 3.95 7.02 6.86 78.8 8648 8.53 8.45 9.30 9.25 9.25 9.30 7.49 7.41 5.34 8.95 109.8 12016 9.64 9.52 5.29 109.6 109.3 109.4 146.7 12008 9.68 9.48 8.86 7.41 7.41 9.79 8.86 8.40 11992 9.64 9.44 5.34 8.91 11.74 8.45 9.68 9.48 11992 6.90 12.65 11.16 12.41 12.17 16080 6.94 11.07 12.12 146.2 12.69 12.45 11.69 16032

File: C:\FWD\DATA\833802C2.FWD Road: MB-75 NORTHBOUND LANE, 15 MILES SOUTH OF WINNIPEG, MB. Subsection: 833802

		010 0	00002								
*	4 4	146.1 146.5	16016 16056	12.65 12.78	12.41 12.62	12.12 12.30	11.69 11.86	11.11 11.29	9.79 9.92	6.94 7.11V	,
* * * * * * * * * * * * * * * * * * * *	: HGCCCAAAAAAA	24 109.6 108.7 78.1 78.3 78.3 78.3 108.4 108.3 108.3 145.7 145.4 145.4 145.4	Lane: 1bf 11944 11896 11920 8560 8576 8544 8584 11880 11872 11920 15968 15976 15928	J2 T. Df1 13.45 13.03 12.68 9.76 9.83 13.07 13.11 17.22 17.13 17.09	Df2 12.06 11.68 11.68 8.57 8.66 8.70 11.68 11.72 15.43 15.30 15.34	J/6 Df3 11.44 11.10 11.05 8.18 8.27 11.14 11.10 11.14 11.15 14.57 14.57	Df4 10.38 10.09 10.09 7.47 7.47 7.51 10.09 10.13 10.13 13.30 13.21 13.25	Air: 675 9.46 9.116 9.166.760 6.80 9.16 9.20 12.05 12.00	PvT: Df17177.445 77.445 5.555 5.555 77.58 77.58 9.79 9.79	67 Df7 4.94 4.81 3.60 3.60 4.77 4.81 6.29 6.20	10:57
Stn Sto	: 23 Hgt	78.4 108.3 108.3 108.3 108.3 78.4 78.4 108.6 108.7 145.7 145.7	Lane:J lbf	Te Df15 10.359 10.391 77.717 10.3315 10.3556 10.35566	mp: Df26 10.26 10.26 10.17 7.554 7.554 10.13 10.13 13.23 13.36	J/C Df3 10.07 10.07 9.237 7.41 7.33 9.98	Df4 9.67 9.71 9.758 7.015 7.013 7.018 9.558	Air: 67	PvT: Df6 8.10 8.10 8.05 5.89 5.85 7.97	66 Df738 55.660 44.168 4.1055555 55.5555 77.224	10:59
		559 									
* * * * * * * * * * * * * * * * * * * *	^N NNNNNN4444	76.8 777.0 106.8 106.7 106.5 142.3 141.3 141.6	Lane: J 1bf 11632 11616 11680 8456 8424 8432 11720 11688 11696 11680 15608 15520 ITH VAR	17.76 17.68 17.72 23.63 23.67 23.84 30.54 30.74	15.86	14 01	13.59 13.55 13.59 18.11 18.15 18.24 18.36	ir: 68 Df5 16.13 16.13 12.31 12.27 12.27 12.27 16.36 16.45 16.58 21.00 21.42 21.42	PvT: Df6 13.04 13.00 13.17 9.88 9.79 9.83 13.26 13.26 13.43 16.90V 17.11 17.24	65 Df7 8.20 8.11 8.24 6.20 6.16 5.99 6.12 8.28 8.41 10.54 10.67 10.80 10.76	11:03
Stn: Sto * * * *	273 Hgt CCC2223	79.0 79.0 79.0 79.0 79.0 79.0 79.0	Lane: J3 1bf 12016 12064 11968 8664 8656 8656 8664 12000	3 Ten Df1 10.73 10.68 10.60 7.92 7.96 7.92 7.88 10.64	Df2 10.51 10.47 10.43 7.71 7.76 7.76 7.71	J/C: Df3 10.28 10.20 10.15 7.54 7.58 7.54 7.54 10.15	9.79 9.75 9.71 7.22 7.22 7.22 7.22 9.71	ir: 68 Df5 9.29 9.20 9.16 6.85 6.85 9.20	PvT: Df6 8.14 8.06 8.01 5.98 6.02 6.02 5.98 8.06	5.86 5.77 5.73 4.29 4.29 4.29 5.77	11:05

File: C:\FWD\DATA\833802C2.FWD
Road: MB-75 NORTHBOUND LANE, 15 MILES SOUTH OF WINNIPEG, MB. Subsection: 833802 5.77 5.81 5.77 7.59 7.55 9.75 9.75 9.75 12.83 12.79 9.25 9.25 9.20 10.43 10.47 10.20 10.24109.4 10.73 10.77 8.10 12008 8.10 12016 109.6 10.47 10.47 13.75 13.75 13.75 13.83 10.20 109.8 8.06 12008 10.73 13.41 13.32 13.37 13.50 12.13 12.09 10.61 10.57 146.1 14.16 16024 145.5 145.5 4 15960 14.08 10.57 15960 12.09 14.08 12.88 12.13 10.66 ¥ 146.4 16056 14.16 Air: 68 4 Df5 5 10.85 2 10.67 PvT: 67 11:09 Stn: 301 Temp: Lane: J2 J/C: 1bf 11752 11784 11792 Df1 Df2 Df3 5.29 13.79 13.02 5.12 13.57 12.94 5.42 13.75 13.02 Df4 11.95 Df6 Df7 Sto Hat psi 107.1 107.5 Df3 15.29 15.12 15.42 8.97 6.03 11.82 8.88 5.90 107.5 107.5 77.7 77.4 77.8 77.5 107.4 11.95 9.20 8.95 10.80 8.97 6.97V 5.99 4.73V 8520 8488 8528 11.90 10.07 8.40V 10.64 11.90 11.65 11.73 11.73 15.446 15.594 19.886 19.886 6.67 10.38 9.81 8.09 6.72 6.72 8.92 8.92 9.03 9.03 11.95 8.13 10.43 9.85 10.47 13.79 13.79 8496 11776 11816 9.90 8.18 4.51 5.99 13.07 10.80 5.90 13.02 11.90 10.80 13.07 13.07 16.75 16.71 16.79 11.95 11.95 15.32 15.24 15.28 107.7 107.5 13.83 13.83 17.75 11816 10.80 8.92 5.94 5.94 7.72 7.59 8.92 11.52 11792 15568 10.80 13.87 13.78 13.87 141.9 11.44 11.52 11.52 4 141.6 4 141.4 4 142.2 17.62 17.71 15528 7.68 15512 15584 * 17.84 19.98 16.88 13.91 'ACCEPT TEST WITH VAR. 3 Temp: J/C: Air: 68 PvT: 67
Df1 Df2 Df3 Df4 Df5 Df6 Df7
10.01 9.78 9.55 9.20 8.67 7.54 5.38
10.10 9.78 9.55 9.16 8.71 7.62 5.38
9.93 9.69 9.47 9.08 8.58 7.49 5.29 Stn: 306 Lane:J3 Sto Hat C C psi lbf 109.6 12008 109.7 12024 5.38 5.38 5.29 4.21V 4.38V 9.93 7.62V 7.58V 7.21V 7.37 109.3 11976 7.45V 7.41V 7.02V 7.20 9.74 7.28V 7.28V 6.86V 78.8 78.6 78.7 6.97V 7.01V 6.62V 8640 5.81V 6.62V 5.857 ¥ 8616 5.33V 5.59 7.58 7.58 7.45 6.50V 6.71 3.64V 8632 6.18V 78.8 7.03 6.40 4.03 8640 9.51 9.55 9.16 9.20 8.62 12008 109.6 9.74 9.82 9.65 9.78 12.93 12.93 12.97 5.42 109.4 109.7 11992 12024 8.71 10.05 9.43 8.53 8.62 9.03 9.89 10.01 13.28 13.24 13.28 13.36 109.4 9.12 11992 12.64 12.60 147.1 16120 12.07 11.42 9.96 7.03 12.07 11.42 9.92 6.94 ¥ 146.7 16088 6.98 12.60 12.07 11.38 9.96 4 147.0 16120 12.12 11.47 12.68 10.01 146.8 16104 * 4 'ACCEPT TEST WITH VAR. PvT: 68 Df6 1 8.79 5 Stn: 314 Lane:J2 Temp: J/C: Air: 68
Sto Hgt psi lbf Df1 Df2 Df3 Df4 Df5
C 108.3 11872 14.96 13.49 12.72 11.69 10.62
C 108.3 11864 14.66 13.23 12.51 11.44 10.45
C 108.6 11904 14.70 13.27 12.51 11.48 10.45
* 2 78.4 8600 11.52 10.30 9.68 8.91 8.09
* 2 78.1 8568 11.44 10.26 9.64 8.86 8.05
* 2 78.3 8578 11.44 10.30 9.73 8.91 8.09 11:15 Df7 5.81 8.62 5.68 5.68 8.62 6.67 4.42 78.1 78.3 8568 8576 9.64 9.73 8.86 6.63 4.34 8.09 6.67 10.30 11.44 8.91 11.52 11.57 11.57 78.1 108.7 10.30 13.31 13.31 13.36 13.31 6.67 8.71 8568 11.44 14.79 9.68 8.09 12.60 12.60 10.53 11912 8.66 8.71 8.66 108.4 108.7 10.49 11896 14.83 12.64 12.55 15.94 15.94 15.98 15.98 10.53 11912 14.83 14.83 18.77 18.77 18.81 11856 108.1 10.49 5.73 13.29 13.29 13.38 13.33 7.20 7.24 10.96 144.6 16.85 14.61 15856 144.6 144.2 15848 15816 16.89 16.93 14.61 10.96 14.69 11.05 15800 10.96 144.1 14.65 18.81 16.89 Temp: Df1 Df2 a 80 9.52 Stn: 319 J/C: Df3 Air: 68 PvT: 68 11:17 Lane:J3 lbf Df7 Sto Hat Df4 Df5 Df6 psi 109.3 11984 9.80 9.76 9.25 9.17 8.78 8.70 6.93 9.52 8.18 4.64 8.18 6.89 4.64

109.4

12000

9.48

11:17 930609

File: C:\FWD\DATA\833802C2.FWD
Road: MB-75 NORTHBOUND LANE, 15 MILES SOUTH OF WINNIPEG, MB. Subsection: 833802

C 109.1 11960 9.89 9.52 9.25 8.78 8.22 6.

* 2 78.3 8576 7.42 7.11 6.94 6.59 6.13 5.

* 2 78.3 8576 7.29 6.98 6.81 6.46 6.00 5.

109.1 78.3 78.3 78.3 78.3 109.3 109.7 109.4 146.4 9.429 7.233 7.337 9.85 9.83 9.83 6.93 5.16 5.24 5.29 6.99 6.02 4.68 3.56 3.47 3.51 3.56 4.64 8.22 6.13 6.00 6.09 8.78 6.59 6.54 6.54 8.74 8.74 8.72 11.57 11.57 C222220000004 9.52 7.18 7.07 9.57 9.57 9.57 12.58 12.62 9.041 9.099 9.099 9.099 9.099 9.099 122 123 122 123 8576 8576 8592 8576 11976 11920 12016 6.09 8.18 8.13 8.22 8.22 4.64 4.68 6.03 6.03 6.03 13.03 13.07 13.11 13.15 9.14 9.14 9.14 16088 10.80 10.80 10.85 146.4 146.4 146.2 16040 16040 9.18 4 16024 6.07

Error: 532

Error: 532

	: 36		Lane: J	2 Te	mp:	J/C		ir: 69	PvT:		11:22
Sto			lbf	Df1	Df2	DfЗ	Df4	Df5	Df6	Df7	
	C	108.6	11896	12.36	11.25	10.67	9.79	8.98	7.54	5.16	
	С	109.0	11952	12.44	11.33	10.71	9.84	9.02	7.54	5.16	
	C	108.6	11904	12.44	11.33	10.71	9.84	9.02	7.54	5.20	
*	2	78.3	8576	9.38	8.53	8.05	7.39	6.80	5.72	3.95	
*	2	78.3	8576	9.30	8.45	8.01	7.35	6.76	5.68	3.90	
¥	2	78.3	8576	9.34	8.49	8.05	7.39	6.80	5.72	3.95	
*	2	78.1	8568	9.30	8.40	8.01	7.35	6.76	5.68	3.90	
*	3	108.8	11928	12.53	11.42	10.80	9.88	9.07	7.62	5.25	
*	3	108.6	11904	12.48	11.33	10.75	9.88	9.07	7.58	5.20	
*	3	108.6	11904	12.57	11.42	10.80	9.92	9.07	7.58	5.25	
*	3	107.8	11824	12.44	11.29	10.71	9.84	8.98	7.54	5.16	
*	4	146.1	16016	16.51	14.95	14.14	13.00	11.87	9.92	6.77	
*	4	145.4	15936	16.55	14.91	14.14	13.04	11.87	9.92	6.77	
*	4	145.4	15936	16.55	14.95	14.18	13.04	11.91	9.92	6.77	
*	4	145.4	15936	16.55	14.95	14.18	13.04	11.91	9.96	6.77	

Stn		6	Lane:J	3 Te	mp:	J/C	: A	ir: 71		69	11:28
Sto	Hgt	psi	lbf	Df1	Df2	Df3	Df4	Df5	Df6	Df7	
	C	110.1	12080	9.76	9.48	9.25	8.82	8.31	7.19	4.94	
	С	110.1	12080	9.68	9.39	9.17	8.74	8.22	7.06	4.86	
	С	109.4	12008	9.68	9.39	9.21	8.78	8.27	7.06	4.86	
¥	2	79.1	8672	7.16	6.94	6.77	6.42	6.09	5.24	3.60	
*	2	78.8	8648	7.21	6.98	6.81	6.46	6.13	5.29	3.64	
*	2	79.0	8656	7.16	6.94	6.73	6.42	6.04	5.24	3.60	
*	2	79.0	8656	7.12	6.94	6.73	6.42	6.09	5.20	3.56	
*	3	109.6	12008	9.64	9.39	9.13	8.74	8.22	7.06	4.86	
*	3	110.0	12064	9.64	9.35	9.08	8.70	8.18	7.02	4.77	
*	3	109.6	12008	9.59	9.31	9.13	8.70	8.13	7.02	4.81	
*	3	109.4	12008	9.59	9.35	9.13	8.70	8.18	7.02	4.81	
*	4	147.4	16160	12.78	12.41	12.04	11.52	10.80	9.27	6.25	
*	4	146.7	16080	12.78	12.41	12.08	11.52	10.85	9.31	6.29	
*	4	147.1	16120	12.86	12.50	12.12	11.65	10.89	9.40	6.38	
*	4	147.0	16112	12.90	12.54	12.21	11.65	10.98	9.40	6.38	

	4	147.0	16112	12.90	12.54	12.21	11.65	10.98	9.40	6.38		
	: 37: Hgt	· .	Lane:J		mp:			ir: 71		69	11:30	_
560	C	109.6	1bf 12008	Df1 11.98	Df2 10.99	Df3 10.41	Df4 9.67	Df5 8.89	Df6 7.41	Df7 5.12		
	CC	110.1 110.4	12072 12104	11.27 11.27	10.34 10.34	9.81 9.85	9.12 9.12	8.40 8.40	7.02 7.02	4.81 4.81		
*	2 2	79.4 79.3	8704 8 68 8	8.30 8.30	7.63 7.58	7.24 7.20	6.71 6.71	6.18 6.18	5.20 5.20	3.60 3.60		
*	2	79.3	පිරිපිපි	8.30	7.58	7.15	6.71	6.13	5.20	3.60		
*	23	79.0 110.0	8664 12056	8.25 11.31	7.58 10.38	7.15 9.90	6.71 9.20	6.13 8.49	5.20 7.15	3.60 5.03		
*	3 3	109.4 109.9	12000 12040	11.40 11.35	10.47 10.43	9.94 9.85	9.24 9.16	8.49 8.40	7.19 7.06	4.99 4.90		
*	3	110.3 146.4	12088 16048	11.35	10.43	9.85	9.16	8.45	7.06	4.86		
*	4	146.2	16032	15.29 15.29	13.96 13.87	13.24 13.20	12.24 12.16	$\frac{11.25}{11.20}$	9.40 9.31	6.42 6.38		
*	4	146.2	16032	15, 25	13.87	13.15	12.16	11.11	9.31	6.38		

11:30 930609 18.

File: C:\FWD\DATA\833802C2.FWD Road: MB-75 NORTHBOUND LANE, 15 MILES SOUTH OF WINNIPEG, MB. Subsection: 833802

*	4	146.1	16024	15.29	13.92	13.15	12.20	11.16	9.36	6.46	
* * * * * * * * * * * * * * * * * * * *)))))))))))))))))))	109.6 109.9 78.7 79.0 109.6 109.4 109.4 147.8 147.8 147.8	12016 12040 8632 8632 8664 8654 12016 12008 12000 16152 16192 16200 16176	9966669992228222 1223333 12223333	596.666.699.9948 111.99	8.57 8.57 8.51 6.47 6.47 8.87 8.87 8.83 11.70 11.70	8.15 8.44 6.21 6.21 8.44 8.44 11.19 11.14	7.96 5.87 5.82 7.996 10.49 10.49 10.49	58117333409945555 585555566689999	4.34 4.751 3.51 3.51 4.60 4.60 4.68	11:32
Sto * * * * * * * * * * * * * * * * * * *	41t 490000000000000044444	8 psi 109.3 109.9 110.1 80.3 80.3 110.0 109.6 109.3 109.0 144.3 144.8	Lane:J 1bf 11984 12040 12080 3808 8800 8800 8736 12064 11976 11952 15840 15832 15872 15880	Tender of the control	mp: Df2 11.55 11.07 11.07 6.23 8.14 8.23 11.107 11.07 11.07 14.82 14.82 14.82	J/C Df3 11.01 10.54 10.50 7.88 7.84 7.89 10.55 10.55 10.54 14.10 14.10 14.10	Df47 10.755 10.755 22.269 7.755 13.004 13.000	09 0f538 0f388 0f388 0f388 0f398 0f398 0f398 0f3996 0f396 0f	PVf64493355349996666 77755555777799999	72 Df.11066266722277777 55.03333555566666	11:35
Sto: * * * * * * * * * * * * * * * * * * *	42 U~+	4	Lane:J	3 Te	mp;	JYC	: 70/A	01: 69 Df5 8.40 8.27 6.00 6.04 6.09 6.36 8.31 10.98 11.02 11.07 11.02	PvT: Df6 7.10 7.106 5.120 5.20 5.215 7.10 7.10 9.40 9.40 9.40	4.77 3.60 3.56 3.60 3.51	11:38
Sto * * * * * * * * * * * * * * * * * * *		psi 109.0 108.7 108.7 77.7 78.1 78.0 108.7 108.8 108.6 108.6	Lane: J 1bf 11944 11920 8520 8560 8544 8552 11912 11936 11904 11896	2 Te Df1 11.27 10.98 10.98 8.21 8.21 8.25 8.21 11.10 11.10 11.10 11.19 14.87	Df2 10.47 10.21 10.17 7.54 7.58 7.63 10.30 10.30 10.30 10.34 13.66	J/C Df3 9.98 9.77 9.73 7.24 7.20 7.25 9.85 9.85 9.85	Df49 9.29 9.08 6.75 6.71 6.80 9.16 9.16 9.16	r: 69 Df5 8.58 8.45 8.27 6.22 6.22 6.22 8.49 8.45 8.45	PVT: D166 7.106 5.224 5.234 5.215 7.115 7.110 7.15	70 Df7 5.030 4.866 3.664 33.660 4.96 4.96 4.90 6.42	11:41

File: C:\FWD\DATA\833802C2.FWD
Road: MB-75 NORTHBOUND LANE, 15 MILES SOUTH OF WINNIPEG, MB.

Subs	sect	ion: 83	3802	in nuite,	I I IIIL	120 0001	.n or wi		1112.		
* * *	4 4 4	145.7 145.5 145.5	15968 15952 15960	14.83 14.87 14.91	13.62 13.70 13.75	12.98 13.07 13.07	12.07 12.12 12.12	11.16 11.11 11.20	9.36 9.36 9.40	6.42 6.38 6.42	
Sto * * * * * * * * * * * * * * * * * * *	##CCCANNAMMMM4444	5 psi 109.1 109.0 108.6 78.1 77.7 78.1 109.0 108.6 108.4 108.4 146.2 146.1	Lane: J 1bf 11960 11960 11896 8576 8520 8520 8560 11952 11904 11888 11896 16048 16032 16016	Tentral Tentra	9.1339885999.1099.1099.10999.1099999999999999999	J/C Df3 8.95 8.95 8.87 6.51 6.43 8.83 8.83 11.78 11.78 11.78	Df47 8.57 8.538 8.533 6.229 8.553 8.553 8.576 11.440	70 Df5 8.09 8.05 5.96 5.91 5.891 8.00 8.009 10.71 10.71	PYD973440 66.9992260 66.9992277777 66.9999999999999999999999999999999	70 Df714.817066741.333.44.777790095	11:43
Stn Sto * * * * * * * * * * * * * * * * * * *	4gCCC2222333344444	9 psi 107.4 107.5 107.5 77.5 77.7 77.7 107.1 107.1 107.1 144.6 143.9 144.1	Lane:J 11776 11776 11784 11792 8504 8512 8512 8512 11760 11744 11736 11752 15792 15856 15784	10.47 10.52 14.03 14.08 14.08	10.34 10.34 13.66 13.79 13.79 13.75	J/C Df3 10.28 10.15 9.94 7.50 7.50 7.41 10.07 10.11 10.11 13.32 13.41 13.41	Df4 9.84 9.75 9.54 7.18 7.18 7.13 9.62 9.67 9.67 12.88 12.88	0: 72 0: 33 9: 33 9: 20 8: 98 6: 80 6: 80 6: 71 9: 11 9: 11 12: 09 12: 18 12: 18	PvT: Df6 8.26 7.02 5.98 5.99 5.99 10.66 10.66 10.66	74 Df7 5.86 5.77 5.51 4.29 4.29 4.21 5.68 5.68 7.59 7.59 7.59	11:50
Stn: Sto	47. HgCCC22223	8 psi 106.2 106.2 106.5 76.8 76.2 77.2 106.7	Lane: J 1bf 11648 11648 11672 8416 8352 8464 8432 11704	2 Te Df1 17.47 17.26 17.34 13.20 13.15 13.24 13.24	mp: Df2 15.64 15.43 15.51 11.76 11.85 11.76 15.68	J/C Df3 14.70 14.48 14.57 11.10 11.05 11.14 11.10	Df4 13.42 13.21 13.30 10.09 10.05 10.17 10.13 13.42	ir: 73 Df5 12.18 11.96 12.00 9.16 9.11 9.20 9.11 12.13	PvT: Df6 9.96 9.75 9.83 7.49 7.45 7.45 9.88	72 Df7 6.59 6.38 6.42 4.90 4.94 4.90 6.51	11:52

11:52 930609 20.

File: C:\FWD\DATA\833802C2.FWD Road: MB-75 NORTHBOUND LANE, 15 MILES SOUTH OF WINNIPEG, MB. Subsection: 833802 17.55 17.55 17.55 22.33 22.58 22.58 15.68 15.64 15.68 19.95 9.92 9.88 106.2 11656 14.74 14.74 6.51 13.47 12.18 106.1 12.13 12.13 13.42 13.42 6.46 11624 14.74 18.72 18.94 9.92 106.2 11656 6.46 17.10 17.27 17.31 12.61 12.78 12.74 15.47 15.65 15.65 142.9 8.24 15664 15760 143.8 20.12 8.41 143.6 15744 20.12 18.89 8.28 143.6 22.66 15752 20.21 19.02 17.35 12.82 8.37 Stn: 484 Temp: PvT: 71 Lane: J3 J/C: Air: 74 11:55 Df3 9.81 9.73 Sto Hgt Df1 10.22 Df5 Df7 5.77 lbf Df2 Df6 psi 108.6 Df4 9.41 9.37 9.29 7.84 11904 10.04 8.89 108.4 11888 10.14 9.95 8.80 5.68 10.14 7.58 7.50 108.1 8.71 6.53 7.67 5.76 9.91 9.68 5.60 11864 8528 8536 7.37 7.33 7.37 7.28 7.20 6.92 4.25 77.8 77.7 77.7 6.49 6.84 7.15 5.68 4.16 8520 7.58 6.88 5.72 4.21 7.20 6.49 5.68 7.80 8520 7.46 6.84 7.11 6.44 11920 108.7 10.22 10.04 9.81 8.89 5.77 9.41 11832 10.18 108.0 9.77 7.84 5.81 10.04 9.41 8.89 108.1 11856 10.05 9.64 8.71 8.76 7.67 7.71 9.87 9.24 5.60 11816 9.29 12.33 107.7 9.91 10.10 9.68 13.45 13.57 13.57 13.57 146.5 13.14 16056 12.85 11.65 10.27 13.27 13.31 13.36 12.45 12.50 12.54 147.1 12.94 12.98 11.73 11.82 16136 10.31 147.5 147.1 16168 10.40 12.98 16136 11.82 'ACCEPT TEST WITH VAR. Stn: 501 Sto Hgt Lane:J2 lbf Temp: Air: 75 4 Df5 4 10.67 J/C: 11:57 PvT: 69 Df2 13.53 Df3 12.85 psi lbf 107.8 11824 108.4 11888 Df4 Df6 Df7 15.04 13.32 13.24 9.55 9.59 9.59 9.55 13.28 8.84 7.93 7.93 11.74 10.51 5.64 12.11 11.48 9.60 5.07 108.4 11888 9.56 6.85 5.07 11.98 11.44 10.47 8.18 8.31 8.27 8.27 5.68 5.81 5.72 5.72 78.1 78.7 8.62 8568 7.51 3.69 8624 8672 7.60 7.56 7.56 8.66 6.98 79.1 3.69 8.66 6.93 79.1 6.93 3.69 8672 8.66 109.3 11984 11.98 11.57 10.60 9.69 8.06 108.6 11896 13.11 11.85 11.44 10.47 9.60 7.93 5.03 108.0 13.07 11.40 7.93 5.03 11840 11.85 10.43 9.56 13.11 17.85 11.40 15.34 15.38 15.21 15.34 108.3 11880 5.07 6.72 11.85 9.56 7.93 10.47 15744 15864 16.03 143.6 14.10 12.80 10.61 144.6 17.85 17.76 12.85 12.76 16.03 6.64 14.10 10.66 143.6 15744 15.94 14.01 10.53 6.64 144.8 15872 17.81 16.07 12.85 10.66 14.10 6.64 Stn: 509 Air: 74 Lane:J3 lbf Temp: PvT: J/C: 12:00 Dfi 9.55 9.43 Df3 9.25 9.21 Sto Hgt psi 108.8 108.8 Df2 Df4 8.91 Df5 8.45 Df6 Df7 5.25 7.45 11936 9.44 7.36 7.36 5.37 5.50 9.35 9.35 6.89 11936 5.16 8.82 8.40 9.43 7.08 7.12 9.17 6.73 6.81 108.8 79.0 8.78 11936 8.40 5.12 6.09 3.82 8656 6.46 78.8 78.7 222 6.98 6.54 6.54 8648 6.22 6.77 7.12 7.12 8632 5.46 6.94 6.18 3.86 5.42 7.36 7.32 7.32 7.41 78.8 6.94 9.35 9.39 9.31 8640 6.50 8.78 8.78 6.18 108.8 9.43 9.43 5.20 11936 9.21 8.40 108.6 11904 9.17 8.40 108.6 9.43 9.51 9.17 9.25 8.36 8.49 11904 8.78 5.12 8.91 108.7 11912 12.45 12.50 12.45 12.65 12.69 12.65 12.21 12.25 12.25 9.79 145.2 15920 11.20 11.74 6.90 146.5 11.78 11.74 6.90 16064 11.20 9.88 146.1 16024 9.83 6.85 11.16 146.4 12.82 12.58 12.34 16040 11.86 11.33 9.96 Error: 559 Air: 74 Df5 8.80 8.80 Stn: 519 Lane:J2 lbf 11912 Stn. C. J/C: Df3 PvT: 73 12:02 Df1 12.02 Df4 9.58 9.58 psi 108.7 108.7 108.3 Df6 7.32 7.32 7.32 Df2 Df7 10.41 10.94 4.94 11920 12.02 10.94 4.94 11872

11.98

10.94

10.37

9.58

8.80

4.90

12:02 930609 21.

File: C:\FWD\DATA\833802C2.FWD Road: MB-75 NORTHBOUND LANE, 15 MILES SOUTH OF WINNIPEG, MB. Subsection: 833802

* * * * * * * * * * * * * * * * * * * *	² 22233334444	77.7 78.3 78.3 78.3 109.0 108.6 108.4 145.4 145.8 145.8	8528 8584 8576 8584 11952 11896 11888 11880 15936 15984 15984 16000	8.76 8.88 8.84 12.11 11.98 12.07 12.11 16.13 16.00 16.00	8.01 8.14 8.06 10.99 10.94 10.99 14.69 14.61	7.63 7.71 7.71 7.67 10.41 10.37 10.37 10.45 13.88 13.84 13.84	7.05 7.13 7.13 7.05 9.62 9.58 9.62 12.75 12.75	6.49 6.58 6.58 6.35 8.85 8.85 11.69 11.69	5.37 5.46 5.42 5.42 7.22 7.28 7.37 9.66 9.66	3.64 3.73 3.64 4.94 4.99 4.99 6.46 6.42	
Stn: Sto	# # # # # # # # # # # # # # # # # # #	6 psi 108.7 108.6 107.8 77.8 77.7 77.7 77.7 108.8 107.7 107.5 146.1 147.0 146.2 146.2 146.2	Lane: J 1bf 11920 11904 11824 8528 8520 8512 8528 11904 11824 11808 11784 16016 16112 16040 16040	Te Df1 10.10 10.01 10.01 7.42 7.50 7.42 7.50 10.01 9.97 10.05 10.01 13.15 13.24 13.20 13.28	mp: Df2 10.00 9.82 9.87 7.24 7.28 7.20 7.28 9.87 9.82 9.82 12.93 13.01 12.97 13.01	J/C Df3 9.73 9.60 9.68 7.11 7.15 7.15 9.60 9.64 12.72 12.77	D 147 99.244 99.284 99.284 66.888 99.329 12.338 12.28	11.65 11.65 11.65		75 Df7 55.471 4.122 4.127 55.421 77.224 77.244	12:04

22. 12:07 930609

File: C:\FWD\DATA\833802C3.FWD Road: MB-75 NORTHBOUND LANE, 15 MILES SOUTH OF WINNIPEG, MB. Subsection: 833802

FWD S/N: 8002-063 Operator ID: WOREL, BENJAMIN J.

Stationing...: Feet

EXTRA TESTS FOR SMP

Diameter of Plate: 11.8 Deflector distances: 12 12 18 24 36 60

SHRP TESTING - RIGID/CRCP - JOINT AND CRACK TEST (J4/C4, J5/C5) Sequence: CCC222233334444

Stn: -39 Sto Hgt psi C 108.7 C 108.8 C 108.7 * 2 78.3 * 2 78.3 * 2 79.0 * 3 109.3 * 3 109.1 * 3 108.6 * 3 108.7 * 4 146.8 * 4 146.7 * 4 147.0	11920 11.35 9.61 11936 11.27 9.61 11928 11.23 9.52 8600 8.46 7.15 8576 8.42 7.11 8584 8.46 7.24 8656 8.46 7.20 11976 11.31 9.65 11960 11.31 9.61 11904 11.27 9.61 11920 11.31 9.61 16152 14.58 12.41 16096 14.54 12.45 16112 14.66 12.54	J/C: 24 Air: 73 Df3 Df4 Df5 6.30 5.83 5.42 6.34 5.83 5.47 6.21 5.70 5.33 4.67 4.31 4.00 4.63 4.22 3.96 4.71 4.35 4.00 6.26 5.74 5.38 6.26 5.74 5.38 6.21 5.70 5.33 6.21 5.70 5.33 6.21 5.70 5.33 8.18 7.56 7.07 8.14 7.51 7.02 8.18 7.56 7.02	PvT: 81 Df7 4.64 3.25 4.68 3.24 4.55 2.43 3.34 4.55 3.24 3.34 3.47 3.47 3.42 2.45 4.59 3.25 4.55 4.55 5.98 4.21 5.98 4.21 5.98 6.02	12:14
Stn: -38 Sto Hgt psi C 108.6 C 108.1 C 108.0 * 2 78.1 * 2 78.1 * 2 78.1 * 2 78.0 * 3 107.8 * 3 107.8 * 3 107.8 * 4 144.8 * 4 145.4 * 4 145.1 * 4 145.4	Lane: J5 Temp: 1bf Df1 Df2 11896 14.41 6.51 11856 14.33 6.55 11832 14.37 6.55 8560 10.81 4.87 8568 10.89 4.91 8564 10.85 4.91 11856 14.45 6.59 11816 14.54 6.64 11808 14.54 6.55 11824 14.54 6.55 11824 18.85 8.66 15936 18.98 8.70 15904 19.02 8.62 15936 19.15 8.57	J/C: 24 Air: 73 Df3 Df4 Df5 11.87 10.68 9.65 11.78 10.64 9.60 11.83 10.72 9.65 8.91 8.02 7.25 8.95 8.10 7.33 8.91 8.02 7.25 11.87 10.72 9.65 11.95 10.76 9.78 11.95 10.81 9.78 11.91 10.76 9.78 11.91 10.76 9.78 11.91 10.76 9.78 11.91 10.76 9.78 15.64 14.10 12.71 15.68 14.14 12.71 15.72 14.23 12.80	PyT: 80 Df6 Df7 7.80 4.94 7.71 4.99 5.85 3.69 5.89 3.77 5.89 3.77 5.85 3.77 5.85 3.77 5.85 3.94 7.84 5.03 7.84 5.03 7.84 4.99 10.18 6.51 10.22 6.55 10.27 6.55	12:17
Stn: -13 Sto Hgt psi C 108.4 C 108.6 C 108.6 * 2 78.0 * 2 78.1 * 2 78.1 * 2 78.3 * 3 108.7 * 3 108.3 * 3 108.0 * 4 145.9 * 4 146.2 * 4 146.5 * 4 146.4	Lane: J4 Temp: 1bf Df1 Df2 11888 10.52 8.92 11896 9.64 8.32 11904 9.51 8.14 8552 7.04 6.08 8560 7.00 6.03 8560 6.95 5.99 8584 7.00 5.99 11920 9.68 8.27 11864 9.55 8.14 11840 9.55 8.14 11840 9.55 8.19 16000 13.15 11.25 16040 12.99 11.07 16056 12.95 11.12 16048 12.90 11.07	J/C: 36 Air: 74 Df3 Df4 Df5 8.65 7.89 7.25 8.74 7.98 7.29 8.70 7.98 7.29 6.60 6.04 5.56 6.56 6.08 5.56 6.51 6.04 5.51 6.51 5.99 5.47 8.87 8.15 7.42 8.83 8.10 7.38 8.78 8.06 7.38 8.78 8.06 7.38 8.83 8.10 7.38 11.57 10.60 9.65 11.65 10.68 9.73 11.65 10.68 9.69	PvT: 80 Df6 Df7 5.94 3.95 6.07 4.08 6.02 3.99 4.59 3.17 4.59 3.12 4.55 3.08 4.51 4.08 6.15 4.12 6.11 4.08 6.11 4.08 6.11 4.08 7.97 5.29 7.97 5.38 8.01 5.34 7.97 5.34	12:19
Stn: -12 Sto Hgt psi C 108.3 C 108.1 C 108.1	Lane:J5 Temp: lbf Df1 Df2 11872 9.89 9.01 11856 9.76 9.13 11848 9.68 9.09	J/C: 36 Air: 75 Df3 Df4 Df5 8.53 7.85 7.16 8.40 7.77 7.07 8.35 7.68 7.02	PvT: 79 Df6 Df7 5.98 4.16 5.94 4.12 5.85 4.08	12:22

File: C:\FWD\DATA\833802C3.FWD Road: MB-75 NORTHBOUND LANE, 15 MILES SOUTH OF WINNIPEG, MB. Subsection: 833802 7.29 7.33 7.29 6.76 6.76 6.72 5.74 5.74 5.70 5.29 5.29 5.24 5.20 3.08 3.12 77.4 77.5 6.26 6.26 4.42 8488 22 4.46 8504 4.38 4.38 5.89 3.04 77.8 8528 6.17 2 3 7.25 9.72 5.66 7.73 7.64 2.99 77.4 8488 6.68 6.17 8.35 8.31 8.31 8.31 11.10 108.3 107.8 107.5 107.7 7.07 4.12 11872 9.13 11824 11792 3 6.98 5.85 4.03 9.64 9.05 5.85 5.85 7.75 7.64 7.02 4.08 9.05 9.68 6.98 9.33 9.29 9.25 9.33 11808 9.68 7.64 4.03 9.09 5.34 10.22 146.4 16048 12.06 13.03 7.71 7.71 7.75 5.29 12.90 12.95 10.17 146.8 16096 12.02 11.01 5.34 146.8 146.7 11.05 16096 12.06 10.17 10.17 5.38 12.95 12.11 11.10 16088 76 PvT: Lane:J4 1bf 11792 80 12:26 J/C: 39 Air: Stn: Temp: Df1 13.62 13.70 Df2 11.55 11.50 Dřá 7.88 Df4 7.30 6.97 Df6 5.72 5.50 5.24 psi 107.5 107.4 107.0 76.8 77.2 77.2 Df7 Df5 Sto Hgt 6.76 3.99 7.50 7.51 5.36 5.23 5.23 11776 11736 6.44 3.82 C 11.63 8.79 8.70 8.75 8.79 6.18 3.77 13.87 6.63 3.90 2.82 4.67V 8424 10.47 4.98V 4.58 4.58 3.81 3464 10.47 4.85 2.82 $\tilde{2}_{2}$ 2.82 10.56 8480 4.81 3.77 2.78 4.81 8472 10.60 5.18 4.49 6.42 6.33 6.37 6.33 8.15 11776 11776 11772 5.07 3333 107.4 14.24 14.33 11.89 6.90 6.00 3.64 6.86 6.81 6.77 8.70 3.60 5.96 107.4 12.02 5.07 106.8 14.41 12.11 5.96 3.64 14.50 19.23 5.91 7.56 11704 12.11 5.03 3.60 106.8 6.37 6.37 6.37 6.33 4.64 15880 15912 144.8 145.2 16.12 4.55 4.55 8.61 8.57 19.40 16.16 8.02 7.47 16.37 15872 8.06 7.47 4 144.8 19.52 7.42 144.9 15888 19.65 16.50 8.57 8.02 'ACCEPT TEST WITH VAR. J/C: 39 Air: 76 PvT: 79 Stn: 5 Temp: Lane: J5 Df2 7.54 7.54 7.54 7.43 9.43 Df5 10.71 10.58 Df1 15.38 15.29 15.38 Df4 11.82 11.74 11.74 Sto Hat Df7 psi 108.7 107.8 lbf 11912 Df3 Df6 8.88 8.75 5.77 5.81 12.94 12.81 11824 8.84 6.72 6.72 5.73 4.38 107.4 77.7 77.5 11776 12.90 10.67 පි.99 පි.95 2 8520 11.86 9.85 8.13 8496 4.47 11.81 9.85 8.13 22 77.4 77.5 6.76 8496 5.43 9.90 8.18 4.47 9.03 11.86 11.94 15.58 15.67 15.71 15.79 5.47 7.41 7.24 7.28 9.08 8496 11776 9.94 8.22 8.80 107.4 13.11 13.11 10.85 8.97 5.99 3333 8.97 11.99 5.90 107.2 11760 10.85 12.03 12.07 15.53 15.75 15.79 11768 11744 13.20 13.24 17.05 10.89 9.01 5.81 107.4 5.94 9.01 10.89 107.1 7.68 144.1 15800 20.40 9.61 14.05 11.57 17.27 144.8 144.3 144.8 15872 15824 15872 9.61 9.57 14.22 14.31 14.31 11.78 7.81 7.76 4 20.61 17.31 17.39 4 20.65 11.83 20.74 9.48 15.83 11.83 7.8139 Air: 75 Df4 Df5 PvT: 80 Stn: 17 Temp: 12:33 Lane: J4 J/C: Sto Hat Df6 5.72 5.89 5.76 4.25 psi 108.7 Df1 10.81 10.77 10.64 Df3 8.14 Df4 Df7 lbf Df2 7.51 7.64 7.56 6.89 9.09 11920 4.03 8.31 8.18 4.21 108.6 11896 9.13 7.02 9.13 9.05 6.72 6.76 6.72 108.6 4.03 2 6.89 11904 78.4 78.3 5.49 5.53 5.49 8.09 5.07 2.99 8600 5.96 2225353 8592 8568 4.29 $\bar{2}.99$ 8.09 6.00 5.07 78.1 78.3 4.292.95 5.96 5.07 8.00 4.25 5.55 5.72 5.49 7.30 7.43 7.39 5.96 7.97 8592 8.04 10.52 10.60 2.95 5.02 108.1 11848 8.88 6.67 3.86 9.01 8.96 107.8 11816 8.10 6.80 3.99 5.68 5.72 7.62 107.5 3.90 11792 10.56 8.01 6.71 108.0 9.09 11.76 11.94 11832 10.64 8.14 7.47 6.85 4.03 146.1 146.7 13.87 10.93 5.25 16024 10.00 9.11 7.67 7.58 5.29 5.25 13.91 9.25 4 16080 10.97 10.09 4 146.4 16040 13.91 11.89 10.93 10.00 9.11 5.29 146.4 14.03 11.94 10.97 9.20 7.71 16048 10.09 Stn: 19 Sto Hgt J/C: 39 Air: 75 0f3 Df4 Df5 Lane:J5 lbf PvT: 80 Temp: 12:35

Df3

Dfi

psi

Df2

Df7

Df6

12:35 930609 24.

File: C:\FWD\DATA\833802C3.FWD Road: MB-75 NORTHBOUND LANE, 15 MILES SOUTH OF WINNIPEG, MB. Subsection: 833802 108.1 11856 7.24 14.12 9.47 7.67 11.61 10.47 4.99 Č 107.5 14.20 14.37 10.93 11792 11.61 11.78 8.95 7.62 7.11 10.47 9.47 4.94 107.7 77.4 77.4 9.60 11816 10.60 4.94 5.13 5.13 5.13 5.17 7.02 6.94 7.29 7.33 7.42 7.38 9.82 8488 5.89 8.06 8488 8512 8.06 8.95 9.08 11.02 5.89 77.7 5.98 11.14 5.98 7.93 8512 9.08 11.10 8.19 3.82 11800 11760 12.04 12.08 14.66 10.85 107.2 10.93 14.79 9.87 7.97 107.1 11752 11744 12.17 12.12 14.87 8.01 6.94 10.93 9.91 10.93 14.31 14.39 14.52 14.87 19.31 19.48 6.85 9.87 9.13 145.1 15912 15.85 12.89 10.40 144.9 145.2 13.02 15888 16.02 6.81 10.48 15928 9.09 16.11 9.05 16.20 13.11 10.61 19.65 6.81 145.2 15920 19.73 13.20 14.61 10.66 6.85 _____ Temp: 1 Df2 56 8.96 Stn: 47 12:38 Lane:J4 4 Df1 10.56 10.39 10.39 7.71 7.67 7.75 10.43 10.35 10.35 10.39 J/C: 46 Air: 75 PvT: 84 Sto Hgt psi 107.5 107.5 107.5 lbf 11784 Df3 10.20 Df4 9.29 Df5 Df6 Df7 8.45 8.36 6.89 6.80 6.89 4.47 8.83 8.88 9.16 9.24 4.38 11800 10.07 11792 8456 4.42 8.40 10.11 77.1 77.4 77.4 77.2 3.25 3.25 7.41 5.07 6.46 6.80 6.18 6.80 7.01 5.07 5.29V 8488 6.46 7.41 6.13 8480 8472 11824 11792 6.68V 6.51 8.83 7.63V 7.45 3.470 6.40V 6.22 8.36 3.25 6.84 9.24 5.11 107.8 107.5 10.07 6.80 4.38 8.83 8.79 10.11 9.24 8.40 6.89 107.1 11744 8.31 6.80 10.03 9.16 107.2 146.7 9.16 12.20 12.24 12.24 11760 8.83 8.31 6.80 10.07 13.37 13.32 13.37 13.45 16080 13.91 11.81 11.76 11.11 9.10 13.83 13.87 146.7 16080 9.01 11.11 * 4 146.5 16072 * 4 146.5 16072 'ACCEPT TEST WITH VAR. 11.81 11.07 9.05 5.73 13.95 12.28 5.86 11.94 9.18 11.16 Temp:
0f1 Df2
26 7.50
03 8.83
99 8.88
55 6.76
51 6.72
51 6.76 J/C: 46 Air: 75 Df3 Df4 Df5 13.37 12.12 10.85 10.80 9.75 8.80 10.80 9.75 8.80 7.88 7.13 6.44 7.88 7.13 6.44 PvT: 82 Df6 Stn: 48 Lane:J5 lbf 12:40 Sto Hat psi 107.7 107.8 107.7 78.0 77.8 Dfi Df7 16.26 13.03 12.99 9.55 9.51 9.51 5.34 4.51 4.51 3.30 3.34 11808 8.62 7.10 11824 2 11808 7.10 5.24 5.24 5.29 7.10 8544 8528 8560 78.1 77.8 7.18 7.93 6.49 8528 7.18 9.79 9.75 9.79 6.72 7.93 6.44 108.1 11864 13.11 13.07 8.80 8.76 8.88 10.84 107.5 107.5 107.2 8.83 8.83 11800 7.06 10.80 13.07 13.11 17.81 11784 11752 7.15 8.80 10.88 9.84 13.30 13.13 13.25 13.21 8.88 10.88 8.85 7.15 4.51 145.1 11.29 11.25 14.70 14.52 11.91 11.78 5.94 15912 9.57 144.9 145.2 15896 17.60 17.64 9.44 9.57 9.53 4 5.86 15920 11.38 11.33 14.61 11.87 5.94 145.1 15912 17.64 14.57 11.82 5.94 J/C: 37 A 0f3 Df4 18 7.51 10 7.43 .05 7.35 Stn: 64 Lane:J4 lbf PvT: 81 Temp: Air: 75 Sto Hgt psi 108.7 108.4 Dfi 9.55 9.43 Df3 8.18 Df5 Df2 Df6 Df7 5.76 5.63 5.59 4.20 11920 8.14 6.93 3.95 11888 11872 8.01 7.97 8.10 8.05 6.85 3.90 9.38 3.86 108.3 6.80 2 78.6 5.95 5.90 5.90 8608 7.00 2.86 5.96 5.49 5.02 2 6.95 6.95 78.0 8552 5.91 5.45 5.02 4.16 2.86 8552 8592 78.0 5.87 5.91 5.45 2.86 4.98 4.16 78.4 5.02 7.00 5.95 4.16 2.86 7.39 7.35 7.35 7.39 108.7 11912 9.51 8.10 8.05 6.80 5.63 3.90 108.1 11856 6.71 6.76 9.47 7.97 8.06 5.59 3.82 108.3 107.7 3.86 5.63 11864 9.47 8.06 8.01 8.14 10.77 10.77 5.63 7.45 7.41 11816 9.64 12.65 8.05 10.71 6.80 3.86 146.2 146.5 9.84 9.79 16040 9.02 5.07 16064 12.61 8.98 5.07 10.67 4 146.5 12.65 9.84 9.79 16064 10.77 9.02 7.45 10.71 5.12

146.5

16064

12.65

10.77

10.63

8.98

5.07

12:42 930609 25.

File: C:\FWD\DATA\833802C3.FWD
Road: MB-75 NORTHBOUND LANE, 15 MILES SOUTH OF WINNIPEG, MB.
Subsection: 833802

										~-~~~	
\$to\$		psi 107.7 108.1 107.8 77.7 78.3 107.8 107.8 107.1 145.2 145.2 145.7	lbf 11800 11848 11816 8512 8520 8520 8584 11816 11744 11752 15920 15952 15960	75 Df1 12.78 12.36 12.48 9.447 9.47 9.51 12.03 13.07 13.07 17.60 17.60	mp: Df11 7.54130 77.543344155.334414499.3351	10.50 10.15 10.24 7.71 7.75 7.80 10.63 10.67 10.77 10.61 14.31 14.40 14.44	9.16 9.1247 7.01 7.052 9.662 9.675 12.88 13.04		PvT:636.676 6.676 55.116 55.127 6.97 6.27 6.927 6.444	80 Df7 4.47 3.43 3.33 3.68 4.68 6.16 6.16 6.20	12:45
Sto: * * * * * * * * * * * * * * * * * * *			11912 11888 11848 8512 8552 8512 11920 11824 11848 11824 16056 16104	Te Df1 10.31 19.872 7.221 7.229 9.776 13.090 12.90	8.88 8.57 8.40 6.20 6.225 8.45 8.445 8.339 11.225 11.25	J/C Df37 99.653 7.007 7.153 99.6664 12.77 12.77	8.99 8.862 6.550 6.559 6.991 8.866 11.74 11.74	8.27 8.18 8.09 6.00 6.04 6.04 8.13 8.13 8.18 10.76 10.76	FVT:69466.707796665.555.5666.9969.0971	81 Df7 4.645583 4.5383 33.447 4.660 4.6999999999999999999999999999999999999	12:47
Sto * * * * * * * * * * * * * * * * * * *	95000000000000000000000000000000000000	psi 108.0 107.7 107.5 77.4 78.8 77.8.1 107.1 107.1 107.1 145.3 145.3 146.3 146.3	101	Te Df1 10.226 10.226 10.226 77.567 77.6627 10.126 10.126 10.126 10.126 10.126 10.126 10.126 10.126 10.126 10.126	mp: Df25 9.78 9.78 9.155 7.220 9.69 9.700 9.69 9.700 1222 1222 1222	Jf35 Df95 8.091444 8.095 8.6668 9.995 111.7765 111.111111111111111111111111111111111	32 f42 f42 f42 f42 f6.36 f6.29 f6.22 f6.22 f6.33	75 Df59 7.69 7.69 7.69 5.78 5.78 5.78 5.769 7.69 10.09 10.15	PD 6664444666666666666666666666666666666	81 Df7 44.380 44.330 33.334 44.477755 55.777	12:49
Stn: Sto	100000000000000044	1007.1.15.67.75.55.4 1007.7.1.50.77.5.5.4 1007.7.1.50.77.5.5.4	Larie: J 11060 11744 117444 117444 6472 6536 11600 11600 11600 11600 11600	11.00.00.00.00.00.00.00.00.00.00.00.00.0	20000000000000000000000000000000000000	777755557777786556 7777555557777786 6099666666656	A 4095999999505571 557.7.55555777799	75 75 75 75 77 77 77 77 77 77 77 77 77 7	F 555544445555577	776955955550005572 66999999999995572	12:54

12:54 930609 26.

File: C:\FWD\DATA\833802C3.FWD Road: MB-75 NORTHBOUND LANE, 15 MILES SOUTH OF WINNIFEG, MB. Subsection: 833802

*	4 4					i0.41 i0.50				5.12 5.16	
* * * * * * * * * * * * * * * * * * * *	0000000000004444	107.7 107.4 77.2 77.2 77.2 107.7 107.0 107.1 106.8 146.5 147.1 147.2	11776 8464 8480 8480 11816 11728 11744 11704 16072 16128 16144 16152	6.68 6.66 6.62 6.670 8.88 8.88 8.88 11.90 11.90	7.84 7.89 5.77 5.86 5.86 7.93 7.89 7.93 10.47 10.51	7.67 7.71 5.70 5.74 5.75 7.71 7.67 7.71 10.24 10.15 10.33	7.01 7.01 5.19 5.23 5.228 7.05 7.05 7.05 9.33 9.41	6.58 6.49 6.88 6.88 6.44 6.88 6.44 6.55 6.55 6.68 6.88	5.466 4.122 5.506 6.195 5.466 7.153 7.153		12:56
* * * *	UC22223333444	psi 108.8 108.3 107.7 77.5 78.0 77.7 108.3 107.5 108.0 147.7 148.0 147.8	11872 11816 8504 8512 8512 11872 11872 11816 11792 11832 16192 16208	Te Df1 8.42 8.34 8.34 6.20 6.12 6.33 6.24 8.38 8.34 8.34 11.14 11.10 11.14	TP: Df2 7.28 7.28 7.28 5.39 5.47 7.28 7.28 9.69 9.61 9.65	7.97 7.97 5.87 5.00 6.00 6.05 7.97 8.05 10.71	51 A 7.51 7.359 5.440 7.355 5.557 7.339 7.388 9.889 9.79	ir: 75 Df5 6.93 6.71 6.80 5.02 4.98 5.11 6.87 6.87 6.87 8.98 8.98	Pyf613800033333368822699445.555.557.777.77	85 Df78 0.90 0.995 0.00 0.00 0.00 0.00 0.00 0.0	13:01
Stn: Sto	Nonna	108.3 107.7 107.7 77.2 77.2 77.2	11864 11800 11800 8472 8472 8472	10.05 9.85 9.89 7.25 7.21 7.25	7.45 7.58 7.58 5.69 5.56 5.64	8.48 8.27 8.27	7.68 7.51 7.51 5.61 5.53 5.57	r: 76 0.95 6.85 6.107 5.11 6.993 6.993 6.993 9.229 9.25	5.89 5.76 5.76 4.33 4.29 4.29 4.38	83 1773555 10.99555 13.99555 13.9955 13.999 13.999 13.999 13.999 13.999 13.999 13.999 13.999 13.999 13.999 13.999 13.995 13.9	13:03
Stn: Sto		8 psi 108.1 107.8 107.1 77.2 77.4 77.2 77.4 107.7 108.0 106.7 107.1 146.5	Lane: J 1bf 11856 11816 11752 8464 8480 8472 8488 11800 11832 11696 11744 16064	4 Te Df1 8.42 8.25 6.28 6.33 6.33 6.33 6.30 8.30 8.30 11.02	mp: Df2 7.45 7.54 7.54 5.64 5.64 7.63 7.50 7.50 10.13	J/C Df3 8.40 8.31 8.27 6.26 6.17 6.21 6.21 8.40 8.27 8.35	: 37 A Df4 7.73 7.68 5.83 5.78 5.78 5.78 7.85 7.81 7.73 7.73	ir: 77 Df5 6.93 6.89 5.20 5.16 5.20 6.89 6.89 6.89 9.25	PvT: 8 Df6 5.72 5.68 4.29 4.25 4.25 5.72 5.76 7.58	Df7 3.62 3.62 3.82 2.86 2.86 2.86 3.82 3.82 3.82 3.82	13:06

13:06 930609 27.

File: C:\FWD\DATA\833802C3.FWD Road: MB-75 NORTHBOUND LANE, 15 MILES SOUTH OF WINNIPEG, MB.

Road: MI Subsecti	B-75 NC ion: 83	ORTHBOUN 3802	ID LANE,	15 MIL	ES SOUT	H OF WI	NNIPEG,	MB.		
* 4 * 4 * 4	147.5 147.2 147.4	16176 16144 16160	11.19 11.23 11.19	10.17 10.21 10.21	11.18 11.18 11.18	10.38 10.43 10.38	9.25 9.29 9.29	7.67 7.67 7.62	5.07 5.07 5.07	
Stn: 169 Sto Hgt CCC22 * 22333334444 * 4444444444444444444444444444	107.2 106.7 145.8 147.4 146.8 147.7 TEST W	11752 11696 15984 16152 16096 16192 HITH VAR	8.55 8.59 12.02V 11.65 11.44V 11.60	8.36 8.40 10.82 11.12 11.07 11.16	7.41 7.45 10.33V 10.03 9.90 9.98	6.84 6.88 9.50V 9.24 9.16 9.20	6.36 6.36 8.71V 8.53 6.40 8.49	5.29 5.33 7.19V 7.10 6.97 7.06	3.64 3.69 4.86 4.81 4.73 4.77	13:10
Stn: 205 Sto Hgt CCC222233333444444444444444444444444444	108.6 147.1 147.4 147.1 147.4 TEST W	11904 16136 16168 16128 16152 ITH VAR	8.09 11.19V 10.93 10.96 10.85	7.15 9.78 9.65 9.65 9.52	7.88 10.45 10.45 10.58 10.45	7.26 9.62 9.67 9.79 9.67	6.71 8.80 8.85 8.98 8.85	5.63 7.32 7.45 7.49 7.41	3.90 5.03 5.12 5.25 5.12	
Stn: HgCcc222233333444	psi 108.3 108.0 107.8 77.5 78.7 78.7 78.7 107.8 107.8 107.8 107.8 146.7	Lane: Ji 1bf 11872 11848 11824 8536 8544 8568 11920 11784 11832 11848 15968 16088	Tell 14	mp: Df2 8.01 7.89 5.99 5.995 5.995 7.01 7.04 10.56 10.69	J/C: Df3 7.33 7.220 5.444 5.323 5.55 5.324 7.324 7.72 9.554 9.668	38 Ai Df4 6.80 6.751 5.02 5.117 5.007 6.875 6.895 6.895 8.995 9.03	79 0.31 6.31 6.32 4.67 4.71 4.71 4.32 6.36 6.36 6.32 8.31 8.36	PDf462399733667777	017 017 019 017 019 017 019 017 019 017 019 019 019 019 019 019 019 019 019 019	13:18
Stn: 222 Sto Hgt	psi	Lane:J4	Ter	ap: Df2	J/C: Df3	27 Ai Df4	r: 80 Df5	PvT: 8	34 Df7	13:21

28.

4.90

13:21 930609

146.2

16032

File: C:\FWD\DATA\833802C3.FWD
Road: MB-75 NORTHBOUND LANE, 15 MILES SOUTH OF WINNIPEG, MB. Subsection: 833802 5.76 4.29 4.33 4.33 5.72 5.89 3.95 2.91 6.93 7.60 106.7 7.20 8.31 11704 8.13 5.16 5.11 5.20 76.5 76.6 76.7 77.0 5.34 5.39 5.39 5.34 7.15 6.17 6.03 5.99 6.07 8392 8432 22 5.66 5.61 5.70 2.91 3.04 22 8408 6.21 6.17 5.27 8.27 5.66 7.56 7.51 7.73 7.64 2.99 5.16 8440 6.07 3.82 6.89 30000 11776 8.13 6.89 8.09 8.25 8.17 7.11 7.33 7.24 107.0 11720 11712 4.080 8.40 8.35 7.07 106.8 3.99 6.98 5.81 106.7 146.5 11696 7.45 7.54 7.58 9.02 5.03 9.74 9.57 9.57 9.88 10.80 11.06V 16064 4 5.07 10.93 10.97 9.11 10.00 16168 4 147.4 10.81 5.07 4 10.05 147.1 147.1 16128 10.81 16128 10.09 9.16 9.61 11.01 10.81 * 4 'ACCEPT TEST WITH VAR. J/C: 27 Air: 80 PvT: 84

Df3 Df4 Df5 Df6

7.24 6.67 6.13 5.16 3
7.50 6.97 6.44 5.46 3
7.45 6.84 6.31 5.33 Lane:J5 Temp:
Dsi lbf Df1 Df2
7.4 11768 8.34 8.14
7.7 11816 8.63 8.40
7.5 11784 8.55 8.36
3.7 8408 6.28 6.12 Stn: 224 Sto Hgt Df7 3.56 3.66 psi 107.4 107.7 107.5 76.7 77.1 77.1 Č 5.46 5.33 3.90 3.69 2.69 6.84 5.07 5.15 4.62 4.76 5.44 5.57 5.48 2.91V 2.78 6.41 6.33 6.33 8.55 8.55 4.03 6.20 2 8456 5.07 5.07 6.88 4.67 3.94 6.12 8464 3.90 5.37 5.37 5.46 5.37 5.48 7.54 7.54 7.54 2.69 6.12 8.36 8.36 4.67 6.36 8480 11816 11792 107.8 6.36 3.73 6.88 107.5 6.97 6.88 9.12 11784 8.63 11752 8.55 16040 11.31 16144 11.35 16168 11.35 16128 11.31 6.44 107.5 107.2 8.40 6.36 8.36 7.06 $\frac{11.12}{11.12}$ 4.86 8.40 9.90 146.2 9.90 9.12 4.90 8.40 147.2 7.06 9.16 9.12 8.45 11.16 9.94 147.4 4 4.90 ā.40 7.06 11.12 * 4 147.1 16128 'ACCEPT TEST WITH VAR. 9.90 Lane:J4 Temp:
psi lbf Df1 Df2
107.8 11824 8.34 7.41
107.7 11808 8.25 7.33
107.8 11832 8.21 7.33
77.0 6440 6.20 5.47
77.1 8448 6.16 5.47 J/C: 34 Air: 81 Df3 Df4 Df5 5.53 7.81 7.20 PvT: 91 Df6 D 5.94 3. 5.85 3. 13:28 Stn: 265 Sto Hgt __ Df7 Df3 8.53 8.40 8.35 6.17 6.21 psi lbf 107.8 11824 107.7 11808 3.99 7.61 7.68 7.68 5.74 5.70 5.73 7.73 7.68 7.02 3.95 7.02 5.24 5.24 5.16 5.24 3.90 5.81 107.8 4.38 4.38 4.33 4.33 77.0 2.952 8448 8472 2.95 6.17 5.43 6.20 6.20 6.30 8.30 8.25 8.25 5.47 7.37 7.33 7.33 9.74 2.95 8456 6.21 77.1 5.85 5.89 5.81 7.11 3.95 11912 8.44 108.7 8.40 8.35 8.40 3.95 7.07 107.8 107.2 11816 3.90 11768 11776 5.81 7.71 7.67 3.90 7.02 7.68 107.4 10.26 9.33 9.33 9.33 9.38 5.12 11.14 146.8 16104 10.98 5.12 10.98 10.93 11.02 4 147.4 4 147.2 9.65 9.65 11.10 16152 7.71 5.12 $10.\overline{22}$ 11.14 16144 7.67 5.16 10.26 147.2 16136 9.69 11.14 Error: 559 J/C: 34 Air: 81 PvT: 91 Df3 Df4 Df5 Df6 Df7 7.63 7.09 6.53 5.46 3.73 7.67 7.09 6.53 5.46 3.73 7.67 7.09 6.53 5.46 3.69 Stn: 266 Lane: J5 Temp: Sto Hgt psi lbf Df1 I C 106.5 11672 8.92 8 C 107.0 11720 8.97 8 Df7 3.73 3.73 Df2 8.45 8.45 7.09 5.28 5.36 5.36 5.36 7.18 8.40 6.25 6.33 8.92 106.5 11672 2.86 4.84 4.03 8344 8392 5.66 76.1 6.62 4.93 4.12 5.74 5.66 76.5 6.70 6.29 6.33 8.57 4.84 4.07 76.5 76.7 8392 6.66 4.12 5.55 5.74 7.75 7.63 4.89 6.58 2.86 8416 6.75 3.86 9.05 11712 106.8 8.92 8.40 6.92 6.45 8.92 8.45 12.36V 10.99 7.09 6.49 5.46 5.50 3.69 106.4 11656 6.53 6.53 8.85 7.67 7.09 11656 11672 106.4 5.46 7.32 7.67 10.54V 7.09 106.5

9.67V

29. 13:32 930609 File: C:\FWD\DATA\833802C3.FWD
Road: MB-75 NORTHBOUND LANE, 15 MILES SOUTH OF WINNIPEG, MB.
Subsection: 833802 7.32 7.28 7.23 9.58 9.54 9.46 16176 12.23 11.25 16168 12.19 11.25 16072 11.98 11.20 10.41 10.37 10.33 8.76 8.76 8.67 4.90 147.5 4 147.5 4 146.5 4.90 * Temp:
Df1 Df2
7.88 6.94
7.75 6.86
7.67 6.6
5.70 5.
5.70 5.
6 5.78 5
92 7.70
76 7.79
364 7.71
740 7.67
7.71
10.31 ACCEPT TEST WITH VAR. J/C: 43 Air: 81 Df3 Df4 Df5 7.84 7.22 6.62 7.75 7.13 6.58 7.67 7.09 6.49 5.70 5.23 4.80 5.70 5.28 4.84 5.74 5.32 4.89 5.70 5.23 4.84 7.75 7.18 6.58 7.75 7.13 6.58 PvT: 94 13:37 Stn: 299 Lane:J4 Df6 5.55 5.50 lbf 11920 _ Df7 Sto Hat psi 108.7 108.6 3.90 3.90 11904 108.4 77.7 78.1 5.46 3.82 2.86 11880 8512 8568 022 4.07 4.07 2.86 22333 4.16 2.95 78.3 8576 4.07 5.55 5.50 5.52 5.32 7.72 2.86 8592 78.4 109.3 108.3 3.86 3.90 11976 7.13 7.05 6.58 11864 3.82 11840 11856 6.44 108.0 7.75 10.33 10.24 10.24 6.58 8.76 3.90 7.13 108.1 9.50 9.37 9.41 147.4 147.7 147.5 147.5 10.31 10.22 10.22 10.22 5.07 5.03 16152 4 8.62 8.62 16192 9.09 7.19 16184 9.09 4.99 10.20 9.37 8.62 7.19 4.99 9.05 16168 J/C: 43 Air: 81 0f3 Df4 Df5 .98 6.50 6.04 03 6.50 6.04 .03 6.54 6.04 23 4.90 4.53 Stn: 300 PvT: 91 Temp: 13:40 Lane: J5 Sto Hgt Df2 7.71 7.71 7.76 5.77 5.82 psi 109.3 109.3 108.7 78.0 78.6 Dfi 7.92 7.92 Df3 6.98 7.03 T Df7 lbf 11976 Df6 3.73 3.73 3.73 5.16 5.16 5.20 3.86 11984 7.88 7.88 5.91 5.87 5.82 7.96 7.03 7.03 5.23 5.27 5.18 7.03 11912 02222 2.86 8544 8616 4.53 4.58 3.81 2.82 4.85 8608 8536 11920 78.4 77.8 108.7 4.90 4.73 3.90 3.81 2.86 5.64 7.76 7.89 7.76 7.76 4.44 5.16 5.24 5.16 150000 6.50 6.04 7.03 7.11 7.03 7.03 9.25 9.30 8.00 7.96 7.96 6.53 6.54 6.50 3.82 3.73 108.6 11904 6.13 108.8 11928 6.09 5.11 6.76 6.72 108.6 147.7 3.73 11904 6.04 8.61 7.96 7.96 16192 16224 10.47 4.86 10.30 148.0 10.47

*	4	147.8 147.8	16216 16208	10.47 10.52	10.30 10.38	9.25 9.30	8.61 8.70	7.96 8.00	6.72 6.76	4.86 4.86	
Sto * * * * * * * * * * * * * * * * * * *		2 psi 109.4 108.8 108.6 77.7 78.1 78.1 108.6 108.6 108.0 108.1 147.5 148.1 147.7	Lane: J lbf 11992 11928 11904 8520 8568 8568 8560 11904 11896 11848 11848 16176 16240 16200 16208	Te Df1 7.92 7.75 7.79 5.82 5.82 7.83 7.79 7.71 10.26 10.26	mp: Df2 6.98 6.899 55.17 55.17 55.10 6.889 9.16 69.116 99.18	J/C: Df3 7.58 7.58 5.66 5.61 7.55 7.54 10.07 10.07	28 A 7.09 7.091 7.019 7.019 55.2228 7.097 7.097 8.329 9.329	r: 81 D:49 6.49 6.484 4.884 4.884 4.882 6.444 6.553 8.553	P>T:6 Df50 5.446 5.446 4.12 4.127 5.5449 4.199 7.19	Df7 3.82 3.866 2.91 2.969 3.862 2.969 3.882 4.99 4.99 4.99	13:42

Df3

6.98

7.03

5.18 5.23 5.27 5.27

J/C: 28 Air: 81

Df4 6.54 6.59 6.59

4.90

4.90

4.94

4.90

Df5

6.09

6.13

6.13 4.58 4.53

4.62

4.58

PvT: 90

Df7

3.64

3.69 2.78 2.78

2.82

Df6 5.24 5.24

5.24

3.90 3.90

3.94 3.90

13:45

Temp: f1 Df2 00 7.58 92 7.71 96 7.67

5.69 5.64

5.73 5.69

Df1

8.00 7.92

7.96 5.78 5.74 5.82 5.76

Lane:J5 lbf

11968

11960

11920 8528 8560

8576 8560

Stn: 313

Sto Hat

22

psi 109.1

109.1 108.7 77.8 78.0

78.3

78.0

13:45 930609

File: C:\FWD\DATA\833802C3.FWD Road: MB-75 NORTHBOUND LANE, 15 MILES SOUTH OF WINNIPEG, MB. Subsection: 833802 5.24 5.20 5.24 108.7 108.7 7.63 7.58 7.67 6.54 6.59 6.50 11920 8.00 3.73 7.07 6.09 11912 7.92 7.92 7.03 6.09 108.4 11896 6.98 6.09 3.69 108.3 147.7 7.9211864 6.98 5.20 7.63 3.64 6.04 9.21 9.30 9.30 16192 10.43 10.13 8.61 8.00 6.80 4.77 4 148.4 16272 10.43 10.08 8.65 8.00 6.64 4.86 16216 148.0 10.39 10.08 8.61 8.00 6.80 4.81 Δ 148.3 16256 10.39 6.80 10.13 8.61 8.00 4.77 Stn: 358 Lane:J4 Temp: J/C: 35 Air: 82 PvT: 95 13:48 Df1 8.55 7.75 7.78 5.78 5.78 5.78 5.78 Df4 7.05 7.13 Df5 6.67 6.58 6.58 Df2 7.50 7.07 psi 108.3 Df3 7.71 Sto Hgt Df6 Df7 11880 5.68 4.03 108.6 11896 7.67 5.63 4.03 108.1 11864 7.09 6.98 7.63 5.63 4.03 77.4 77.4 77.5 77.5 5.66 5.61 5.70 5.23 5.23 5.28 5.28 7.05 8480 8488 5.17 5.13 4.89 4.16 2.99 2 $\bar{2.99}$ 4.84 4.16 5.21 5.21 4.25 8496 4.89 3.04 4.89 6.53 6.58 6.58 8496 4.20 5.59 5.66 3333 108.0 7.63 3.99 11832 6.94 7.71 7.71 7.75 10.43 10.26 5.63 5.59 5.68 107.7 11816 6.94 7.09 7.05 7.63 4.03 108.0 11840 7.63 6.94 4.03 107.8 146.7 147.2 147.4 7.02 9.39 9.26 9.31 11824 7.67 7.13 4.08 7.36 7.36 7.49 16088 9.33 9.37 9.46 8.62 8.67 8.76 5.29 10.11 16136 5.29 5.38 10.11 10.20 16160 16176 10.26 9.33 147.5 9.26 10.15 7.45 5.34 8.71 J/C: 35 Air: 81 0f3 Df4 Df5 .15 6.75 6.31 20 6.75 6.31 .20 6.71 6.31 31 4.98 4.67 359 Stn: Temp: Lane: J5 PvT: 93 13:51 Sto Hat psi 106.8 106.8 107.5 76.5 77.1 77.1 lbf Df1 Df2 7.71 7.76 5.69 5.77 7.80 7.80 7.80 Df3 7.15 Df6 Df7 3.90 3.95 11712 8.09 5.46 7.20 7.20 7.316 5.316 5.316 5.316 7. 11704 8.04 5.46 8.04 5.99 5.42 3.99 11784 3.90 8384 2.91 2.91 8448 6.03 4.98 4.67 4.03 8456 8472 11824 6.07 3.04 5.02 4.12 4.76 5.02 4.71 6.31 6.22 4.07 2.95 6.07 107.8 107.7 107.0 5.46 5.37 8.09 6.71 3.95 11808 3.86 8.04 7.15 6.67 11720 11728 6.31 8.09 6.75 6.71 7.20 3.95 5.46 107.0 146.7 3.90 8.04 7.76 7.15 5.42 10.21 10.26 10.26 16072 10.68 9.51 8.31 8.27 8.31 8.86 7.15 5.12 147.4 16160 10.68 10.73 9.47 9.55 8.86 8.91 7.10 5.12 5.12 5.12 147.7 16184 7.15 147.7 10.26 16184 10.73 9.51 8.95 8.31 7.15 Stn: 371 32 Air: 81 Df4 Df5 Lane: J4 Temp: J/C: PvT: 13:54 Df2 7.20 6.85 6.76 Sto Hgt lbf Dfi Df3 7.71 psi 108.4 Df6 Df7 5.68 5.37 5.33 3.94 3.99 7.92 7.62 7.13 6.84 6.75 11880 4.12 6.67 7.41 7.33 5.36 5.44 108.4 11880 6.36 6.31 3.86 108.1 77.0 77.2 77.0 77.1 7.58 7.58 5.70 5.70 5.74 5.74 7.54 7.69 11856 3.82 2.82 5.00 5.08 5.04 4.98 5.02 4.62 4.71 8440 8464 2.86 2 8448 5.40 4.62 4.98 2.78 5.48 7.33 7.20 8456 11840 5.08 6.76 6.59V 5.07 6.75 6.63 4.71 6.27 4.03 5.24V 5.29 2.91 108.0 3.69V 3.77 107.0 11736 6.18 107.1 11744 11752 7.62 7.62 7.41 7.41 6.85 6.84 5.46 3.95 6.36 3 107.2 147.0 147.2 147.5 6.85 6.88 6.40 8.36 8.36 5.46 7.06 3.95 16112 10.14 9.09 9.81 9.03 4.94 9.18 9.22 9.22 9.85 9.90 7.06 7.10 16144 10.18 9.12 4.94 4 16176 10.18 8.45 9.16 5.03 147.5 16168 10.18 9.90 9.16 7.10 Stn: 372 Lane: J5 Temp: 32 Air: 81 PvT: J/C: 92 13:56 Df1 7.71 7.71 7.71 7.71 5.78 Sto Hgt Df2 Df4 psi 108.1 Df7 lbf Df3 Df5 Df6 5.20 5.20 5.20 3.82 3.73 3.77 11856 7.45 6.94 6.46 6.09 108.1 0022 11856 7.45 7.37 6.04 6.94 6.46 107.7 11808 6.94 6.46 6.04 77.1 77.0 8448 3.86 5.47 5.14 4.53 2.86 8440 5.43 5.10 4.73 3.81

•

į

File: C:\FWD\DATA\833802C3.FWD
Road: MB-75 NORTHBOUND LANE, 15 MILES SOUTH OF WINNIPEG, MB. Subsection: 833802 2 77.4 2 77.1 3 107.5 3 107.5 3 107.5 4 147.7 4 147.8 4 147.5 5.78 5.78 7.71 7.71 5.43 5.47 7.37 7.37 7.41 5.10 5.14 6.86 4.49 4.53 6.00 3.86 3.86 5.16 8488 2.82 4.77 4.61 6.42 6.37 2.82 8464 11816 11784 5.16 3.73 6.90 6.00 7.67 5.16 5.16 6.72 6.90 6.90 6.00 3.73 3.73 11800 6.42 6.42 6.53 6.57 8.57 11784 10.18 10.26 10.26 16184 7.91 8.00 7.96 9.87 9.13 16200 16176 9.91 9.91 9.17 6.84 4.90 9.17 6.80 4.86 16176 10.14 9.74 9.00 8.36 7.82 6.67 4.73 J/C: 39 Air: 82 Df3 Df4 Df5 7.80 7.26 6.76 7.75 7.26 6.71 7.80 7.26 6.71 5.74 5.32 4.98 5.83 5.40 5.02 5.74 5.32 4.93 5.78 5.36 4.98 7.75 7.26 6.76 7.75 7.26 6.76 7.75 7.22 6.71 7.80 7.22 6.71 Temp:
0f1 Df2
00 7.20
00 7.15
00 7.15
87 5.30
.95 5.30
.87 5.26
00 7.20
.00 7.11 Lane: J4 1bf 11872 PvT: 94 Df6 5.81 Stn: 417 14:05 Sto Hat psi C 108.3 Df7 Dfi 4.12 8.00 5.76 5.76 4.29 4.29 4.29 108.1 11856 4.12 8.00 107.8 77.0 77.1 77.1 11816 8.00 4.16 8440 8456 2222 5.87 3.04 5.95 3.12 5.32 5.36 7.26 7.22 7.22 7.26 5.87 5.91 8448 3.04 8440 3.08 ¹33333 5.81 5.76 5.81 108.0 4.12 11840 8.00 6.71 6.71 6.76 107.5 107.7 11784 8.00 4.16 11816 8.00 4.16 7.15 9.57 9.52 9.52 107.4 11776 8.04 7.84 5.81 4 147.8 4 148.1 4 147.8 4 148.3 16208 16240 7.67 7.71 8.93 10.64 9.67 5.42 10.33 8.98 8.93 10.68 10.41 9.67 5.51 10.33 10.37 16208 10.64 9.62 7.62 16248 10.64 9.48 9.62 7.67 5.42 8.93 J/C: 39 Air: 82 Df3 Df4 Df5 7.33 6.88 6.44 7.28 6.84 6.44 7.37 6.92 6.44 5.40 5.02 4.71 5.44 5.07 4.76 5.48 5.07 4.76 5.40 5.07 4.76 Lane: J5 Temp: Stn: 418 PvT: 90 14:08 ____Df7 dgt psi C 108.6 C 107.7 C 107.7 2 77.1 Sto Hgt C 1 Dfi 7.76 7.76 7.76 7.76 5.60 5.56 7.60 7.67 10.38 10.34 Df6 5.63 11904 8.09 4.03 11808 5.59 5.63 3.99 8.09 8.13 5.99 11808 4.08 4.12 8448 2.95 2000 77.1 77.1 77.1 8456 8456 6.03 5.99 5.99 $\bar{2}.99$ 5.48 5.40 7.33 7.28 7.28 4.16 3.04 2.99 8456 4.16 45.63 55.59 55.55 57.36 77.36 108.0 11840 8.13 6.88 6.44 11784 11792 8.13 8.09 6.88 6.44 6.40 107.4 4.03 107.5 3.99 107.4 11776 8.09 10.73 10.77 6.80 6.40 3.99 9.68 9.73 8.53 8.53 147.1 16136 5.25 5.29 9.12 4 147.5 4 147.8 4 147.7 16168 16208 9.08 10.73 7.36 9.68 9.08 8.49 5.29 16192 10.47 9.73 8.58 7.45 5.34 9.16 J/C: 38 Air: 82 PvT: 87
Df3 Df4 Df5 Df6 Df7
7.45 7.01 6.53 5.63 4.08
7.50 7.05 6.58 5.63 4.12
7.54 7.09 6.62 5.68 4.12
5.48 5.15 4.80 4.16 2.99
5.53 5.15 4.84 4.12 2.99
5.53 5.15 4.84 4.12 2.99
5.53 5.19 4.84 4.16 3.08
7.45 7.01 6.53 5.59 4.03 Lane: J4 Stn: 430 Temp: Temp:
Df1 Df2
7.79 7.20
7.88 7.20
7.96 7.33
5.82 5.30
5.82 5.30
5.82 5.30
5.87 5.30
7.63 7.15
7.83 7.15
7.83 7.15 Sto Hgt psi C 108.1 C 107.5 C 107.7 11848 11792 11800 77.1 76.8 77.0 76.8 8456 8424 8432 4.16 5.55 5.59 5.59 5.45 7.45 5.19 7.01 8416 4.84 6.53 6.49 6.53 108.1 107.7 107.7 107.2 146.7 7.45 11848 4.03 11800 6.97 4.03 11808 11752 7.83 7.79 10.35 7.15 7.45 7.01 4.03 7.11 9.52 9.52 6.97 9.33 9.37 9.33 7.41 6.49 4.03 16088 9.98 8.67 147.4 147.5 10.43 10.39 16160 9.98 8.67 5.38 16168 9.94 9.48 8.67 5.38 5.38 7.41 147.4 16152 9.57 10.43 9.98 9.33 7.45 Stn: 431 Sto Hgt psi Lane:J5 lbf J5 Temp: Df1 Df2 J/C: 38 Air: 83 Df3 Df4 Df5 PvT: 86 14:14 Df6 Df7

14:14 930609 32. File: C:\FWD\DATA\833802C3.FWD Road: MB-75 NORTHBOUND LANE, 15 MILES SOUTH OF WINNIPEG, MB. Subsection: 833802 108.1 107.2 107.5 76.5 77.2 7.79 7.75 7.79 5.78 5.78 5.82 3.90 3.86 3.95 11848 11752 11784 7.50 7.07 6.71 5.46 7.41 7.52 5.52 5.55 5.54 7.77 6.18 6.31 4.58 4.58 5.42 5.46 Č 6.63 7.03 2 7.11 6.71 5.23 5.23 4.94 4.03 2.86 8392 2.86 4.94 4.03 8464 4.58 5.18 5.27 77.1 8448 4.90 3.99 4.94 6.71 4.62 4.03 77.0 5.91 2.91 8448 6.22 7.83 7.88 107.4 5.50 11784 7.11 3.95 11776 7.11 6.71 5.46 3.95 107.4 7.07 7.11 9.34 9.38 9.38 9.38 6.22 6.27 8.27 8.27 8.27 7.83 7.83 7.50 7.50 6.67 6.71 107.2 107.1 11760 3.86 5.46 5.46 7.15 3.95 11744 146.5 10.00 8.82 5.16 16064 10.26 10.35 10.31 10.35 147.4 16152 10.04 8.86 7.19 5.12 5.07 5.12 147.2 16144 10.00 8.82 7.10 147.5 8.27 7.15 4 16176 10.04 8.86 PvT: Stn: 93 460 Temp: 38 Air: 83 Lane: J4 J/C: Sto Hgt Df5 7.20 7.11 psi 107.8 107.7 107.4 lbf Df3 Df7 Df1 Df2 Df4 Df6 7.81 7.73 7.73 11816 8.44 8.35 8.31 6.02 4.16 9.17 8.10 5.98 5.98 4.38 4.38 7.80 7.76 11800 8.63 4.08 8.59 11776 7.07 4.08 76.8 76.4 76.4 5.20 5.20 5.20 5.20 5.61 8424 2.99 6.08 6.41 5.64 3.08 8368 6.41 5.64 6.13 5.66 8368 8376 11792 11736 3.04 4.42 4.38 5.64 6.08 5.61 6.49 76.4 2.99 5.61 6.45 5.64 6.08 7.81 7.73 7.77 7.73 10.30 3 107.5 107.1 8.67 8.59 7.84 7.76 8.40 7.16 6.07 4.12 8.31 7.07 5.98 4.08 107.0 107.0 146.2 11720 7.16 7.07 9.38 8.63 7.80 8.40 6.07 4.16 8.59 11.81 11.73 7.71 8.31 5.98 7.88 11720 4.08 16032 5.34 10.43 11.10 146.5 146.7 146.5 7.97 10.38 5.42 16072 10.34 11.14 9.47 11.65 7.93 11.10 16080 9.42 5.34 9.42 7.88 16072 10.30 10.30 11.65 11.10 Stn: Lane:J5 Air: 84 PvT: 461 Temp: J/C: 38 90 14:19 Df33847775.55173 Df2 8.23 8.27 8.23 Df5 6.58 Df7 Sto Hgt Dfi Df4 Df6 psi 108.0 7.09 3.99 11840 8.63 5.68 8.63 8.55 6.23 6.33 6.33 6.59 7.09 7.05 5.23 5.23 6.58 6.53 11840 108.0 5.68 3.99 107.8 77.2 5.63 3.95 11816 6.03 4.84 2.99 8464 4.16 77.4 77.1 77.2 8488 6.03 4.84 4.16 2.95 2.95 6.03 8456 4.89 4.16 8472 5.99 5.19 4.80 4.12 2.91 5.68 5.72 5.72 7.63 7.67 7.67 7.54 107.5 107.2 11792 7.13 7.18 8.27 3.99 6.62 8.32 8.36 8.23 11760 11760 8.67 8.71 6.67 4.08 6.67 6.58 8.71 8.71 107.2 7.18 4.08 3.95 5.63 7.41 107.2 8.59 11760 145.4 146.7 146.5 11.03 15936 9.41 5.16 5.12 11.44 10.11 16072 9.41 7.41 11.44 10.11 8.71 16056 11.44 11.03 10.11 9.41 7.41 5.16 146.5 11.48 5.20 16056 11.07 9.46 8.76 7.45 10.15 Stn: 477 Temp: J/C: 38 Air: 85 PvT: Lane: J4 Df2 7.84 Sto Hgt psi 108.1 107.4 107.4 77.0 77.0 Df4 7.73 7.73 5.70 5.74 5.77 7.73 7.73 10.34 10.34 lbf Df5 Df6 Df1 Df3 Df7 4.21 11856 11776 7.11 5.98 5.94 8.92 8.44 7.07 8.80 7.71 4.16 8.40 7.07 5.24 5.20 5.20 5.20 7.76 5.73 5.64 5.73 8.76 5.94 11768 8.40 4.12 3.12 3.04 4.42 4.33 6.17 6.17 8440 6.49 8448 6.41 4.42 4.38 5.98 77. ĭ 76.8 8456 6.54 6.21 3.17 5.69 7.71 7.67 7.76 7.71 8424 11784 6.17 8.40 6.41 3.08 7.07 107.4 8.80 4.16 11736 11728 11736 8.35 7.02 5.89 5.94 4.12 107.1 8.80 7.11 107.0 8.80 8.44 4.16 107.0 7.07 5.94 4.12 8.80 8.40 10.38 10.34 10.30 11.23 11.27 11.23 7.88 7.93 5.42 146.8 16096 11.90 9.47 147.5 147.2 5.47 16168 11.90 9.47

11.31

10.43

9.38

9.51

5.42

7.84

7.93

11.86

11.86

10.30

16152

16128

147.1

File: C:\FWD\DATA\833802C3.FWD Road: MB-75 NORTHBOUND LANE, 15 MILES SOUTH OF WINNIPEG, MB. Subsection: 833802

Sto * * * * * * * * * * * * * * * * * * *	OOONNANAAA44	psi 108.0 107.7 107.8 77.2 77.2 77.2 107.7 107.4 107.2 146.7	Lane: J 1840 11840 11808 11816 8480 8472 8480 11808 11760 16088 16152 16128 16160	Df15505399.05399.0931117	5.4499 6.4325539 6.66666888.11.3253	J/C Df3 7.93 7.844 5.87 5.78 5.78 7.98 7.99 10.45 10.45 10.63	A A A P A P A P A P A P A P A P A P A P	6.76 6.71 6.71 92 4.02 4.02 6.76 6.76 6.00 9.00 9.00 9.00	PvT665.729 55.729 55.729 44.229 44.229 55.555.77 77.77 77.77	Df0334999498928889	14:24
* * * * *	COMMMMMM	psi 108.0 108.3 108.1 77.2 76.8 77.2 76.7 107.5 107.5 107.5 148.1 148.0 TEST W	11880 11848 8472 8424 8472 8408 11784 11824	8.71 8.67 6.54 6.45 6.41 6.37 8.71	7.80 7.76 5.73 5.69 5.69 7.80 7.89	J/C Df53 8.53 8.53 8.326 6.221 8.551 8.551 8.457 11.33 11.33 11.35	7.85 7.85 5.83 5.78 5.78 7.89 7.97	7.25 7.25 5.38 5.38 5.29 7.25 7.10	Df6 6.15 6.15 6.15 4.51 4.51 4.10 6.28	Df7554.2514.2254.22123.1223.1244.24264.22544.22544.242654254255425425555555555	14:26
Sto	50t 5gCCCQQQQ999344444	psi 1071	lbf 11744 11752 11720 6384 6384 8408	5 Te Df1 8.84 8.60 6.66 6.58 6.62 8.80 8.80 8.76 11.77 11.86 11.81	mp: 0f2 8.53 8.57 8.49 6.25 6.25 6.25 6.45 8.45 11.33 11.33	J/C Df3 7.84 7.893 7.884 5.78 5.78 7.80 7.80 7.80 7.80 10.41 10.45 10.45 10.41 Df3 8.18	77555577779999 7775555777779999	ir: 87 6.89 6.89 5.07 5.07 5.07 6.87 7.02 6.87 7.02 8.98	PvT: 5.85 5.876 5.876 4.29 4.29 4.29 5.77 7.67 7.67	88 D£7 4.08 4.08 4.03 3.04 2.99 2.99 3.03 4.03 5.29 5.29 5.29	14:31

File: C:\FWD\DATA\833802C3.FWD Road: MB-75 NORTHBOUND LANE, 15 MILES SOUTH OF WINNIPEG, MB. Subsection: 833802

* 4 147 * 4 147 * 4 147	4.4 16152 11.40	10.04 11.01 10.00 10.97 9.91 10.93	10.13 9.33 10.13 9.29 10.13 9.29	7.84 5.51 7.80 5.42 7.75 5.38	
© 107 C 106 C 107 * 2 76 * 2 75 * 2 75	1bf Df1	Df2 Df3 8.23 7.54 8.32 7.54 8.23 7.50 5.99 5.53 6.12 5.57 5.99 5.53 8.23 7.45 8.27 7.54 8.27 7.54 8.19 7.45 10.99 9.94 11.03 9.94 11.03 9.98 11.12 10.03	38 Air: 87 Df4 Df5 7.01 6.53 7.05 6.58 6.97 6.53 5.15 4.80 5.23 4.76 5.15 4.89 5.15 4.89 7.01 6.53 7.01 6.53 7.01 6.53 7.01 6.53 6.97 6.49 9.29 8.62 9.29 8.62 9.29 8.62 9.37	PyT: 91 Df6	14:41

Summary of Data for section 833802C Analyzed by: ROBERT VAN SAMBEEK on 09-30-1993

UNCORRECTED Overall Deflection Statistics

Mean Values (mils/kip)

					-	•		
Test Loc.	Drop Ht	Sensor 1	Sensor 2	Sensor 3	Sensor 4	Sensor 5	Sensor 6	Sensor 7
1	2 3 4	0.5048 0.4906 0.4884	0.4872 0.4771 0.4723		0.4517 0.4420 0.4377		0.3735 0.3654 0.3596	
		,	Sta	andard De	eviations			
Test Loc.	Drop Ht	Sensor 1	Sensor 2	Sensor 3	Sensor 4	Sensor 5	Sensor 6	Sensor 7
1	2 3 4	0.0368 0.0367 0.0383	0.0306 0.0319 0.0328	0.0283 0.0296 0.0305	0.0255 0.0264 0.0280	0.0239	0.0163 0.0183 0.0196	
			Coefi	ficient of	E Variation	on		
Test Loc.	Drop Ht	Sensor 1	Sensor 2	Sensor 3	Sensor 4	Sensor 5	Sensor 6	Sensor 7
1	2 3 4	7.29% 7.49% 7.84%	6.29% 6.68% 6.94%		5.97%	5.29% 5.73% 6.05%	5.02%	5.26% 5.23% 5.66%

Rigid Pavement Deflection Statistics - 833802C

Mean Values (mils/kip)

Test Loc.	Drop Ht	Sensor 1		Sensor 3	Sensor 4	Sensor 5	Sensor 6	Sensor 7
·								
1	2	0.5048	0.4872	0.4742	0.4517	0.4265	0.3735	0.2701
	3	0.4906	0.4771	0.4636	0.4420	0.4174	0.3654	0.2597
	4	0.4884	0.4723	0.4591	0.4377	0.4127	0.3596	0.2533

Standard Deviations

	Drop Ht		Sensor 2	Sensor 3	Sensor 4	Sensor 5	Sensor 6	Sensor 7
1	2	0.0368	0.0306	0.0283	0.0255	0.0226	0.0163	0.0142
	3	0.0367	0.0319	0.0296	0.0264	0.0239	0.0183	0.0136
	4	0.0383	0.0328	0.0305	0.0280	0.0250	0.0196	0.0143

Coefficient of Variation

Test Loc.	Drop Ht	Sensor 1	Sensor 2	Sensor 3	Sensor 4	Sensor 5	Sensor 6	Sensor 7
1	2	7.29%	6.29%	5.96%	5.65%	5.29%	4.37%	5.26%
	3	7.49%	6.68%	6.39%	5.97%	5.73%	5.02%	5.23%
	4	7 84%	6 94%	6 65%	6 40%	6 05%	5 44%	5 66%

Outlier Statistics - 833802C

Station	Height	Sensor	Number of Std. Dev.
9	2	1	2.44
9	2	2	2.48
9	2	3	2.59
9	2	2 3 4	2.48
9	2 2 2 2 2 3 3 3 3 3 4	5	2.66
9	2	5 6 1 2 3	2.60
9 9 9	3	1	2.65
9	3	2	2.60
9	3	3	2.68
9 9	3	4	2.68
9	3	5 6	2.73
9	3	6	2.70
9	4	1 2 3	2.60
9	4	2	2.60
9	4	3	2.64
9	4	4	2.63
9	4	5 6 1 2 3 1 2 3 4	2.68
9	4	6	2.64
21	2	1	2.53
21	2 2 2 3 3 3	2	2.30
21	2	3	2.19
21	3	1	2.58
21	3	2	2.39
21	3	3	2.21
21			2.06
21	4	1	2.60
21	4	1 2 3	2.45
21	4	3	2.33
21	4	4	2.19

Pavement Construction Information - 833802C

Material Code	Layer Thickness	
730	Portland Cement Concrete	9.8
304	Crushed Gravel	4.9
338	Lime Treated Soil	5.9

RIGID Pavement Thickness Data - 833802C (comparison of each calculation to the expected value)

Minimum expected thickness: 6.37 Maximum expected thickness: 11.27

		Effective
Height	Station	Thickness

No predicted thickness values fall outside the expected range...

RIGID Pavement Thickness Statistics - 833802C

Drop height 2

Subsection	Station	Volumetric k	Effective Thickness
No test pit data	a found, the	refore no results	exist
1	-21 -4 9 21 54 69 98 113 154 174 217 233 260 275 306 320	209 196 181 193 192 202 200 202 199 210 214 197 188 206 210 190	9.13 9.13 8.19 8.00 8.38 8.56 8.75 9.31 9.31 9.13 9.13 8.75 8.94 8.75 9.13
	367 378 425 437 469 484 510 528	200 201 210 193 203 194 192 193	9.50 9.13 8.94 9.13 8.94 9.13 8.75 8.75
Sta	n 1 Overall P andard Devia eff Of Varia		8.91 0.36 4.03%

RIGID Pavement Thickness Statistics - 833802C

Drop height 3

Subsection	Station	Volumetric k	Effective Thickness
No test pit o	lata found, t	herefore no results	exist
1	-21 -4 9 21 54 69 98 113 154 174 217 233 260 275 306 320 367 378 425 437 469 484 510 528	207 195 183 195 195 204 207 213 205 216 219 203 195 215 217 196 209 217 215 201 210 204 199 200	9.13 9.13 8.19 8.56 8.75 8.94 9.50 9.31 9.13 9.13 9.13 9.13 9.13 9.13 9.13 9.13
Subsect	ion 1 Overal Standard Dev Coeff Of Var	iation: 9	9.00 0.33 3.67%

RIGID Pavement Thickness Statistics - 833802C

Drop height 4

Subsection	Station	Volumetric k	Effective Thickness
No test pit dat	a found, therei	fore no results	exist
1	-21 -4 9 21 54 69 98 113 154 174 217 233 260 275 306 320 367 378 425 437 469 484 510 528	205 197 185 195 196 205 208 215 207 219 223 206 198 219 221 200 216 222 225 207 217 211 204 210	9.13 9.13 9.13 8.00 8.56 8.56 8.75 9.31 9.13 9.13 9.13 9.13 9.13 9.13 9.13
St	on 1 Overall Mea andard Deviation	an: 209 on: 10	8.97 0.36 3.98%

OMMENTS FROM FWD DATA FILE FOR ML PASS - NO COMMENTS ENTERED WHILE TESTING

Summary of Results

Section uniformity:

NO Subsections were identified within the section.

Outliers - Test pits: 21 combinations at each test pit NO Test pit data was present.

Outliers - Section data: 504 total combinations within the section 29 height/sensor/station combinations are data outliers in subsection 1.

Structural capacity - Test pits: 3 combinations at each test pit All results for TP 1 are within the range of expected values. All results for TP 2 are within the range of expected values.

Structural capacity - Section data: 72 total combinations within the section All results are within the range of expected values.

Location 1 Drop Height 4 Sensors 1, 2, 3, 4, 5, 6, 7 F2:ScrnDump F10:Exit +1:Prv/Nxt Ht PgUp/PgDn:Prv/Nxt Loc

Location 1 Drop Height 4 Sensors 1, 7 F2:ScrnDump F10:Exit \$\psi:\text{Prv/Nxt Ht PgUp/PgDn:Prv/Nxt Loc}

Location 1 Drop Height 4 Sensor 1
F2:ScrnDump F10:Exit \pm\text{T:Prv/Nxt Ht } \leftright +:Prv/Nxt Defl PgUp/PgDn:Prv/Nxt Loc

F10: ExitPlots Home End PgUp PgDn

Drop Height 2, 3, 4

F10: ExitPlots

Drop Height 2, 3, 4

F10: ExitPlots

Appendix B-1: Pre-Installation Site Recruitment and Coordination Information

Appendix B-1 contains the following pre-installation site recruitment and coordination information:

- ► SMP site recruitment notes; and
- ▶ Pre-installation meeting agenda, list of participants, and notes.

Highways and Transportation

Materials & Research 1181 Portage Avenue (Annex) Winnipeg, Manitoba R3G 0T3

November 20, 1990

Erland Lukanen 1404 Concordia Avenue St. Paul, Minnesota U.S.A. 55104

Subject: Seasonal Deflection Testing

We are pleased that plans are underway to conduct seasonal testing. Our agency is anxious to participate and therefore are willing to provide the necessary traffic control to conduct 16 days of deflection testing per year on our GPS 1 and GPS 2 sections.

Our frost depth estimate is assumed to be within 1 foot. Will it be necessary to eventually install frost depth measuring instrumentation and, if so, what type of instrumentation?

RAVC/rp

R. A Van Cauwenberghe, P. Eng. Senior Engineer: Pavements,

Geotechnical & Research

Attachment

cc: F. D. Young

GPS-1 and	2 SECTIONS	IN NORTH	CENTRAL	REGION

	SECTION	FULL-	AC		DEPTH TO	DEPTH TO	FROST	
AGENCY	NUMBER	DEPTH	(in.)	SOIL	WATER	REFUSAL	DEPTH	
IL.	171002	Y	13.3	F	13	N	(FT)	
IL.	171003	N	11.0	F	N	N		
IN.	181028	Y	-15.0	F	N	N		
IN.	181037	Y	14.0	F	N	N		
IN.	182008	Y	19.0	F	N	N		
IN.	182009	N	15.0	F	N	N		
IA.	191044	Y	16.0	·F	N	N		
KS.	201005	Y	13.5	F	N	16	•	
KS.	201009	Y	10.0	С	N	N		
KS.	201010	Y	8.0	С	N	N		
KY.	211010	N	6.3	С	N	15		
KY.	211014	Y	12.5	С	N	N] .
KY.	211034	Y	15.0	F	N	10		
MI.	261001	N	2.3	С	6	N]
MI.	261004	N	4.5	С	N	2.5	•	
MI.	261010	N	2.3	F	6.5	N		
MI.	261012	N	6.0	F	N	N		
MI.	261013	N	7.5	С	N	N		
MN.	271016	N	3.0	C	N	N		WET SOIL
MN.	271018	N	4.5	С	20	N		
MN.	271019	N	4.8	С	N	N		
MN.	271023	N	10.7	С	N	N		
MN.	271028	Y	9.5	С	N	N		
MN.	271029	Y	8.0	С	N	N		
MN.	271085	Y	12.0	F	N	N]
MN.	271087	Y	14.3	С	N	N		
MN.	276251	N	7.0	С	N	N		WET @ 5'
MO.	291002	N	7.0	F	N	N]
MO.	291005	N	9.0	F	N	N]
MO.	291008	N	10.0	F	N	N]
MO.	291010	N	14.0	F	N	7.5		
NE.	311030	Y	7.0	F	N	N		
ND.	382001	N	2.5	F	N	N		6" LEAN PCC BASE
SD.	469187	N	4.5	F	N	И]
MB.	831801	N	4.4	F	N	N.	7.5]
MB.	836454	Y	11.0	F	N	N	7.5	BIT. STAB. BASE
SK.	906405	N	3.0	С	N	N]

US FOR ESTIMATE ON 833802 ALSO 1

1991 CONTACT

North Central Region, 1404 Concordia Ave., St. Paul, MN 55104, Tel: (612) 644-2996 Fax: (612) 644-1045

RICHARD C. INGBERG Regional Engineer

June 26, 1991

Mr. F.D. Young Dir. Matls. & Res. Manitoba Highways & Transp. 1181 Portage Ave. (Annex) Winnipeg, Manitoba R3G 0T3 Canada 1993 B33802 --

Dear Mr. Young;

Re: Seasonal monitoring of SHRP GPS Sections

The SHRP LTPP program will be monitoring 64 GPS sections located throughout the United States and Canada to determine daily, seasonal, and yearly effects of temperature, moisture and frost on pavement structures. Detailed monitoring is needed to fully understand critical pavement characteristics, and link these characteristics at specific points in time to design factors.

The monitoring activities include: running pavement deflection tests; measuring transverse and longitudinal pavement profiles; and recording temperature, moisture, and frost conditions in the pavement structure and subgrade. Each section will be monitored once a month throughout the year and several additional times during spring thaw on a two year cycle.

The agency will be responsible for helping install the instrumentation, and for providing traffic control for the monitoring activities. Typically, the monitoring activities will start at 5 to 6 a.m. or daylight, whichever is earlier, and continue up to 12 hours. The instrumentation to be installed includes temperature probes, frost probes, and moisture sensors at each site. SHRP will furnish all instrumentation but will need assistance with traffic control, coring, drilling, sawing and any other activity needed for installing the instrumentation. The latest plan calls for deflection testing to begin by late summer, and the installation of instrumentation completed by this fall.

A site selection process was used based on such factors as: surface thickness, joint spacing, frost depth, ground water table, location, section uniformity, pavement condition, sites per region and sites per agency. The following Manitoba monitoring is based on the above factors:

831801 on TC-001 westbound, west of Brandon

We hope that Manitoba can participate in this part of the SHRP LTPP program. We are asking for a preliminary response on whether your agency is willing to include the site in the seasonal monitoring plan. If the site can not be included, an <u>alternative</u> site will have to be found in the North Central Region. Please respond as soon as possible, but no later than July 12, 1991. Should you have any questions or wish to respond by telephone or fax instead of writing, please do not hesitate to call. If I am not available, please talk to Gene Skok, Erland Lukanen or Bob Van Sambeek.

Sincerely,

Richard C. Ingberg Regional Engineer

rci/bw

cc:

Ray Van Cauwenberghe, LTPP Contact

E.L. Skok

R.J. Van Sambeek

Highways and Transportation

Materials & Research 1181 Portage Avenue (Annex) Winnipeg, Manitoba R3G OT3

July 9, 1991

Richard C. Ingberg Regional Engineer, S.H.R.P. 1404 Concordia Ave., St. Paul, Minnesota, 55104

Dear Dick:

I hope this finds you well and enjoying summer. I look forward to our meeting with you and Gene on July 31st, 1991.

Concerning your letter June 26, 1991, regarding seasonal monitoring of SHRP-GPS Sections, this is to advise that we will be pleased to participate.

831801

Hopefully we will be able to provide sufficient staff for instrumentation installation when the time comes.

Kinds regards,

FDY/rp

Fred D. Young, P. Eng

Director of Materials & Research

cc: R.A.V.C. J. Hosang

1993 MCLUDED 833802

Highways and Transportation

MATERIALS & RESEARCH BRANCH

12th Floor - 215 Garry St. Winnipeg, Manitoba R3C 3Z1

Telephone:

(204) 945-8982

Facsimile: (204) 945-2229

COVER		re are any problems with this transmittal, please call 3982.
	DATE:	July 8, 1993
TO:	NAME:	BOB VANSAMBEEK
	OFFICE:	BRAUN INTERTEC
	FAX NUMBER:	(612) 776-7201
FROM:	NAME:	DENNIS CLATSON
	TELEPHONE:	(204) 945-8982
	FAX NUMBER:	(204) 945-2229
	NO. OF PAGES:	(including this one)
MESSA dere	GE/REPLY: _O	u. Department does not have the capacity to eter holes. We do have a drill rig capable
of tu	own.	omm auger, but do not passess one of
	11/2-20	ray beable to contract out the coring and/or
drill	ling to a la	cal outfit. It us know what we'll
hee	A	in 2 weeks
	V	<i>Sel</i>

Date August 23, 1993

To

Subject

LIST Gene & Bob

Memorand

From . Dennis Watson

. Research Engineer . Materials & Research

12th Floor - 215 Garry Street

945-8982

R3C 321

Telephone

RE: Seasonal Monitoring Instrumentation Installation Meeting

Two of our Manitoba Test Sites have been selected by the U.S. Federal Highway Administration's Long Term Pavement Performance project to be monitored seasonally. The purpose of this monitoring is to evaluate the seasonal variations in pavement structural strength. The measurement of the factors affecting this strength, namely frost depth, rainfall, water table, and temperature, involve the installation of the appropriate monitoring instruments. The Manitoba sites involved are PTH 75 at Glenlea and PTH 1W at Oak Lake which are both scheduled for installation of the monitoring instrumentation in mid-October, 1993.

A meeting to organize the activities has been arranged for Friday, August 27 at 10:00 a.m. in the Boardroom on the 15th Floor, 215 Garry Street, Winnipeg.

Please have one of your staff attend in the event that you cannot.

Please contact me at 945-8982 if you require any further information.

DW/bb

Dennis Watson

LIST:

Fred Young, P. Eng., Materials and Research Bob Kurylko, P. Eng., Traffic

Dave Reid, Virden - FAX

Russ Farrell, Selkirk - FAX

Lawrence Papuga (for Rene Gervais), Bridges and Structures Dr. Eugene L. Skok Jr.

Braun Intertec Pavement Inc., St. Paul, Mn. - FAX

R. Van Sambeek

Braun Intertec Pavement Inc., St. Paul, Mn. - FAX

B	R	L	1	U	N	54
N.	Τ	E	R	T	EC	!

Description:	833802 5ITE UISIT
Project No:	DBN×92700 BS
Date:	

Posts 25 francedge of Pre - eguip- Cale inline Sign for Glandes & sta ~2+30 16" to 18" of ship matter of stocker went to prevent

1895. From blowing away next to lone

JIE St. 5700 - Concertate to using the state for instr. 15 de the inditale - expect secrage - Maybe able to back vig up to inst, pole location - No problem u/ trees (even exprosure) Concern - bumps in highway - one and section.

- Agency desine to put pic Block Back inhole presenter Cap. mit fill of the off home? May have BM La plots along Red River that withand elevation can be brought to BM @ sike Should have hardware store

FHWA-LTPP SEASONAL MONITORING PROGRAM IN MANITOBA MEETING AGENDA

August 27, 1993 from 10:00 AM to 12:00 Noon

Boardroom on the 15th floor

215 Garry Street, Winnipeg, Manitoba

	Introduction	7 Modified
	Test Sections	Resistanty
	Sensor Description and Installation Procedures	Probe to
	(Break)	90 10
	Installation and Monitoring Schedule	CE 2000 3' ?
	Safety	Go lo' Comer half?
	Manitoba Highways and Transportation Responsibilities	
	NCRCO and FHWA Staff Responsibilities	? INFO SIGN AT
	Closing Comments	5M 51185 FOIS
7.	perfore per in trench? - bond in place?	SM ? PR?

- STATE MENT FROM
- STATE MENT FROM
FHUIT FOR
1003 PAPER

FHWA-LTPP SEASONAL MONITORING PROGRAM IN MANITOBA

Introduction	beet
Objectives of the Se	easonal Monitoring Program
environment	d analyze data to better understand the short and long term impacts of tal factors including temperature, moisture, and frost/thaw depth on a ructure for improving pavement design.
- we fre - par - par	fined in the core experiment monitored by FHWA-LTPP include ext or dry climate
- Factors no - pav	t defined in the core experiment include
- sha	allow water table (Sery < Lallow) allow bedrock
included in t - red - use	re encouraged to monitor supplemental sections to study factors not he core experiment suced monitoring requirements existing GPS or SPS sections — Lee to the interest of the existing GPS or SPS sections — Lee to the interest of the existing database of the first clean. Installation and Monitoring Activities
- Two days f	for initial instrumentation installation and monitoring
- About \$10,	000 of equipment installed at each site - not including labor costs
- ride - pav year - fros	ronmental variations to changes in pavement performance rement, base and subgrade strength calculated from deflection data ceted monthly most of year and bi-weekly in the spring equality determined from profile data collected five times per year rement distress documented using detailed distress surveys two times per the ave/swelling soil monitored using elevation data collected five times st year and two times per year after the first year

Test Sections Section Location

, us + Camaba

- 64 sections in the Core Experiment monitored under FHWA-LTPP contract

- 16 sections in the North Central Region

- two core sections in Manitoba

al sections identified in the North

- no supplemental sections identified in the North Central Region at this time

Some of in build

Allowable Maintenance

- routine maintenance

- any scheduled?

- no structural rehab preferred for ten years

- safety is primary concern

- Coreful around buried requipment - ilse probe in souther early one inch deep.

3362 - Need repairs autside section - 5lab replacement

- Pilot in Little Fally, MN

Sensor Description and Installation Procedure

TDR (Time Domain Reflectometry) Probes

- FHWA design and manufacture
 - three prong
 - \$60.00 each
- measure dielectric of material between probes and relate to moisture content

 - dry soil = 3 to 4 _ Sat . Sand ~ 60? (Little Falls)
 water = 80
- calibration
 - laboratory in air and water
 - field moisture test on material placed on probes
 - retain soil samples for additional laboratory calibration
- 10 probes per installation
 - one mid-depth in the base < 12
 - seven at six inch intervals in the top of the subgrade
 - two at 12 inch intervals approximately seven feet below the surface

Thermistor Probe

- Measurement Research Corporation (MRC)
 - \$1000.00
- thermistors change resistance with change in temperature
- built in multiplexer/for automated readings
- two part
 - stainless steel section -13
 - monitor temperature gradient through the pavement surface
 - one inch deep
 - mid depth in Surface
 - one inch from bottom of pavement
 - plexiglass section
 - monitor temperatures at 15 points along probe
- laboratory calibration at three temperatures

-ica beth - Room temp. - worm bath

Resistivity Instrumentation

- CRREL design
 - PVC probe with 36 electrodes at two inch intervals
 - \$800.00
- large increase in resistance when moisture in the soil freezes
 - determine both frost and thaw depth

- plat resistance us dette profiles

- require signal generator and multimeters
 - compute AC resistance between electrodes
- both manual measurement and automated

s _ Ac present more ment of

- a word polorized

Air Temperature

- Campbell Scientific
 - \$150.00
- air probe and radiation shield
- = 9' above ditely - mount on instrument pole

Rain Gauge/Tipping Bucket

- Texas Electronics
 - \$255.00
- 0.1 mm (0.004 inches) liquid precipitation per tip
- clear out reach visit. - Target?

- bird hours?

- mount on instrument pole

Equipment Cabinet and Instrument Pole

- telephone pedestal
 - break away classification
 - contain power supply, data logger, sensor connections for mobile reader
 - conduit runs into cabinet from instrumentation hole
 - pea rock inside base to prevent condensation
 - located about 26 feet off edge of driving lane _ limited by celle length
- instrument pole
 - two inch diameter galvanized pipe
 - break away classification
 - extend below frost line
 - holds rain gauge and air temperature probe
 - located about 27 feet off edge of driving lane behind equipment cabinet

Interface/Communications Equipment

- mobile unit
 - used on site to read TDR probes and resistivity probe
 - multiplexers for automated readings
- cable reader
 - Tektronics model 1502
 - \$8000.00
 - generates signal and monitors reflected energy from TDR probes

 relate time poles

tinuously to delective

white o

to moisture

- computer and software

- "onsite" used to monitor temperatures and rainfall continuously
- "mobile" used to monitor resistivity probe and TDR probes during site visits

Observation Piezometer

- monitor depth to ground water table
- designed to act as frost free bench mark
 - Dave Esch design
 - anchor at 14 foot depth
 - sliding section extends eight feet below the surface

- filled with water proof grease

Installation and Monitoring Schedule

Instrumentation Installation and Initial Monitoring

- two days required with third day as contingency
 - first day complete instrument installation
 - second day collect data

14th Contingency (setup for exect site) - tentative schedule - Oct. 12 & 13 - 831801, WB PTH 1, Near Oak Lake

Oct. 14 & 15 833802, NB PTH 75, Near Glenlea

Oct. 18 & 19 as contingency days for weather or equipment problems

ong Term Monitoring

- one day every month except during spring every other week.

- every other year for 10 years

70 days north of monitoring

Safety

- clothing - hardhots naround drill rig.

and steel to a books

- user + warme hat Agency Requirements

- Brigh attention any safety Concerns

i	
	Manitoba Highways and Transportation Responsibilities
P 1	Manitoba Highways and Transportation Responsibilities Project Contacts for Maintenance Activities and Traffic Control - will set up traffic control directly with districts if desired Public Relations - coordinate with FHWA representative on-site regarding any news coverage Utility Clearance 700 foot section (overald 100 foot sate in the bath and a of 500 foot section)
4.67	Public Relations - coordinate with FHWA representative on-site regarding any news coverage
	Triller Channels
Giv (1)	Utility Clearance - 700 foot section (extend 100 foot outside both ends of 500 foot test section) - sections marked on right edge of driving lane with white paint - clear driving lane and 40 feet into the ditch
-	Traffic Control for Full Lane Closure
	- two days for initial installation and monitoring
	- lane closure for 700 foot section
	- signs, cones, and arrow board - set up as early as possible
1	- set up as early as possible -7:30 AM?
	- may want to mark locations for signs
•	Establish Bench Mark for Elevation Reference
	- not affected by frost
	Establish Bench Mark for Elevation Reference - not affected by frost - actual elevation not required
	Equipment
	- pavement saw and operator
i	- only required for first day during instrument installation, $\gamma = 2^{-1/2}$
	- saw 16 inch square block out of the pavement surface
	- located in the outer wheel path
	- only required for first day during instrument installation - saw 16 inch square block out of the pavement surface - located in the outer wheel path - will put block back in-place on AC section - equipment capable of cutting one inch deeper than estimated pavement
, J 1 ^{sh}	- equipment capable of cutting one inch deeper than estimated pavement
المحتولا	thicknesses below
	- 831801 4.4 inches Asphalt (5.5 15 mm)
	- 833802 9.8 inches Portland Cement Concrete //
51	- saw four inch wide trench for conduit (100000) - extend from outer wheel path to pavement edge (2 5)
7,	- drill rig and operator
	- only required for first day during instrument installation - able to drive in ditch or back up to location for instrument pole - bore one six-inch diameter hole for piezometer (150 -) - 14 foot depth (-) - - - - - - - - -
(- able to drive in ditch or back up to location for instrument pole (27 = fe Lane)
لأ ر ,	- able to drive in ditch or back up to location for instrument pole (27' = fe lame)
Crec	- bore one six-inch diameter hole for piezometer (150)
م م	- 14 foot depth (~ 1 meta)
1 5 10	- located on shoulder
* ()	- location may depend on cap used for piezometer

- bore one 12 inch diameter hole for instrumentation - solid stem auger preferred - eight foot depth (2.5 meter) - located in outer wheel path - NCRCO has 12 inch diameter auger with 1-5/8 inch male hex drive - bore one 12 inch diameter hole for equipment cabinet - two feet deep - located about 26 feet outside the driving lane in the ditch - bore one six-inch diameter hole for the instrumentation pole - 10 feet deep (2 weter - located adjacent to the equipment cabinet in the ditch - small portable generator?

- not sure if needed - Looking into in - - ter for won Materials - cover assembly for piezometer - must function for ten years - able to open in the winter - minimum four inch inside diameter sackcrete for piezometer cover and instrumentation pole - estimate six bags - bentonite pellets for sealing piezometer - five gallon bucket - filter sand for piezometer - 400 pounds (four bags) Silien Sond - particle size not critical - pea gravel or trap rock for equipment cabinet - 500 pounds - 3/8 inch size preferred quick set/concrete to repair PCC sections only for 833802 by Glenlea

water for mixing sackcrete and equipment clean-up
 estimate 30 gallons

- estimate three to four cubic feet

Pavement Repairs

Roll sections Age shoulder

41. - 514

u/ tele; have

- patch conduit trench on AC shoulders with asphalt patch
- assist with block replacement on AC section
- assist with rapid set concrete patch for instrumentation hole and conduit trench on PCC pavement

Miscellaneous Activities

- mow grass in area identified for utility clearance or bring weed whip to the site Ester area w/

NCRCO (Braun Intertec) and FHWA Staff Responsibilities

Instrumentation

- provide all instrumentation
- install all instrumentation
 - may ask anyone on-site for assistance
- monitoring activities
 - will collect all required monitoring data
- - Bob Van Sambeek

- will have two - NCRCO phone 612-776-7522 program on the - main contacts for Seasonal Monitoring A -- 4 -- 5

- Ron Urbach

Closing Comments

- Any questions or commerce, place call.

Sport Contains

Springe pole in Rhack 2' gold

Telineared

Telineared

Telineared

Telineared

BRAUN" NTERTEC

Description:	MANITE BA	SEASONAL.	PEANNING	MEETINE
Project No:	DBNX 927	00 R5		
Date:	8/27/93	Bv. Pr	/	· · · · · · · · · · · · · · · · · · ·

ME	DIST DIV.		PHON	IE NumBER
l l	VAN SAMBEEK	BIGAUN INTERTER / SHRP		-776 7522
Wives	SWATSON	MATERIALS		945-8982
ent.	CAROINER	VIRDEN MAINTERANCE/WAS		1885
	NG	MATILS & RESEARCH		945-8982
	HILDERMAN	M ATILS		945-8982
202	Findley	Eliphuays Region 2 Supt		745-2086
Darc	Reid	Highway & Feeren 3		748-2414
1-RA	tun larsen	HIGHWAYS TRAPFIC ONGWOORIG		945 -3781
zy Var	r Carwenberghe	Materials & Research		945-8982
fius	5-Janel	Legim / maintenerse moneger.		785-5248

- get Donnis Copy of

Date

September 22, 1993

To

LIST

Memorand

TILD & VEDENVOU

From . Dennis Watson

· Pavement Research Engineer

. Materials & Research

12th Floor - 215 Garry Street

Telephone 1 945-8982

Subject

Installation of Seasonal Monitoring Instruments

This memo is intended to serve as a follow-up to our meeting of August 27 at which a number of responsibilities were assigned.

The schedule remains unchanged with October 12 & 13 at Oak Lake and October 14 & 15 for Glenlea scheduled for installation and verifications. Traffic control personnel will be required for all four days with the installation personnel required on October 12 and 14 only.

A helix-type monument has been selected for use as an elevation benchmark and will be installed by Gerald Chartier's drill truck. The Regions responsible will be requested to establish an accurate elevation from a geodetic benchmark.

Don Findlay (Region 2 Superintendent) will provide a pavement saw, operator and an electric generator for use on both of the sites.

Bill Halwachs (Region 2 Superintendent) will make Gerald Chartier's drill truck available for both sites. Mr. Chartier will arrange for an adaptor for connecting the helix monument to the drill shaft for installation of the elevation benchmark. Mr. Chartier's truck is capable of drilling all of the holes required on both sites as well as installing the helix monuments.

Roger Sutyla (Region Superintendent) and Richard Murphy (Region 3 Superintendent) have been asked to provide 200 kg of filter sand, 250 kg of pea gravel, 1 pail of cold mix asphalt, and 100 litres of water per site. These Superintendents are also requested to ensure that the grass be mowed 50 m on each end of the test sites and halfway down the slope to facilitate easier installation of the instruments. Reflective hazard markers are also required for installation on the instrument pole.

The utility companies, namely Manitoba Telephone System and Centra Gas, have been contacted and have assured me that the drilling will not interfere with their facilities.

I will bring the 12 bags of eackcrete, quick set concrete, piezometer cover, and bentonite pellets to the sites.

If there are any questions on these matters, please feel free to contact me at anytime.

nes / Patos Dennis Watson

Attached - Site Layout

DW/bb

Distribution List: Bob Van Sambeek, Project Engineer, Braun Intertec, St. Paul, Mn. (FAX) Russ Farrell, Maintenance Manager, Selkirk Highways Office Richard Murphy, Maintenance Superintendent, Virden Highways Office Roger Sutyla, Maintenance Superintendent, Steinbach Highways Office Don Findlay, Maintenance Superintendent, Carman Highways Office Gerald Chartier, Drill Truck Operator, Wilkes Yard

ERIAL

T.P.P. SEASONAL PROGRAM IN MANITOBA .H.W.A. SITE LAYOUT

DATE:

Manitoba

2204 945 2229

Highways and Transportation Materials and Research

MATERIALS & RESEARCH BRANCH

12th Floor - 215 Garry Street Winnipeg, Manitoba R3C 3Z1

Telephone: (204) 945-8982 Facsimile: (204) 943-2

FACSIMILE TRANSMISSION SHEET

No. OF PAGES (including this series

Please call 945-8982 if there is any problem with this transmittal.

10:	20101	K \$ BOB	FROM:	DENNIS WA	2750N		
		DRTHMEY	ER				
fl	()			(204) 945-8982			
FAX:	(612)	776-7201	FAX:	(204) 945-2229			
SUBJECT: "FULL DAY" FWD TESTING ON SEASONAL SITE INMb.							
MESSA							
Pll	ase-	ensure Bo	ob + Dick	receive this fa	κ.		
Originals were mailed today.							
Thanks, Jamis							
		· · · · · · · · · · · · · · · · · · ·					

Highways and Transportation

10:51

Materials and Research Branch 12th Floor 215 Garry Street Winnipeg, Manitoba, CANADA R3C 3Z1

May 17, 1994

Mr. Richard Ingberg LTPP Regional Engineer Suite 10 1983 Sloan Place St. Paul MN 55117

Dear Dick:

During the Seasonal Monitoring Program Pre-Installation Meeting the possibility of obtaining data on the daily variation in PCC pavement joint load transfer efficiency due to warp/curl effects was discussed. We understand that this information could be obtained as part of the LTPP Seasonal Monitoring Program with a full day of FWD testing being conducted over a complete thermal cycle.

We would be willing to supply the necessary traffic control for such testing to occur on our PTH 75 Seasonal Monitoring Site at Glenlea, Manitoba.

If you require any further information or assistance in this matter, please don't hesitate in calling.

Sincerely yours

R. A. Van Cauwenberghe, P. Eng.

A/Director of Materials & Research

Dennis///tatoo

DW/bb

cc: Dr. E.L. Skok, jr.

R, Van Sambeek

- TESTING LEVER DONE

- WILL TRY AGAIN ON 1996/1997 Loop,

BRAUN	S
INTERTEC	

Description:	SMP		
Project No:	DBNX92700	<i>B</i> 5	
Date:	6/3/61: By:	Q1/	

6/3/9	4	(ALL	From	Dennis	WA	500)
~ 	- LAKE	- Pu	{75me/3k	: <i>Els</i>	426.	577 M
(FLEN	- جهاد		l r		235.	M SSY
Ico 2	Maz.			comp		

TFB. 5, 1993 3AKLIAKE - 426, 573

Manitoba

Highways and Transportation

Materials and Research Branch 12th Floor 215 Garry Street Winnipeg, Manitoba, CANADA R3C 3Z1

ME	SSAGE: L FAX: L	No. qf PAGES (in	cluding this one) 2
TO:	BOB VAN SAM	DATE: FROM:	MAY30/95 Dennis
PHONE:	(d) 942-3059	PHONE:	(204) 945-8982 (204) 945-2229
SUBJI	ECT: PIEZOMETER	ELEVATION-	VICINITY OF GLENCEA #833802
	235.413 m abo	ove sea leve	<u>e</u> (.
			·

Appendix B-2: Pre-Installation Equipment Checks/Calibration Information

Appendix B-2 contains the following data sheets for the pre-installation equipment checks/calibration:

- ▶ Data Sheet SMP-C01: TDR Probe Check;
- ▶ Data Sheet SMP-C02: Thermistor and Air Temperature Probe Check;
- ▶ Data Sheet SMP-C03: Electrical Resistivity Probe Check;
- ▶ Data Sheet SMP-C04: Function Generator, Multi-meter, and Switch Box Checks; and
- ▶ Data Sheet SMP-C05: Tipping-Bucket Rain Gauge Calibration.

Dielectrie Constant	<u></u>
Apparent Length, (m)	0.21
TDR Trace	"In Air"

Stored Trace

Stored Trace

Difference Trace

Data Sheet SMP-C01: TDR Probe Check

[83] [38 p 2]	Tektronix 1502B TDR Date (0-7-93) Cable 28 80 2 - 8380 / Notes // 2 c Rotes // 2 c Input Trace Stored Trace Stored Trace Stored Trace
Agency Code LTPP Section ID	17.890 m
LTPP Seasonal Monitoring Program Data Sheet SMP-C01 (Page 2) TDR Probe Check	istance/Div25 m/div artical Scale77.0 mp/div bise Filter8 avs

Dielectric Constant ²	10.58
Apparent Length, (m)	1.92
TDR Trace	"In Water"

<u>Note:</u> Dielectric constant is determined as follows:

$$e = \left[\frac{(L_a)}{(L)(V_p)} \right]^2 = \left[\frac{(D_2 - D_1)}{(L)(V_p)} \right]^2$$

where $\varepsilon =$ dielectric constant; $L_{\rm s} =$ apparent length of probe, m; L = actual length of probe units (= 0.203 m (8 in) for FHWA probes); $V_{\rm p} =$ phase velocity setting (= 0.99).

TDR Probe Serial Number: $\frac{63}{8}$ Comments: (1) Not measured

0.203M B "L" in 1993, used

Date (dd/mmm/yy): $\frac{2\pi \Pi}{b \cdot 2 \cdot 2 \cdot 2}$ $\frac{Employer: Braun Intertec Corporation}{b \cdot 2 \cdot 2 \cdot 2 \cdot 2}$

LTPP Seasonal Monitoring Program	-	Agency Code	(83)
Data Silicet SMR-CU1 (F3		LTPP Section ID	13802
'ursor	OLL OLL OLL	18. 190 m	Tektronix 1502B TDR Date 10-7-73 Cable 833802-83802 Notes SybatteD Input Trace Stored Trace Stored Trace
TDR Trace "Shorted at Start"	Apparent Length, (m)	ngth, (m).	Dielectric Constant
Cursor	O CLL OLL OLL OLL	16.870 m	Tektronix 1502B TDR Date /0-7-73 Cable を32802-8380と Notes
TDR Trace	Apparent Length, (m)	տցներ, (m) Մ	Dielectric Constant

Data Sheet SMP-C01: TDR Probe Check

			7
LIPP Seasonal Monitoring Prog	g Program	Agency Code	[83]
Data Stieet SMR-CUI (Page 2)	(7))
TDR Probe Check		LTPP Section ID	38021
			- 4 - 7
D 076") ******* 05 m	···	17.920 m : Tektronix 1502B TDR	DR

rtical Scale.... 77.0 mp/div .25 m/div se Filter 8 avg 66.0 Wer ac :tance/Div....

Tektronix 1502B TC	Date 10-7-9) Cable 833802-	Notes //22	Input Trace	Difference Trace	
17.920 m					
9C /					

	-
ielectric Constant ²	87.11
Q	
Length, (m)	78
Apparent	•
TDR Trace	"In Water"

¹ If dielectric constant not between 0.75 and 2.0, contact FHWA LTPP Division ² If dielectric constant not between 76 and 84, contact FHWA LTPP Division

Note: Dielectric constant is determined as follows:

$$e = \left[\frac{(L_a)}{(L)(V_p)} \right]^2 = \left[\frac{(D_2 - D_1)}{(L)(V_p)} \right]^2$$

where $\varepsilon =$ dielectric constant; $L_{\star} =$ apparent length of probe, m; L = actual length of probe units (= 0.203 m (8 in) for FHWA probes); $V_{p} =$ phase velocity setting (= 0.99).

TDR Probe Serial Number: 83802 TDR Probe Length, L: ____ (1)_ m Length of Coax Cable: ____ (1)_ m Comments: (1) Not measured

in 1993, used 0.203 M for "L"

Employer: Braun Intertec Corporation Date (dd/mmm/yy): 161201195 (inche led 1993) Prepared by:

LTPP Seasonal Monitoring	-	Agency Code	(42)
Data Sheet SMF-CVI (Fage 1) TDR Probe Check		LTPP Section ID	E 98E
Cursor	U SEE SEE SEE	18.220 m	Tektronix 1502B TDR Date 1502B TDR Cable 833802-83803 Notes SNorTED Input Trace Stored Trace Difference Trace
TDR Trace	Apparent Length, (m)	ength, (m)	Dielectric Constant
"Shorted at Start"	N	7	1/1/4
ursor	A STR STR STR	16.860 m	Tektronix 1502B TDR Date 127-93 Cable 833802 -83803 Notes
TOR Trace	Thousand	m) the	Disloctio Constant

Data Sheet SMP-C01: TDR Probe Check

"In Air"

 [8 3]	138021	,
 Agency Code	LTPP Section ID	
LTPP Seasonal Monitoring Program Data Sheet SMP-C01 (Page 2)	TDR Probe Check	

ertical Scale.... 77.0 m.P/div listance/Div25 m/div ursor 17.940 m loise Filter 8 avg Р 0.99 OWer ac

Tektronix 1502B TDR	Date 10-7-93	Cable 855802-83803	140tes 1426		Input Trace	Stored Trace	Ulterence Irace	
٤.		•	<u> </u>	-	: 	•		1
7.940 m	· · · · · · ·	: :	: :	ļ		: : :		/ :-/
	•	:	:	! 	: : :	: : :		
		•				: : : :		
			•	; ; !	• • • • • • • •	:	<i>:</i>	
	• • • •						• • • • •	1 1 1 1 1
	: : :نسلمبر			سمنن	ممر		· · · · · ·	111111
ac Ac							•	

	
Dielectric Constant ²	83.83
Apparent Length, (m)	7 B. I
TDR Trace	"In Water"

¹ If dielectric constant not between 0.75 and 2.0, contact FHWA LTPP Division ² If dielectric constant not between 76 and 84, contact FHWA LTPP Division

Dielectric constant is determined as follows: Note:

$$e = \left[\frac{(L_a)}{(L)(V_p)} \right]^2 = \left[\frac{(D_2 - D_1)}{(L)(V_p)} \right]^2$$

where $\varepsilon =$ dielectric constant; $L_{\star} =$ apparent length of probe, m; L = actual length of probe units (= 0.203 m (8 in) for FHWA probes); $V_{\rm p} =$ phase velocity setting (= 0.99).

TDR Probe Serial Number: 83803

Comments: (1) Not hearned

TDR Probe Length, L: ____ (1)_ m Length of Coax Cable: __ (1)_ 1993, used 0.203 m Gr "L"

74 11.

Date (dd/mmm/yy): $\frac{2}{2}$ $\frac{2}{2$

LTPP Seasonal Monitoring Program Data Sheet SMP-C01 (Page 1) TDR Probe Check	Program Agency Code (age 1) LTPP Section 1D	[28] [3802]
<u> </u>	ac 17.	310 m Tektronix 1502B TDR Date /ບ-7- 43 Cable <u>智 53 80 2 </u> <i>紹 3</i> 86 4
oise Filter 8 avs	•	Motes Silun To'D
	**** ****	Stored Trace Stored Trace Difference Trace
TDR Trace	Apparent Length, (m)	Dielectric Constant
"Shorted at Start"	- V/V -	_ M/ _
ursor	and the state of t	100 m Tektronix 1502B TDR Date (10-7-9%) Cable 83.3802 83804 Notes 71R Input Trace Stored Trace Stored Trace
TDR Trace	Apparent Length, (m)	Dielectric Constant'

Data Sheet SMP-C01: TDR Probe Check

130 63	C 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
Agency Code	17.920 m	
ring Program I (Page 2) neck	Sum Sum Sum	
LTPP Seasonal Monitoring Progra Data Sheet SMP-C01 (Page 2) TDR Probe Check	Sursor	

Dielectric Constant ²	74.10
Apparent Length, (m)	L.73
TDR Trace	"In Water"

Dielectric constant is determined as follows: Note:

$$\mathbf{e} = \left[\frac{(L_a)}{(L)(V_p)} \right]^2 = \left[\frac{(D_2 - D_1)}{(L)(V_p)} \right]^2$$

where $\varepsilon =$ dielectric constant; $L_{\rm s} =$ apparent length of probe, m; L = actual length of probe units (= 0.203 m (8 in) for FHWA probes); $V_{\rm p} =$ phase velocity setting (= 0.99).

TDR Probe Length, L: ____ (//_ m Length of Coax Cable: (//__. TDR Probe Serial Number: 83804 Comments: (1) Not measured in

1993 wsed 0.203 M For "L

Prepared by:

LTPP Seasonal Monitoring Program	ing Program	Agency Code	各
TDR Probe Check	(rage 1) eck	LTPP Section ID	[38 0 2)
Cursor	Na ser ser	18, 130 m	Tektronix 1502B TDR Date 1502B TDR Cable 1933 1502
TDR Trace			Difference Trace

		=
Dielectric Constant	- M/A -	Tektronix 1502B TDR Date
	-	16.890 m
Apparent Length, (m)	- V/N	ac 16.
1DK Irace	"Shorted at Start"	Sursor

Dielectric Constant ¹	1.20
Apparent Length, (m)	1.22
TDR Trace	, "In Air"

Data Sheet SMP-C01: TDR Probe Check

[83]	[3802]	Tektronix 1502B TDR Date 10-7-63 Cable 833802-83805 Notes 120 Input Trace Stored Trace Stored Trace	
Agency Code	LTPP Section ID	17.900 m	
LTPP Seasonal Monitoring Program Data Sheet SMP-C01 (Page 2)	TDR Probe Check	Cursor	

Dielectric Constant²

Apparent Length, (m)

TDR Trace

"In Water"

<u>Note:</u> Dielectric constant is determined as follows:

$$\mathbf{e} = \left[\frac{(L_a)}{(L)(V_p)} \right]^2 = \left[\frac{(D_2 - D_1)}{(L)(V_p)} \right]^2$$

where ε = dielectric constant; $L_{\rm h}$ = apparent length of probe, m; L = actual length of probe units (= 0.203 m (8 in) for FHWA probes); $V_{\rm p}$ = phase velocity setting (= 0.99).

TDR Probe Serial Number: 22605 TDR Probe Length, L: _______ m Length of Coax Cable: _________ 0,200 M for "L" ir 1993, used Comments: (1) Not measured

Prepared by: Date (dd/mmm/yy): 16140195 (i.e.d. led (993) Prepared by:

LTPP Seasonal Monitoring Progr Data Sheet SMP-C01 (Page 1) TDR Probe Check	Program Agency Code age 1) LTPP Section ID	(28)
Cursor 17.560 m Distance/Div 25 m/div Ver 1 Scale 177 mp/div VP 0.99 Noise 2r 8 avg	oe ;	60 m Tektronix 1502B TDR Date 10-7-83 Cable 832802 83806 Notes Short60 Input Trace Stored Trace
TDR Trace "Shorted at Start"	Apparent Length, (m)	Dielectric Constant
Cursor	Office of the series of the se	10 m Tektronix 1502B TDR Date 1502B TDR Cable 833802 83800 Notes Notes A/A Input Trace Stored Trace Difference Trace
TDR Trace "In Air"	Apparent Length, (m)	Dielectric Constant

Data Sheet SMP-C01: TDR Probe Check

(58) (38)	Tektronix 1502B TDR Date 10:-7-97 Cable 823802-83% Notes 1/2c Input Trace Stored Trace Stored Trace
Agency Code LTPP Section ID	17.650 m
LTPP Seasonal Monitoring Program Data Sheet SMP-C01 (Page 2) TDR Probe Check	mo/div mo/div
LTPP Seasonal Data Sheet SI TDR P	Cursor

Dielectric Constant Apparent Length, (m) 'In Water"

TDR Trace

8 7

¹ If dielectric constant not between 0.75 and 2.0, contact FHWA LTPP Division ² If dielectric constant not between 76 and 84, contact FHWA LTPP Division

Dielectric constant is determined as follows:

$$e^{-1} = \left[\frac{(L_a)}{(L)(V_p)} \right]^2 = \left[\frac{(D_2 - D_1)}{(L)(V_p)} \right]^2$$

where $\varepsilon =$ dielectric constant; $L_{\rm a} =$ apparent length of probe, m; L = actual length of probe units (= 0.203 m (8 in) for FHWA probes); $V_{\rm p} =$ phase velocity setting (= 0.99).

TDR Probe Serial Number: 43606 TDR Probe Length, L: ___ (/)_ m Length of Coax Cable: $\frac{(1)}{2}$.

1993, used 0.203 M Fait Comments: (1) Not reasured

[20] [30]	Tektronix 1502B TDR Date Co-7-93 Cable 63 3802 7 Notes SHURTSC Input Trace Stored Trace Difference Trace	Dielectric Constant	Tektronix 1502B TDR Date (0-7-93 Cable 833802-8380-7 Notes 410 Input Trace Stored Trace Stored Trace
Agency Code LTPP Section ID	18.200 m	Apparent Length, (m)	16.940 m
LTPP Seasonal Monitoring Program Data Sheet SMP-C01 (Page 1) TDR Probe Check	Cursor	TDR Trace "Shorted at Start"	'stance/Div25 m/div 'ertical Scale 177 m.p/div 'p

Data Sheet SMP-C01: TDR Probe Check

Dielectric Constant

Apparent Length, (m)

TDR Trace

"In Air"

(£3)	Tektronix 1502B TDR Date	Difference Trace
Agency Code LTPP Section ID	18.200 m	
LTPP Seasonal Monitoring Program Data Sheet SMP-C01 (Page 2) TDR Probe Check	Cursor 18.200 m ac Distance/Div .25 m/div Vertical Scale 77.0 m.p/div /P .0.99 Joise Filter 8 avs	-

Dielectric Constant ²	82.23	
Apparent Length, (m)	1.93	
1DIK Trace	"In Water"	

Note: Dielectric constant is determined as follows:

$$\mathbf{e} = \left[\frac{(L_a)}{(L)(V_p)} \right]^2 = \left[\frac{(D_2 - D_1)}{(L)(V_p)} \right]^2$$

where $\varepsilon =$ dielectric constant; $L_{\rm s} =$ apparent length of probe, m; L = actual length of probe units (= 0.203 m (8 in) for FHWA probes); $V_{\rm p} =$ phase velocity setting (= 0.99).

TDR Probe Serial Number: $\frac{83807}{1000}$ TDR Probe Length, L: _________ m Length of Coax Cable: $\frac{1}{2}$. in 1993, used 0.203 M for "L" Comments: (1) Not heasured

rrepared by: $\frac{14\Pi}{61M0V19}$: $\frac{14\Pi}{61M0V19}$ Employer: Braun Intertec Corporation HY Prepared by:

LTPP Seasonal Monitoring Program Data Sheet SMP-C01 (Page 1) TDR Probe Check	Program age 1)	Agency Code LTPP Section ID	(28) (2) (2)
Cursor		18. 160 m	Tektronix 1502B TDR Date (v-7-9? Cable 633 802-83% 8 Notes SUCATED Input Trace Stored Trace Difference Trace
TDR Trace "Shorted at Start"	Apparent I	Apparent Length, (m)	Dielectric Constant
Cursor	No.	16.890 m	Tektronix 1502B TDR Date /o-7-67 Cable 853802 - 8/86 Notes A/// Input Trace Stored Trace Stored Trace Difference Trace

Data Sheet SMP-C01: TDR Probe Check

Dielectric Constant

Apparent Length, (m)

TDR Trace

"In Air"

20

	(83)	138021	
•	Agency Code	LTPP Section ID	
	LTPP Seasonal Monitoring Program	TDR Probe Check	

Cursor 17.890 m	ac	17.890 m	Tektronix 1502B TDR
Uistance/Div 25 m/div			Date 10-7-93
VP 0.99	223		Cable 873802 - 83808
Noise Filter 8 av9	المستنس		Notes H.O.
Powerac		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
	÷L.		Input Trace
			Stored Trace
	· · · · · · · · · · · · · · · · · · ·		Difference Trace

OR Trace Dielectric Constant ²	n Water" 1.93
TDR Trace	"In Water"

Dielectric constant is determined as follows:

$$e = \left[\frac{(L_a)}{(L)(V_p)} \right]^2 = \left[\frac{(D_2 - D_1)}{(L)(V_p)} \right]^2$$

where $\varepsilon =$ dielectric constant; $L_{\rm s} =$ apparent length of probe, m; L = actual length of probe units (= 0.203 m (8 in) for FHWA probes); $V_{\rm p} =$ phase velocity setting (= 0.99).

TDR Probe Serial Number: $\frac{2}{8}$ $\frac{2}{8}$ $\frac{2}{8}$ $\frac{2}{8}$ TDR Probe Length, L: ____ (/)__ m Length of Coax Cable: ____ (/)__. Comments: (1) Not neasured in 1993, used 0.203 M for "L"

Date (dd/mmm/yy): $\frac{\sqrt{A} \pi}{\sqrt{b} \sqrt{b} \sqrt{b}}$ (i. shelled 1993)

LTPP Seasonal Monitoring Program Data Sheet SMP-C01 (Page 1)	Program	Agency Code	[83]
TDR Probe Check		LTPP Section ID	<u> </u>
Cursor 18.240 m	ac	18,240	. Xie
Vertical Scale 177 mp/div			Cable 933802 - 83869
_			
Noise Filter 8 avg			
Power ac			
			Input Trace
		<i>f</i>	Stored Irace
◆b b	ohin		Difference Trace
TDR Trace	Apparent I	Apparent Length, (m)	Dielectric Constant
"Shorted at Start"	/h_		
Cursor 16.890 m	ac	16.890	m Tektronix 1502B TDR
Distance/Div 25 m/div			
/ertical Scale 177 ms/div			Cable 833802-83809
Joice Filter 8 ave			Notes 7.12
owerac		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
	01		input Trace
			Stored Trace
	•		Unrerence Irace

Data Sheet SMP-C01: TDR Probe Check

Dielectric Constant

Apparent Length, (m)

TDR Trace

"In Air"

Note: Dielectric constant is determined as follows:

$$\mathbf{e} = \left[\frac{(L_a)}{(L)(V_p)} \right]^2 = \left[\frac{(D_2 - D_1)}{(L)(V_p)} \right]^2$$

where $\varepsilon =$ dielectric constant; L_s = apparent length of probe, m; L = actual length of probe units (= 0.203 m (8 in) for FHWA probes); V_p = phase velocity setting (= 0.99).

TDR Probe Serial Number: 22202 TDR Probe Length, L: -(1) m Length of Coax Cable: (0)Comments: (1) Not reasured

E

Date (dd/mmm/yy): 16/M0V/95 (i. sto 160/993) 0.203 M G 1993, used Prepared by:

LTPP Seasonal Monitoring Progr Data Sheet SMP-C01 (Page 1) TDR Probe Check	Program Agency Code age 1) LTPP Section ID	[58]
Cursor	ac 18.3	0 m Tektronix 1502B TDR Date
TDR Trace "Shorted at Start"	Apparent Length, (m)	Dielectric Constant
Cursor	ac 16.890	0 m Tektronix 1502B TDR Date /c-7-53 Cable 8338 v 2- #838 v Notes #/// Input Trace Stored Trace Stored Trace Stored Trace Difference Tra
TDR Trace "In Air"	Apparent Length, (m) $1.2L$	Dielectric Constant ¹

Data Sheet SMP-C01: TDR Probe Check

1831	138021	Tektronix 1502B TDR Date /o-7-93 Cable 833802- 16 3810 Notes	Input Trace Stored Trace Difference Trace
Agency Code	LTPP Section ID	17.890 r	
LTPP Seasonal Monitoring Program Data Sheet SMP-C01 (Page 2)	TDR Probe Check	Jursor 17.890 m ac Distance/Div. 25 m/div Pertical Scale 77.0 m.p/div	ower ac

	1
Dielectric Constant ²	72.78
Apparent Length, (m)	1.85
TDR Trace	"In Water"

Note: Dielectric constant is determined as follows:

$$\varepsilon = \left[\frac{(L_a)}{(L)(V_p)} \right]^2 = \left[\frac{(D_2 - D_1)}{(L)(V_p)} \right]^2$$

where $\varepsilon =$ dielectric constant; $L_{\rm s} =$ apparent length of probe, m; L = actual length of probe units (= 0.203 m (8 in) for FHWA probes); $V_{\rm p} =$ phase velocity setting (= 0.99).

TDR Probe Serial Number: 42kl0 TDR Probe Length, L: __.(1)_ m Length of Coax Cable: _(1)_._ m Comments: (1) Not reasonned in 1993, used 0.203 M & "L"

Date (dd/mmm/yy): 16/40/7 19/9 19/9 19/9

ENTER : HA

Seasonal Monitoring Program Guidelines: Version 2.1a/March 1995

LTPP Seasonal Monitoring Program	Agency Code	<u>(83)</u>
Data Sheet SMP-C02 Thermistor Probe Check	LTPP Section ID	<u> </u>

Thermistor Probe Assigned Serial Number:

[83BT]

Air Temperature Probe Assigned Serial Number: [838 AT]

		Temperature (°C)	- Calibration in:	
Thermistor Number	Distance from Top (m)	Ice-Bath; $T = (1) \cdot C$	Other Hot wate; T = (1). °C	Comments
1	0.000	<u> </u>	_42.2	
2	0.152	<u>_/</u> . <u>5</u>	_ 42.1	
3	0.305	1.2	<u> </u>	
4	0.024	<u>3.8</u>	<u>43.</u> L	
5	0.100		<u>43.7</u>	
6	0.170	1.2	<u>43.6</u>	
7	0.252	<u>1.2</u>	<u>43.5</u>	
8	0.366	2. <u>6</u>	<u>43.4</u>	
9	0.48L	<u> </u>	<u>43.5</u>	-
10	0.631	<u>3.0</u>	<u>43.4</u>	
11	0.786	2.2	<u>43.5</u>	
12	0.936	2.0	<u>43.2</u>	
13	1.090	2.0	<u>43.2</u>	
14	1.241	1.Z	<u> </u>	
15	1.395	2.0	_42.8	
16	1.546		_42.4	
17	1.700	2. <u>0</u>	<u>42.7</u>	
18	1.846	1.2	<u> 427</u>	
End	()	n/a	n/a	
Air Probe	n/a	(1)	_(1)	

Comments: ((1)	NOT	PECONDED	<i>1</i> ~ <i>1</i>	1993		
			ue, , , , , , , , , , , , , , , , , , ,				
		•		· · · · · · · · · · · · · · · · · · ·			•
Prepared by:	RT	TAH TAH		Employer:	Braun	Intertec	Corporation

Date (dd/mmm/yy): 21 1 NOV 195 (FOR 1993 INSTALC)

extered MI

LTPP Seasonal Monitoring Program
Data Sheet SMP-C03
Resistivity Probe Check

Agency Code

LTPP Section ID

<u>83</u> 2002

Electrical Resistivity Serial Number: 838 R

DB37		Dis	tance from Top	(m)	Conti-	Spacing (m)	Comments		
Connector Pin Number	Electrode Number	Line 1	Line 2	ATT.	Duity ✓	Spacing (iii)	Commens		
36	1			0.025			Data taken from		
35	2			0.026		D.05L	1993 'specings'		
34	3			Q.130		053	versus distance		
33	4			0.179		<u>025</u>	from the top of		
32	5		ς_·	2.230		<u>0</u> 52	the probe.		
31	6)2	<i>-</i> :	0.280		050			
30	7	/_	·_i	0.330		<u> LSI</u>			
29	8		(+N/1)	0.380		1.121			
28	9	-·A1	<u> </u>	0.430		050			
27	10	U		0.493		053			
26	11		Al	0.534		051			
25	12	4)	M_:	0.586		052			
24	13		_·_A	0.634		050			
23	14		129:17	0.694		<u>051</u>			
22	15	5	12:	Q.Z39		054			
21	16			0.288		<u>.050</u>			
20	17	_ ·		0.838	·	051			
19	18	_:	. <i>4</i>	0.888		_ 050			
18	19	_ : 4	<u>or</u>	0.239		052			
17	20			0.220		050			
16	21	_ ·		1.040		<u>651</u>			
15	22		ALY-	1.023		053			
14	23	4	1 <u></u>	1.142		1.050			
13	24	L		1.122		129.			
12	25	_ ·	-:A/	1.245		053			
11	26	A	11.1	1.295		252			
10	27	:[]	<u> </u>	1.345		050			
9	28	V		1.328		1.053			
8	29			1.448		050	*		
7	30			1.498		050 053			
6	31			1.550		053			
5	32			1.5.22		050			
4	33			1.650		050			
3	34			1.200		051			
2	35			1.753		052			
1	36		_'	1.802		050			
	Bottom			1.829	שלת	n/a	٠		

Comments: _	<u> </u>			·····			
Prepared by:	RSV/	JAH		Employer:	Braun	Intertec	Corporation
-	7		~ov 195	(Fore 1993	INST	ALC)	

LTPP	Seasonal Monitor Data Sheet SM		Agency Coo	ie	हिर्
	Rain Gauge Cal		LTPP Section	on ID	[3802]
General In	formation:				
Man	ufacturer:	TEXAS ELEC	LTRONICS	Inc	
Mod	el Number:	TRP - 5	75 M		·
Seria	al Number:	12047			
	screen should be ent loss from wi	tacked inside the	funnel using s	silicon at three	to four points to
		Rain Gauge C	alibration Da	ta	
Trial	Start Time (Military)	End Time (Military)	Volume (ml)	Number of Tips	Adjustment ¹ No. of Turns
1	0710	0735	<u>473</u> .	<u> 100</u> .	-
2	0740	0315	<u>473.</u>	<u>99.</u>	
3					
Comments:		ain 100 tips ± 3 f	. .		nwa 10
			<u></u>		
repared by	: <u>RJV</u>		_ Employer:	Braun Int	ertec Corporat
)ate (dd/mr	mm/yy): <u>て</u> に	NO V195	(For	1993 /	STML)

LIPP Seasonal Monitoring Program	Agency Code
Data Sheet SMP-C04	
Function Generator, Multimeter, and Switch Box Checks	LTPP Section ID [380 Z]

Start Time (military):

Position Range Reading Reading 36 37 Setting Reading Reading 37 37 38 39 Reading Reading 39 39 00 Reading Reading Reading 36 38 39 Reading Reading Reading 37 37 38 39 Reading Reading Reading 38 39 00 Reading Reading Reading Reading 39 39 00 Reading Reading Reading Reading	R = V/I Resistance (ohms) (ohms) (ohms) (ohms) R = R = R = R = R = R = R = R = R = R
36 37 38 39 39 00 36 37 38 39 38 39	R1 R2 R3 R4 R4 R4 R4 R4 R4 R4 R1
38 38 38 39 39 00 36 37 37 38 39 00	
38 39 39 00 36 37 37 38 38 39 39 00	
36 37	
36 37 37 38 38 39	
36 37 38 39 39 00	
38 39 39 00	
39 00	
39 00	R3 == R3 ==
	R4 m
36 36 37	RI == RI ==
37 38	R1 == R1 ==
38 38	R3 == R1 ==
39 7 00	R4 == R2 ==

Employer: Braun Intertec Corporation

Prepared by: And Continued the Angel Employer: Braun Interted Continued (dd/mmm/yy): 12 | 25 | 15 | 1993 | 127ml.)

Data Sheet SMP-C04: Function Generator, Multimeter, and Switch Box Checks

Appendix C-1: Instrumentation Installation Information

Appendix C-1 contains the following installation data sheets and associated field notes, as well as, certificate of registration for instrumentation, and photographs documenting the installation:

- ▶ Data Sheet SMP-I01: List of Installed Instrumentation;
- ▶ Data Sheet SMP-I02: Instrumentation Locations;
- ▶ Data Sheet SMP-I03: Log of Piezometer Hole;
- ▶ Data Sheet SMP-I04: Log of Instrumentation Hole;
- ▶ Data Sheet SMP-I05: Field Gravimetric Moisture Contents;
- Data Sheet SMP-I05(A): Lab Gravimetric Moisture Contents;
- ▶ Data Sheet SMP-I05(B): Gravimetric Moisture Comparison;
- ▶ Data Sheet SMP-I06: TDR Moisture Content;
- ▶ Data Sheet SMP-I07: Representative Dry Density;
- ▶ Plot of Gravimetric Moisture Results;
- Certificate of Registration from the United States Customs Service; and
- ► Installation Photographs.

835B93A

Seasonal Monitoring Program Guidelines: Version 2.1a/March 1995

LTPP Seasonal Monitoring Program	Agency Code	<u>[8 3]</u>
Data Sheet SMP-I01 Instrumentation Installed and Participants	LTPP Section ID	(3 <u>80</u> 2)

List of Equipment:

List of Equipment:		
Equipment	Quantity	Serial Number(s)
Instrument Hole:		
Thermistor Probe	01	<u>83B</u> T
Resistivity Probe	<u> </u>	<u>83B</u> R
TDR Sensors	10	83 <u>B</u> 01 to <u>83</u> B10
Equipment Cabinet:		
Campbell Scientific CR10 Datalogger	01	16523
Battery Package	<u>0 1</u>	<u>5535</u>
Weather Station:		
Rain Gauge	0_1	12049-
Air Temperature Probe	<u>0 </u>	838AT->
Radiation Shield	.01	
Observation Piezometer/Bench Mark:	01	n/a -

693 Model LT42136

List of Participants:

Name of Participant	Agency	/Employer		
BOB VANSAMBEEL	BRAUN	NTRETEC	<u> </u>	د.۹۶
RON URBACH		11		
JOEL RECTOR		٠(
DANA MILLER		C ₁		
DENNIS WATSON	MANITOBA	HIGHWHYS	MD	TRAUS.
MR PENNER (DRILL RIG)	11	l ·	Ç	`\
BONNIE ?		در	٠.	`~
		<u>.</u>	<u> </u>	
		_		

Prepared by: June Jily Employer: Braun Intertec Corporation

Date (dd/mmm/yy): 10/10/195 (For 140ct93 Jastall)

Extered: 420

Seasonal Monitoring Program Guidelines: Version 2.1a/March 1995

LTPP Seasonal Monitoring Program	Agency Code
Data Sheet SMP-I02	
Installed Instrument Location	LTPP Section ID

78021

Longitudinal and Transverse Location of Instrumentation:

Instrument	Station (Cust	omary Units)	Offse	t (m) ¹
	Planned	Actual	Planned	Actual
Instrumentation Hole	5+10	<u>5 t 10</u>	<u> </u>	_0.76
Observation Piezometer	7780	4 ± 8 0	<u>-0.30</u>	<u>-0.91</u>
Equipment Cabinet	5+10	5±10	<u> </u>	=7.62
Weather Station	5+10	5+10	=7.90	-7.93

Transverse distance in meters from pavement edge (see LTTP Manual for FWD Testing) with (+) values toward mid-lane and (-) towards shoulder

Depth Location of Instrumentation:

Instr	ument	Depth from Surface to Top	n Pavement p of Probe (m)	Comments
		Planned	Actual	
Thermistor	Metal Top	0.025	0.025	Not measured.
Probe	Metal Bottom	0.220	0.224	Not measured.
	PVC Top	0.305	0.298	·
Resistivity Pro	obe	0.305	0.311	

PIEZ. O.			. 4+32 on Oct. 15, 1993
TO D	Depth from Pavement	Surface to Probe (m)	
TDR Number	Planned Location	Actual Location	Comments
1	0.311	<u>o</u> . <u>320</u>	All depths ± 0.005m
2	0.445	<u>0.445</u>	
3	<u>0.597</u>	0.605	
4	0.749	0.760	
5	0.914	<u>o</u> . <u>915</u>	
6	1.054	<u>i.050</u>	
7	1.207	1.210	
8	1.359	<u>1.350</u>	
9	1.664	1.665	
10	1.969	1.960	

ATTACH TOP-VIEW SKETCH OF INSTRUMENTATION HOLE SHOWING DIRECTION OF TRAFFIC AND LOCATION OF THERMISTOR AND RESISTIVITY PROBES. LABEL PROBES "T" AND "R", RESPECTIVELY

Prepared by: Corporation Employer: Braun Intertec Corporation

Date (dd/mmm/yy): 10/00/01/95 (For 14-0ct-93 Install)

Seasonal Monitoring Program Guidelines: Version 2.1a/March 1995

LTPP Seasonal Monitoring Program	Agency Code	<u> [8]</u>
Data Sheet SMP-I03 Log of Piezometer Hole	LTPP Section ID	38021

Operator: PENNER Equipment Used: DERRICK DIGGER

Location: Station: 4 + 80 Offset: $0 \cdot 9 + 10$ m (from lane edge)

Bore Hole Diameter: 203. mm Auger Type: Solid Stem

Scale (m)	Depth from Surface ¹ (m)	Material Description	Material Code ²
	0.305	CLAY BLACK TOPSOIL	101
0.5			
1.0			
1.5			
2.0		FAT CLAY-	1/01
2.5		GRAY	101
3.0			
3.5	·		
4.0			
4.5	4.500		
5.0			

¹ Format: m	; , ² Fo	rmat:	-		•
Prepared by: Octore 1):		Employer:	Braun I	ntertec Co	o rporat ion
Date (dd/mmm/yy): 12/be	<u> </u>	(For 15	Dc 143	Instal	Mation)

BRAUN MINTERTEC 833807

10-15-93

PIEZOMETER / BENCH MARY

DRILLED DOWN WITH A 8"AUGER,

BOTTOM WAS AT A DEPTH OF ABOUT

TOTAL LENGTH 14'1" TIP TO TIP.

FILTER SAND WAS PUT AROUND PIEZOMLIER FROM BOTTOM UP TO 10 FEET 3 HOHES FROM THE SURFACE.

BENTONITE PELLETS WERE PLACED FROM THE TOP OF THE FILTER SAND, TO A DEPTH OF 5 FEET BELOW THE SURFACE,

SOIL REMOVED DURING DRILLING WAS USED FROM ABOUT Z FEET BENJONITE. TO ABOUT Z FEET BELOW THE SURFACE.

THE STEEL PROTECTIVE SLEEVE WAS PLACED SO THE TOP WAS A BOUT 4 INCHES BELOW GROUND SURFACE.

THE STEEL SLEEVE WAS BACKFILLED WITH SAKRETE IMIV. TO ABOUT 3 INCHES OF THE TOP OF THE SLEEVE

A 14" PVC CAP WAS SET ON THE TOP OF THE 1" PIPE. THIS IS LOOSE FITING CAP. IT IS PREVENT ANY THING FROM PHLLING IN THE PIPE. Seasonal Monitoring Program Guidelines: Version 2.1a/March 1995

LTPP Seasonal Monitoring Program	Agency Code	<u> [8 3</u>]
Data Sheet SMP-I04 Log of Instrumentation Hole	LTPP Section ID	3802

Operator: PENNER Equipment Used: DERRICK DIGGER

Location: Station: 5 ± 10 Offset: 0.76 m (from lane edge)

Bore Hole Diameter: 298. mm

Scale (m)	Strata Change ¹ (m)	Material Description	Material Code ²
0.10 0.20	0,248	PCC	730
0.30	0.413	GRAVEL BASE	302
0.50 0.60 0.70		FAT CLAY GRAY	10 (
0.80			
1.00 1.10 1.20			
1.30 1.40		·	
1.50 1.60			
1.70 1.80 1.90			
2.00 2.10	2.005	GRAVEL BASE 0.248m TO	
2.20 2.30		0.413 m. FAT CLAY HAD TO BE CUT UP TO COMPACT IT	
2.40		BALK IN THE HOLE.	~

¹ Format: m;	² Format:	•
Prepared by: Journe Hicks	Employer: Braun Intertec	Corporation
Date (dd/mmm/yy): 12/1000	95 (For 140ct-93 Insta	ellation)

Seasonal Monitoring Program Guidelines: Version 2.1a/March 1995

		•
LTPP Seasonal Monitoring Program	Agency Code	[83]
Field Gravimetric Moisture Content	LTPP Section ID	[<u>3803</u>]

					Wt. of Pan +	Wt. of Pan	Wt. of Dry	Wt. of Water	Moisture
TDR Probe	Probe Depth! (m)	Moisture Sample No.	Pan No.	Wt. of Pan (gms) = A	Wet Soil (gms) = B	+ Dry Soil (gms) = C	Soil (gms) = D = C · A	(gnis) = E = B - C	Content $(\%) = w = E/D * 100$
-	0.320	01	-	223.1	828.5	792.7	562.6	35.8	<u>6.3</u>
2	2745	6-1	3	724.4	0.025	7.8.4	292.0	56.6	19.6
3	0.605	8	2	222.8	T.00Z	2870	358.2	1.8.4	33.7
4	0.760	1 1]	223.1	7.429	0515	221.9	109.2	32.6
5	0.915	ا <i>ف</i> ا	3	7.4.4	0.299	5.823	348.1	24.5	22.1
9	1.050	7-	2	223.8	724.7	8.883	3650	135.8	37.2
7	1.210	7	-	2.23.1	9.063	491.5	2684	1.88	36.9
∞	1.350	~	-3	7.4.4	250.0	5.719	387.1	138.5	35.8
6	1.665	2	2	223.8	7.899	549.4	325.6	7.877	36.5
10	098.7	1 -	Ī ——	223.1	713.3	585.0	361.9	1283	35.5

¹ Distance in meters from pavement surface to TDR probe

INSTALLED Form 1993 Comments: DATA

14- Oct - 1993

Prepared by: RW/ SAH

Employer: Braun Intertec Corporation

Date (dd/mmm/yy): 21_1 20 1 25 (for 1993 1~577164710~)

Data Sheet SMP-105: Field Gravimetric Moisture Contents

[83]	12085]
Agency Code	LTPP Section ID
LTPP Seasonal Monitoring Program	(AB Tield Gravimetric Moisture Content

Moisture Content (%) = w = E/D * 100	10.0	78.9	31.5	31.4	22.2	33.2	32.8	33.1	324	33.6
Wt. of Water (gms) = E C (=: B - C)	7	<u></u>					 \ 		\ -\\	17
Wt. of Dry Soil (gms) = D C = C · A	/				- ./__	- - 7		<u> </u>		\.—
VV. of Pan + Dry Soil √ (gmis) = C /	/:\			- · 	- : -	· -			\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.	-
Wt. of Pan + Wet Soil (gms) = B	/-·\	7	_/		 - -					\
Wt. of Pan (gms)	\	\ /\		· - / - / - -	- -		 	 		
V Pan No.	17-1	17-7		\ \ \ 		1	7	7		
Moisture Sample No.	//	<i></i>	7-\	7		1				
Probe Depth! (m)	0.320	2.445	2.605	0.760	0.915	050.	ا. هـ ا م ا هـ	1.350	1.665	1.960
TDR Probe	-	2	3	4	5	9	7	œ	6	10

1 Distance in meters from pavement surface to TDR probe

moistures Done By

1.48

Comments:

NOT BY MANIT

Prepared by: RJV JAIT

Employer: Braun Intertec Corporation

Date (dd/mmm/yy): 21_1 2011 25

Data Sheet SMP-105: Field Gravimetric Moisture Contents

LTPP Seasonal Monitoring Program	Agency Code	<u> </u>
Data Sheet SMP-105 (B)		
Gravimetric Moisture Comparison	LTPP Section ID	12602L

SNIP-102	SNIP-104	Lab Data	TDK Insta	I DK Installation Data		Gravimetric Moistures	
TDR Depth	Malerial	Dry Density	SNIP-106	Calculated	SMP-105	SNIP-105A	
E	ခိုင် င	(pd)	5	Gravimetric	Field	Lab	
			- 1	(bercent)	(percent)	(bercent)	
1.320	302	•	•	8.5-	E.9-	0.01	100 Steel
577·0	1777	8.77-	120	12.7	7.67	19.2	5
2.6.05	177	79.8	1.03	32.4	33.1	37.5	208 < 110
0.260	T07	8 1 8	4.35	38.3	32.6	ħ.1€	
2.215	701	878-	02.7	37.5	(2.7.1)	28.2	
1.050	to t	8.73	4.38	32.2	37.2	33.2	5 1 mm - 72 th
1.300	TOT	-82.8	1.32	3.75	36.9	32.8	· · · · · · · · · · · · · · · · · · ·
1.355	707	-82.8	1.32	38.2	35.8	33.1	2 5 kg · · · ·)
Z99.T	TOT	8.7.8	7.36	38.6	36.5	32.4	
775T	TOT	8.78-	Z 7 . T	42.0	35.5	33.6	
avimetric moist	ures calculate	ed using equativ	ons on pag	329.9	305.6		
J. 01 6	Pen. L	from for	\$? }	32.49	200	25.63	
"		i	3 pet	(12)		6.1	
80		11	9.8 pc. F	70)	(F.)		
Prepared by: Arv/	G	Employer	r: Braun	0, 1	7.69.1		m/yy): 08154~196
(- 330, 12	52.51, 1	, 18 L.	- 212		NTERTE 1-8001279-61	25%	1 , Ln (makers,
				1.18	BRAU	35.	(%) 3
	TDR TDR Depth (m) 1 $L \cdot 322$ L 2 $L \cdot 445$ 3 $L \cdot 6.05$ 4 $L \cdot 260$ 5 $L \cdot 1050$ 6 $L \cdot 1050$ 8 $L \cdot 1050$ 9 $L \cdot 1050$ 10 $L \cdot 1050$ Comments: $0 \neq 0$ Prepared by: $0 \neq 0$ $0 = (-330.12)$	TDR Depth Material 2.3.2.0 3.0.2 2.4.4.5 1.0.1 2.6.0.5 1.0.1 1.0.2.0.1 1.0.0.1 1.0.0.1 1.0.0.1 1.0.0.1 1.0.0.1 1.0.0.0.1 1.0.0.1 1.0.0.1 1.0.0.1 1.0.0.1 1.0.0.1 1.0.0.1 1.0.0.1 1.0.0.1 1.0.0.1 1.0.0.1 1.0.0.1 1.0.0.1 1.0.0.1 1.0.0.0.1 1.0.	TDR Depth Material Dry Density 1. $\frac{2}{2}$	Naterial Dry Density SNIP-10 Code (pcf) La	Calculate Gravimetri (percent) 2 2 2 4 4 2 2 2 2 4 4 2 2 2 2 2 3 2 3 3 3 3	Calculated Gravimetric (percent) 2 - 5 - 8 2 - 2 - 4 2 - 2 - 4 2 - 2 - 2 2 - 2 - 2 2 - 2 - 2 2 - 2 -	Calculated SMP-105 SNIP-105A Gravimetric Frield Lab (percent) (per

Seasonal Monitoring Program Guidelines: Version 2.1a/March 1995

LTPP Seasonal Monitoring Program	Agency Code	[87]
Data Sheet SMP-I06 TDR Moisture Content	LTPP Section ID	[3862]

Required Settings:

Dist./Division: Phase Velocity: 0.25 m

Noise Filter:

0.99 1 average

Probe Number	Probe Depth ¹ (m)	Time (military)	Apparent Length (m)	Dielectric Constant ²	Comments
1 .	0.320	<u>(i)</u>	0.53	6.25	
2	0.445		0.80	15.84	
3	0.605		<u> 1.03</u>	26.26	
4	<u>0.760</u>		1.35	45.11	
5	0.915		1.20	35.64	
6	1.050		1.38	42.14	
7	1.210		1.32	43.13	•
8	1.350		1.32	46.46	•
9	1.665		1.36	45.78	
10	<u>i.960</u>	<u>\</u>	1.47	53.42	

Distance in meters from pavement surface to TDR probe
 Dielectric constant is determined as follows:

$$\varepsilon = \left[\frac{(L_a)}{(L)(V_p)} \right]^2 = \left[\frac{(D_2 - D_1)}{(L)(V_p)} \right]^2$$

where ε = dielectric constant; L_a = apparent length of probe, m; L = actual length of probe units (= 0.203 m (8 in) for FHWA probes); V_p = phase velocity setting (= 0.99).

ATTACH TDR TRACES TO THIS DATA SHEET.

Comments:	(1)	NOT	RECO	WAED	14	199	13				
Prepared by	: r	.34 1	Fram	1993	Da	TA	COLLECTE:	D er: 1	14-OT - 1993 Braun Intertec	Corporat	ion

Date (dd/mmm/yy): 17/ POV/95 (FOR 1993 INSTALLATION)

[83]

LTPP S	Seasonal Monitoring Program Data Sheet SMP-I07	Agency Code	[83]
Re	presentative Dry Density	LTPP Section ID	[3802]
Depth of Re	epresentative Sample (from paver	nent surface):	m
Dry Density	Determination:		
a.	Tare Weight of Empty Mold:		g (lb)
, b.	Weight of Mold and Compacted	Soil:	g (lb)
c.	Weight of Compacted Sample (b	o - a):	g (lb)
d.	Unit Weight of Compacted Soil	= [(b - a) / 943.0] =	g/cm ³
		([(b-a)*30] =	lb/ft³)
e.	Dry Density of Compacted Soil	= [d/(100 - r)] =	g/cm ³
			(lb/ft³)
Moisture Co	ontent Determination:		
m.	Tare Weight of Pan:		g
n.	Weight of Pan and Moisture Sar	mple:	g
о.	Weight of Pan and Dry Sample:		g
p.	Weight of Moisture (n - o):		g
q.	Weight of Dry Sample (o - m):		\ g
r.	Moisture Content by Weight =	[(p / (p + q) * 100] =	%
Comments:	NOT PART OF	PROCEDURE 1	<u>\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ </u>
Prepared by:	Rose Ca Smold	Employer: Braun	Intertec Corporation
Date (dd/mm	nm/yy): /≥//85/95	(FOR 14-00	+-1993 Install)

BRAUN ** INTERTEC 833807 10-14-93

TIPPING BUCKET RAIN GAGE / AIR TEMPERATURE PROBE

BOTTOM SECTION OF Z"PIPE, 15 IOFEET 8 INCHES LONG.

HOLE WAS PRICLED WITH SINCH SOLD STEM AUGER.

HOLE WAS DRILLEN TO A DEPTH OF 9.5 FEET

THE PIPE WAS BACKFILLED WITH A DRY PACK SAKRETE CONCRETE MLY, IT WAS COMPACTED AS IT WAS PLACED. THE DRY PACK WAS PLACED TO NBOUT 2 FEET BELOW THE SURFACE.

SOIL REMOVEN DURING DRILLING WAS USED AS BACKFILL ABOVE THE DRYPACH TO THE SURFACE.

DEPARTMENT OF THE TREASURY UNITED STATES CUSTOMS SERVICE

Form	Approved.	
OMB	No. 1515-00	1

	CERTIFICATE	OF REGIST	TRATION		NO.	
FR 10.8, 10.9, 10.68, 148.8, 148.32, 148.37	(NOTE: Number of copies & Inquire at District Directo	o be submitted varies with typ r's office as to number of cop	e of transaction. sies required.)			
, Jarrier)			B/L or INSURED NO.		DATE /0/4/93	
ME, ADDRESS, AND	ZIP CODE TO WHICH CE	RTIFIED	A	RTICLES EXP		
PAW INTER 1983 SLOAN T- PAUL ; M	PLACE	: -	☐ ALTERATION® ☐ REPAIR® ☐ USE ABROAD ☐ REPLACEMENT ® NOTE: The cost abro	or value of altered to subject to	PROCESSING OTHER, (specify) arrations, repairs, or procedustoms duty.	cessing
A 1	16-4-4	LIST ART	ICLES EXPORTED			
Number Packages	Kind of Packages		Des	scription		<u> </u>
		588 A	TACHED 3 PA	0 m/ 9=	ge for 8338	:03/
NATURE OF OWN	ER OR AGENT (Print or T)	pe <u>and</u> Sign)	BEET VAN SAMBI	SEK_	DATE 10/4	/93
•	* EXAMINED	The Above-De	scribed Articles Were:	ADEN under m	v supervision	
CT 04 199	2 TEGES OF	U S Custon	DATE	PORT	alame	271
NATURE OF CUSTON	AS OFFICER!		SIGNATUME OF CUSTON	CLA		
<u> </u>	for the state of t		ATE ON RETURN			
se if needed)	Tor the described articles	as having been export	ed without benefit of drawba	ck and are retu	rned unchanged excep	ot as noted: (use
	·		•			
						·
NATURE OF IMPO	RTER (Print or Type and S	ign)			DATE	

NOTE: Certifying officers shall draw lines through all unused spaces with ink or indelible pencil.

PERWORK REDUCTION ACT NOTICE: The Paperwork Reduction Act of 1980 says we must tell you why we are collecting this information, how we will use it, and whether you have to give it to us. We ask the information to carry out the Customs Service laws of the United States. We need the information to ensure that importers/exporters are complying with these laws in claiming duty free entry for exported cles which are then returned into the United States. Your response is mandatory and to your benefit.

Seasonal Instrumentation Site 833802 south of Winnipeg, Manitoba

U S Customs Pembina, N.D. 58271

Salvageable Equipment

Telephone cabinet manufactured by Reliance

CR 10 data logger manufactured by Campbell Scientific, Inc. (SN. 16523)

PS12 power supply manufactured by Campbell Scientific, Inc. (SN. 5635)

Electronic rain gauge manufactured by Texas Electronics, Inc (SN. 12049-693)

Air temperature probe with radiation shield Model 107-L Part #LT421316

Instrumentation pole (2" galvanized pipe) 10 foot section placed in the ground and 8 foot section above ground

Materials installed in the ground (non recoverable)

Resistivity probe (SN. 83BR)

MRC thermistor probe (SN. 83BT)

Pembina, N.D. 58271

Ten time-domain reflectometry (TDR) probes (SN. 83B01 to 83B10)

Eight foot copper grounding rod

14 foot galvanized pipe with eight foot grease sleeve

32 foot flexible conduit

U S Customs Pembina, N.D. 58271

Appendix D-1: Initial SMP Monitoring Data Collection

Appendix D-1 contains the following data sheets with information collected the day after instrumentation installation:

- ▶ Data Sheet SMP-D03: Contact Resistance Measurements;
- ▶ Data Sheet SMP-D04: Four-Point Resistivity Measurements;
- ▶ Data Sheet SMP-D05: Ground Water Table Measurements;
- ▶ Data Sheet SMP-D06: Joint Opening Measurement;
- ▶ Data Sheet SMP-D07: Joint Faulting Measurement; and
- ▶ Data Sheet SMP-D09: Surface Elevation Measurements PCC Pavements.

LTPP Seasonal Monitoring Study

Data Sheet Red Dog Contact Resistance Measurements

1. Date (Month - Day - Year)

Seasonal Monitoring Program Guidelines: Version 1.1/June 1993

*State Code [83]

Test Section Number [38 o 2]

2. Time Measurements Began (Military)

U2._____

est sition	Conr	ections	Voltage (ACV)		Curr	ent (ACA)		=
sition	l _i V _i	I ₂ V ₂	Range Setting	Reading	Range Setting	Reading	Notes	产量
i	Li_	2	V	10.21	UA	425		24000
2	3_	2		9,95		584		,7000
3	3	4		7,67		1696		4500
4	5	4		4.81	V	3022		1600
5	5	6		2.532	MA	4.64		500
6	7	6		1.810		5.24		300
7	7	8		1,617	1	5.36		300
8	9	8	l,	1,675		5.30		322
9	9	10	1	1,655		5.36		300
<u>•</u>	11	10		1.580		5.41		7,00
<u>.</u>	11	12		1.460		5 .5 /		300
2	13	12		1,330	 	5.53		200
3	13	14		1.592	 	5.31		300 300
4	15	14		1,609		5.38		200
5	15	16		1,210		5.73		200
6	17	16		1:310		5.72		-
7	17	18		1,350		5.58		200
8	19	18		1,167		<u> </u>		7.40 7.03
9	19	20		1.200		5,27		200
•	21	20		1,358		5.55		300
1 2	21	22		1.523		5.45		3-0
3	23	24		1,500		5.44	De Charl	d
4	25	24	-i	3002				800 E
5	25	26		1,873		4.15		400
6	27	26		1.230		5,19		200
7	27	28		1,292		5.70		200
B	29	28	-	1,194	 	5.80		700
,	29	30		1,077		5.91		200
5	31	30	 	0,965		6.04	<u>-</u>	200
i	31	32		1,198	 	5,86		200
2	33	32		1.309		5.76		200
	33	34		1,037		5,96		209
	35	34		-806		6,21		140
	35	36	V	.786	U	6.20		100
	¥7 /	18/	\/	-\/	1/	10	1 21 /	
	38/	3Å	$-\chi$	-	$-\chi$	$-\chi$		
	39	40	/\\	\wedge	_/\-	/\		

Figure III-5 - Contact Resistant Measurements - Data Sheet R1

Exteel :4/11

Seasonal Monitoring Program Guidelines: Version 1.1/June 1993 * Test Section Number 1. Date (Month - Day - Year)

2. Time Measurements Began (Military)

Test Position	<u></u>		nection		Vol	age (ACV)		rent (ACA)		
	I,	V,	V,	12	Range Setting	Reading	Range Setting	Reading	Notes	
1	1 1	2	3	4	MV	317.6	MA	650		
2	2	3	4	5	1_/_	105.1	1	70.6		
3	3	4	5	6	7	195,8		1966		
4	4	5	6	7		67.5	4	3260		
5	5	6	7	8		78.6	MA	4.70		
6	6	7	8	9		66.0	J	5.20		
7	7	8	9	10		63,7	,	5.40		
8	8	9	10	11		63,6	1	5.36		
9	9	10	11	12		59, 3		5.46		
10	10	11	12	13		61.5		5.21		
11	11	12	13	14		58.5		5.24		
12	12	13	14	15		58.6		5.59		
13	13	14	15	16		66.9		5.66		
14	14	15	16	17		5ς, σ		5,30		
15	15	16	17	18		53.3		5.61		
16	16	17	18	19		63.0		5.83		
17	17	18	19	20		51.0	1 1	5,60		
18	18	19	20	21		50.0		5.56		
19	19	20	21	22		56,1	111	5.53		j
20	20	21	22	23		47.1	1 1 1	5.51		— ₀₋
-21	21	-22	23	24		-0.2		<u> </u>	* (AMP	Pon
22	22	23	24	25		68,3		4,84	7 027	- en
23	23	24	25	26		53.6		5.70		
24	24	25	26	27		64.5				
25	25	26	27	28	-/	44,5	 	4.48		_
26	26	27	28	29		5 5.0	 	5.10		_
27	27	28	29	30	- -		 	5.79		—
28	28	29	30	31	 	49.3	 	5.74		<u> </u>
29	29	30	31	32	+	47,4		5.86		_
30	30	31	32	33	+	<u>47.3</u>	 	5.68	·	
	31	32	33	34	- -	44.0		5.89		
	32	33	34		+	56,0		6.06		
	32	34		35	\/ 	45.0		5.94		are the appearance of
] در	J4	35	36	4-1	44.7		6.01		

Figure III-6 - Four-Point Resistivity Measurements - Data Sheet R2

Entered: 440

Seasonal Monitoring Program Guidelines: Version 1.1/June 1993

LTPP Seasonal Monitoring Study Form WA DOS	State Code 83 380 2	83
Ground Water Table Measurement	Test Section Number	

Number	Time	Well Depth (ft)	Water Depth (ft)	Weather Conditions*	Comments	
1		14.2'	DR Yaxa		Pige is Do	4
2			/ / /			-
3						
4						
5						

^{*} Use only these weather terms: Sunny, Partly Cloudy, Cloudy, Drizzle, Rain

Collected by: BRUN Employer: BRAUN Date: 15-93

Figure III-7 - Ground Water Table Measurements - Data Sheet W1

Seasonal Monitoring Progra

Seasonal Monitoring Program Guidelines: Version 1.17 une 1993

	al Monitoring S form 🗪 706	tudy	State C	ode			[83]	Ent.
Joint Open	ing Measuremen	nt	Test Se	ection N	Tumber		[3ह॰र]	1
	TIME	(mm) #	1(1)	(mm)	1 #2 (6')	(mn)	#3 (11')	WIDTH
Station: HHZ	1142	116.51 4.		117.12	4.611	116.74	4.596	38
	1335	116.6141	591	117.27	41.617	116.59	4.590	38
-	· · · · · · · · · · · · · · · · · · ·		•	 	<u> </u>			
Station: 460	1146	116.21 4.	575	115.52	4.548	116.84	4.600	41
Ą.	1336	116.234			4.545	116.84	4.600	41
		1						
station: 477	1150	116.64 4.			4.572		4-562	39
	13.38	116.64 4.	592	116.13	4.572	115.95	4.565	39
								
<u> </u> _						<u> </u>		
		107 161						
tation: 490	1202	116.64 4		7			4.582	35
·· .	1350	116,2614	<u>, S 75</u>	V 6.77	14,606	116.78	17.786	35
		 			<u> </u>			1
ļ		+			<u> </u>			
tation: 502	/208	116.10 4.5	7/	117.40	4.622	115.11	4.572	43
Control of the contro	1357	116.154.5					1.580	42
And the second s			· · ·	10 2				And the state of
a constituit de la cons								يعارف المائد
		·						
lation: 520	1210	117.074.6	09	117.30	4.618	117.84	4.680	46
;	1355	117.044.			4.625	117.83	1.639	-46
				-			20.000	
- 1			jago est					n Agains S
omments:	. Tarangan ang kanagan		العديدية المرافعة الماثان معملية المرافعين الهاد			ا دوم دارند. وفتر الجمع		ر مواهد و المرافق المساور و مر در والدرون المرافق المرافق و مر

Figure III-8 - Joint Opening Measurements - Data Sheet O1

DNLY TWO CYCLIS

Extendi///

Seasonal Monitoring Program Guidelines: Version 1.1/June 1993

LTPP Seasonal Monitoring Study Form 西 カッフ	State Code 833802 [83]
Joint Faulting Measurement	Test Section Number [3803]
Point Distance Faultmeter (Feet) Reading (mm) 1 3 4 6 7 7 7 7 7 7 7 7 7	Point Distance Faultmeter Joint/Crack (Feet) Reading (mm) 7 1 1 3 4 6 - 1 7 2 1 3 7 5 - 0 7 3 1 4 7 7 0 - 0 7 5 1 5 2 3 - 0 7 6 1 5 0 8 - 7 - 7 8 - 9 1 10
$ \frac{3}{2} 5 \frac{1}{1} \cdot \frac{5}{2} \cdot \frac{2}{4} \frac{1}{1} $ $ \frac{7}{2} 6 \frac{1}{2} \cdot \frac{5}{8} \cdot \frac{2}{5} \cdot \frac{4}{5} \frac{1}{1} $ $ \frac{7}{2} 6 \frac{1}{2} \cdot \frac{5}{8} \cdot \frac{2}{5} \cdot \frac{4}{5} \frac{1}{1} $ $ \frac{8}{2} \frac{9}{2} \frac{9}{2} \frac{9}{2} $ $ \frac{9}{2} \frac{10}{2} \frac{9}{2} \frac{9}{2} $ $ \frac{10}{2} \frac{9}{2} \frac{9}{2} $	
	oct
Prepared by: MRU/DIN Em	oct ployer: BRAUN JNIERIE Date: +0-15-93

Figure III-9 - Joint Faulting Measurements - Data Sheet F1

Entered: 440

Agrumed Time: 1100

LTPP Seasonal Form E Surface Elev. M				le ion No.93 ion Number of 2		[] []
STA.	BS	н	IFS	FS	ELEV	REMARKS
	1.3660	113660			10,2000	P/Z BM
				1.3662		PLE ENCUIN
		-				

TYPE OF INSTRUMENT [(3.35)) (3.35)

		0 (10)	/	
STA.	Slab Edge Outer	Mid Slab	Slab Edge Inner	REMARKS
4+43 ĒLĒV	1.08 25 102035	1.0557 103103	1.0333	JOINT DOWN SIDE
4+ 43 ELEV	10848	1.0560	10314	JOINT WIDE
4+51 ELEV	10941	103000	10365	MIDSLAB
4+57 ELEV	1.0740	1.0645	103 99 703287	JULIAT DOWN SIDE
4+59 ĒLĒV	103177	10164	1.0391 1 <u>03279</u>	JOINT UP SIDE
4+ 67 ELEV	1.1004	10186	10417	MID SLAB
4+76 ELEV	1.0970	1.0676 10.2984	1.0390	JULIAT DOWLY SIDE
4+76 ēlēv	1.097/ 10.2689	1.0669 10.0971	1.0394	JUINT UPE SIDE

Prepared by: RRYDM Employer: BP. KUN INTERTEDATE: 78-15-93

Surface Elevation Measurements:	: PCC Pavements - Data Sh	eets E3
	· = ELEY. LO	C
•	•	•

EPRINT PCC Extend: All

LTPP Seasonal Form E Surface Elev. M	3. Dog	-	Test Secti	le ion No.83 on Number 2 of 3		רין
STA.	BS	н	IFS	FS	ELEV	REMARKS
		11.3660				
·						
	·					

TYPE OF INSTRUMENT [

]

STA.	Slab Edge Outer	Mid Slab	Slab Edge Inner	REMARKS
4+82 Elēv	10928	10630	1.03 59 10.3-501	MID SLAB
1+89 ELEV	1.0868 10.2392	1.0572 1.03688	1.0311 103349	JOINT DOWN SIDE
4+89 ĒLĒV	1.0870 10.2790	1.0585	1.0318 10.3592	JOINT UP SIDE
4+94 ĒLĒV	1.0889 LOZ777	1.0 623	1036Z L 03278	MID SLAB
5+00 ELEV	10828	1.0604	10358	JOINT POWN SIDE
S+00 ELEV	1.0817 10.2843	1.0610	1.6354 103306	JOIHT UP SIDE
ELEV HOLE	10766			DOWN SIDE
+ INST. ĒLĒV HOLE	1.077/ 70.2889			UPSIDE

(ontinues on next sheet) Oct
Prepared by: BRUDM Employer: _____ Date: 10-15-93

Surface Elevation Measurements: PCC Pavements - Data Sheets E3

10 1

Extered . TAP

LTPP Seasonal Form E Surface Elev. M				e 0.2 on No. <u>0.3</u> on Number _ of <u>.3</u>		[]
STA.	BS	н	IFS	FS	ELEV	REMARKS
		11.3660				

TYPE OF INSTRUMENT [

]

STA.	Slab Edge Outer	. Mid Slab	Slab Edge Inner	REMARKS
5+10 ēlēv	1.0845 LC12875	10609 103051	1.0386	MID SLAB
5+21 ELEV	1.0835 10.2825	10593 70 300 7	1.0372	JOIN! DOWN SIDE
5+21 ELEV	1.0850 102870	1.059 <u>8</u> 10366C	10380 10380	JUINT SIDE
+ ELEV				
+ ĒLĒV				
+ ELEV				
+ ĒLĒV				
+ ĒLĒV				

			Uct
Prepared by: Rhu/DN	Employer:	Date:_	Ya-15-93

Surface Elevation Measurements: PCC Pavements - Data Sheets E3

Appendix D-2: Routine SMP Monitoring Data Collection Summary

Appendix D-2 contains the following information:

- Standard LTPP SMP data tracking log; Field testing information sheet; and
- Screen prints documenting equipment problems.

83SB - 833802, PTH-75 NB LANES, 15 MILES SOUTH OF WINNIPEG, MB

Distress Profile Comments			×	RISTALLATION, MANUAL TOR READINGS, ONLY 10 AND 11 PMD TESTS.	NO RESISTIVITY SWITCH BOX, INSTALLED SHAP RINGS.	ADDED RELAY TO ONSITE, TWO ONSITE FILES	×	BAD RESISTIVITY SWITCH BOX FOR TODAY AND 18JANBA.	WEATHER REDUCED TESTING, CABINET FULL OF SNOW, PLUGGED HOLES		X PROFILE DATA NOT RECIEVED BY RCO.	BAD FAULTMETER.	BAD RESISTIVITY SMITCH BOX.			FWD D1 READINGS BAD.		X PROFILE DATA NOT RECIEVED BY RCO.		REMOVED DEBRIS PLUGGING THE TIPPING BUCKET.			X PROFILE DATA NOT RECIEVED BY RCO.	MANUAL TOR READINGS ON PROBES 85 THRU 810.	THREE GOOD DATA SETS IN 2 FILES, FILES CONTAIN MANY : 8969"	×	WEATHER REDUCED TESTING.	
istress	<u>م</u> ≥	×								×										×								L
g)		_		0	2	2		2	0	2		2	2	2	2	-	2		-	2	2	2		2	2		0	
ata	ycles/			-	2	2		2	0	2		2	2	2	2	1	2		-	2	2	2		2	2		0	-
FWD Data	No. of Cycles/Visit			-	2	2		2	0	2		2	2	2	2	+	2		-	2	2	2		~	2		0	-
ш.	Man. N Temp. C			×	×	×		×		×		×	×	×	×	×	×		×	×	×	×		×	×	 		-
_	Joint N Fault Te				×	×		×					×	×	×	×	×		×	×	×	×		×	×			_
	Joint Joopen. F.					×		×		×		×	×	×	×	×	×		×	×	×	×		×	×			-
	Pvmt. Jo Elev. Or				×	×		×		×		×	×	×	×		×			×	×	×						-
ā	F 0				×			×		×		×	×	×		×	×		×	×	×	×		×	×	-	×	_
Manual Data						×				×		×		×		×	×		×			×		×		_	×	
Mar	Frost Frost 2-Pt. 4-Pt.					×				×		×		×		×	×		×	×	×	×		×		-	×	
	ш																											
	_																											
MOBILE Data	Frost Volts				×	×		×	×	×		×	×	×	×	×	×		×	×	×	×		×	×		×	
MOBI	TDR				×	×		×	×	×		×	×	×	×	×	×		×	×	×	×		×	×		×	
ata	Rain TDR				×	×		×	×	×		×	×	×	×	×	×		×	×	×	×		×	×		×	
ONSITE Data	Air Temp.				×	×		×	×	×		×	×	×	×	×	×		×	×	×	×		×	×		×	
Š	Pvmt. Temp.				×	×		×	×	×		×	×	×	×	×	×		×	×	×	×		×	×		×	
	Visit			93A	93B	93C		93D	94A	948		94C	94D	94E	94F	94G	94H		941	<u>₹</u>	왔 ¥	용		94M	94N		95A	
Date	dd/mmm/yy (ctrl+shft+d)	09-Jun-93	23-Aug-93	14-Oct-93	15-Oct-93	15-Nov-93	17-Nov-93	14-Dec-93	18-Jan-94	15-Feb-94	18-Feb-94	15-Mar-94	29-Mar-94	12-Apr-94	02-May-94	16-May-94	20-Jun-94	17-Jul-94	26-Jul-94	22-Aug-94	20-Sep-94	18-Oct-94	10-Nov-94	15-Nov-94	13-Dec-94	21-Jan-95	26-Jan-95	

ION SUMMARY		
SMP DATA COL		

833B - 833802, PTH-75 NB LANES, 15 MILES SOUTH OF WINNIPEG, MB

Date	L	SNO SNO	ONSITE Data		MOBIL	MOBILE Data				Manua	ual Data					FWD Data	ata	F	istres	Distress Profile	Comments
dd/mmm/yy	-	Visit Pvmt.	Air		H	Frost	Backup Backup Frost Fro	Backu	5 Fros	Frost	ost Water Pvmt.	Pvmt.	Joint	Joint	Man.	No. of Cycles/	vcles/	Visit	-		
(ctrl+shft+d)	ID		Temp. Temp. Rain TDR	Rain	TDR	Volts	Temp	_	TDR 2-Pt. 4-F	4-Pt.	Pt. Table Elev. Open. Fault Temp.	Elev.	Open.	Fault	Temp.	OWP	ML	PE	Δ.	_	۵
28-Mar-95	950	×	×	×	×	×			×	×	×	×	×	×	×	7	7	7	×		
12-Apr-95	95E	×	×	×	×	×			×	×	×		×	×	×	7	2	2	_		
26-Apr-95	95r	×	×	×	×	×			×	×	×	×	×	×	×	7	2	7			
16-May-95	92 92	×	×	×	×	×			×	×	×	×	×	×	×	7	2	2			
20-Jun-95	95H	×	×	×	×	×			×	×	×	×	×	×	×	2	6	7	×		

LOCATION - PTH-75 NB Lanes, 15 Miles South of Winnipeg, MB

CONTACTS - Roger Sutyla (204) 326-4434.

TEMP HOLES - Sta 5+03, Depths are about 1.3", 5.3", and 9.4" (PCC thickness = 9.75").

TEST LOCATIONS:	<u>J1</u>	<u>J2</u>	<u>J3</u>	<u>J4</u>	<u>J5</u>
	450	442	450	441	442
	467	459	466	460	461
	482	474	480	477	478
	495	487	493	490	491
	511	501	BLK	502	503
				520	521

DISTRESS COMMENTS:

Sta J1 - Midpanel tests.

495 JOINT 1' IN FRONT OF D7

511 LP ADJACENT TO INSTRUMENTATION HOLE

Sta (none) J2 and J3 - Corner and Mid-edge tests.

Sta (none) J4 and J5 - Load transfer tests in the OWP.

<u>PIEZOMETER</u> - Sta 4+85, 2.0 feet from edge of paved shoulder, Depth = 4.284M. (Located longitudinally at midpanel of third panel tested.)

ELEVATIONS - No DOT BM.

Offsets: (M) (ft)		<u>PE</u> 0.30 1.0 (hole)		1.83 3 6.0 1		E. .35 1.0 nole)		
Sta:	-	BJ/AJ at MP	441 450	460 467	477 482	490 495	500 511	521
FAULTMETER Offsets: (M) (ft)			OWP 0.76 2.5		ML 1.83 6.0	IWP 2.90 9.5		

<u>COMMENTS</u> - Traffic control - Rick Hilderbrand (home) 746-2856.

4+42, 4+60, 4+77, 4+90, 5+01, 5+20

- MRC #1 failed spring of 1995.

Sta:

drift Light

OUSITE

Day Number

147 (May 27)

(Jun 2) 153

--ter=Curve to select (*): PgU/PgD=Prior/Hext set: Ctrl+PgU/PgD=Prior/Hext File

DAY AFTER INSTALL

'er=Curve to select (*): PgU/PgD=Prior/Hext set: Ctrl+PgU/PgD=Prior/Hext File

'COLD'CABLE READER - = 37°C @ SITE

FHURT THE ADVISE - HOW WILL ALGORITHM

PICK SECOND IN FLECTION PRINT?

COLD TEMPERATURE PROBLEM WITH

CABLE READER

' termCurve to select (*): PgU/PgD=Prlor/Hext set: Ctrl+PgU/PgD=Prlor/Hext File

PROBE OR CRREL FAIL

FIRST TWO SETS WERE OFAY

- ter=Curve to select (*): PgU/PgD=Prior/Hext set: Ctrl+PgU/PgD=Prior/Hext File

ThereCurve to select (w): PgU/PgD=Prior/Hext set: Ctrl+PgU/PgD=Prior/Hext File

ter=Curve to select (*): PgU/PgD=Prior/Hext set: Ctrl+PgU/PgD=Prior/Hext File

Ther=Curve to select (*): PgU/PgD=Prior/Hext set: Ctrl+PgU/PgD=Prior/Hext File

er=Curve to select (*): Pgti/PgD=Prior/Hext set: Ctrl+Pgti/PgD=Prior/Hext File

CABLE PRATER VERTICAL SXIFT FROM

Tier=Curve to select (*): PgU/PgD=Prior/Hext set: Ctrl+PgU/PgD=Prior/Hext File

ter=Curve to select (*): PgU/PgD=Prior/Hext set: Ctrl+PgU/PgD=Prior/Hext File

BAD CONNECTON ON FRONT PANEL OF CABLE READER?

- JAME 085ERVATION ON 831801