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Abstract 

One of the Long-Term Pavement Performance (LTPP) objectives is "to determine the 
effects of (a) loading, (b) environment, (c) material properties and variability, (d) 
construction quality, and (e) maintenance levels on pavement distress and performance."1 

This volume reports the results of early sensitivity analyses on the National Information 
Management System to determine the effects of loading, pavement structure, environment, 
and material properties on pavement performance. In order to conduct the sensitivity 
analyses, it was first necessary to develop statistically linear regression equations to predict 
the occurrence of distresses. Once a predictive equation was available, the effects of 
variations in significant independent variables were quantified by calculating the change in 
the predicted distress as each significant variable was varied from one standard deviation 
above its mean to one standard deviation below its mean, with all other·variables held at 
their mean values. The sensitivities of the distress predictions to the individual variations 
in the significant variables were then plotted to display the relative significance of the 
independent variables in the equation to the prediction of the distress. The primary 
products of these studies are increased understanding of the relative effects of these 
parameters on the occurrence of distress and the predictive equations themselves. While 
it is believed that these products will prove useful in the interim, the reliability of the results 
are limited at this point in time. The products are expected to be greatly improved through 
later analyses when more time sequence data are available. 
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Executive Summary 

The original planners for the Long-Term Pavement Performance (LTPP) studies established 
six objectives. The fourth objective follows: 

4. Determine the effects of (a) loading, (b) environment, (c) material properties 
and variability, (d) construction quality, and (e) maintenance levels on 
pavement distress and performance. 

The research, described in this report concerned the effects of loading, the environment, 
pavement structure, and material properties on pavement distress and performance. Data 
were not available for a meaningful study of the effects of material variability, construction 
quality, or maintenance levels on pavement distress and performance. In addition, these 
studies served as pilot studies for developing procedures for conducting the sensitivity 
analyses, gaining insight into the nature of the database, gaining experience with conducting 
such studies with this database, and developing recommendations for use by future analysts 
when the database is enhanced by time sequence data. 

It was fully recognized by those planning and those conducting this research that the 
analyses at this point in forming the database would be limited. However, it was expected 
that the products of the research would have considerable interim value, and that the 
trailblazing aspects of this effort would prove valuable to future analysts. It was also 
expected that deficiencies in the data would be discovered, so that these deficiencies could 
be repaired before the next major analytical effort is undertaken. 

This project began with the development of a tentative analysis plan, in coordination with 
a Strategic Highway Research Program (SHRP) Expert Task Group on Experimental Design 
and Analysis and with input from the highway community at large during a SHRP data 
analysis workshop. The work effort was then unfortunately delayed 1 1/2 years because of 
delays in data availability. Some important data, such as layer elastic moduli, were still not 
available in time for use in the studies. However, the research staff was able to maximize 
the value of the results, considering the time constraint and the quality of the data available. 
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"Sensitivity analysis" is not a common descriptor for either research engineers or statisticians, 
but it has come to have a specific meaning to some individuals from both disciplines. The 
definition as applied to this research follows: 

Sensitivity analyses are statistical studies to determine the sensitivity of a dependent 
variable to variations in independent variables (sometimes called explanatory 
variables) over reasonable ranges. 

An example could be a study of the sensitivity of rutting in hot-mix asphalt concrete 
(HMAC) pavements to variations in layer thicknesses, traffic, material properties, or other 
variables significant to the occurrence of rutting. Such studies are generally conducted by 
first developing predictive equations for the distresses of interest and then studying the 
effects of varying individual explanatory variables across reasonable ranges. The 
development of suitable predictive equations for use in the sensitivity analyses required 
thousands of multiple regressions before the best equations suitable for sensitivity analyses 
were produced. Because of the nature of sensitivity analyses, the regression equations had 
to be statistically linear, which means that the coefficients must be linear and that nonlinear 
regression techniques could not be used. 

Some limitations of the database that constrained the sensitivity analyses are as follows: 

• The values of cumulative equivalent single axle loads (ESALs) were simply 
estimates from the state highway agencies and are not believed to be very 
reliable. 

• Initial roughness in terms of International Roughness Index (IRI) had to be 
estimated.· 

• There generally was only one measurement of distress for each test section, 
plus an estimated or assumed initial value (e.g., rutting, faulting, and such 
were assumed to be zero when the pavement was opened to traffic}. Two 
values are generally not enough to explain the curvature in a relationship, but 
the ages of the pavements were distributed reasonably well over 20 years, so 
that the curvatures were partially explained. 

• A number of test sections were missing data which precluded their use in 
these early analyses. 

• There was relatively little distress in the test sections at this early point in the 
20 year studies. Many test sections with adequate data had to be omitted 
because they had not experienced distress. 

Because there were over 100 data elements in each of the databases for flexible and rigid 
pavements, it was necessary to materially reduce the number of data elements to be 
considered in the analyses. It was also important to avoid strong correlations between 
independent variables that were included in the studies. The approach taken to eliminating 
less significant data elements was to obtain relative significance rankings from experts in 
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pavement performance modeling. This approach offered a means for bringing expert 
knowledge into the analysis at an early stage, as well as offering insight in the selection of 
variables considered in the analyses. These selections required balancing relative 
significance, data availability, and correlations with other variables. 

Because the selection instructions for the General Pavement Studies (GPS)-1 and GPS-2 
experiments allowed considerable overlap in pavement structure for test sections, it was 
decided to view these two data sets as resources and then to recombine them into more 
specific data sets such as HMAC on granular base, full-depth HMAC, HMAC over portland 
cement-treated base, and so on. These latter databases were those finally used in the 
analyses, and the data sometimes had to be combined to get enough test sections with 
distress for analysis. 

The data sets for the GPS-3 and GPS-4 experiments were also combined for a number of 
rigid pavement studies (e.g., studies of joint spalling and faulting), where the presence of or 
lack of reinforcement was not believed to be important. 

The development of the procedures for producing the required predictive equations and for 
conducting the sensitivity analyses after the equations were available were highly interactive 
and time consuming. These are discussed in detail in Chapters 5 and 6 of this report. 

It became apparent early in the analyses of HMAC pavements that predictive models 
developed from the entire database, whose inference space included all of the United States 
and parts of Canada, would generally not result in reliable models. Consequently, databases 
were formed for each of the four environmental zones and separate predictive models were 
developed. These models have values of the adjusted coefficient of determination R 2 

ranging from 0.65 to 0.93. For example, the model developed for prediction of rutting in 
the wet-freeze environmental zone appears as Table 1. The form of the equation appears 
at the top of the table, with the explanatory variables or interactions appearing in the table, 
along with the coefficients that provide the details of the equation. The exponents B and 
C are calculated by multiplying the explanatory variables or interactions in the left column 
by the regression coefficients bi and ci and adding the results. 

The results of the sensitivity analyses conducted with this predictive equation appear as 
Figure 1a. This figure shows that the strongest impact on the occurrence of rutting in the 
wet-freeze zone may be expected to be the cumulative number of KESALs (1000 ESALs). 
The dashed lines and arrow pointing to the left indicate that reductions in KESALs decrease 
rutting, but the standard deviation for KESALs is greater than the mean, and negative 
KESALs are not possible. Freeze index is the next most important, followed by the 
percentage of the HMAC aggregate passing a #4 sieve, air voids, and so on. It can also be 
seen from the directions of the arrows that increasing KESALs and freeze index may be 
expected to increase rut depths, while increasing amounts of aggregate passing the #4 sieve, 
air voids, and asphalt thickness may be expected to decrease rutting. It should be 
remembered that the relative sensitivities depend on the model form sele.cted for the 
predictive equation, so some differences would be expected if a different equation was used 
for the sensitivity analyses. 
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Table 1. Coefficients for Regression Equations Developed to Predict Rutting in 
HMAC Over Granular Base for the Wet-Freeze Data Set 

Rut Depth = N8 10c 
(In.) 

Where N = Number of Cumulative KESALs 
B = b1 + b2 x 1 + b3 ~ + ... + bn Xn-1 
C = c1 + ~ x1 + CJ x2 + ... + Cn Xn-1 

Explanatory Variable or Interaction 
(xJ Units 

Constant Term --
Log (Air Voids in HMAC) %by Volume 
Log (HMAC Thickness) Inches 
Log (HMAC Aggregate #4 Sieve) %by Weight 
Asphalt Viscosity at 140"F (60"C) Poise 
Log (Base Thickness) Inches 
(Annual Precipitation * Inches 

Freeze Index) Degree-Days 

Adjusted R2 = 0.68 

.15 .20 .25 

HMAC Aggr. <#4 

HMAC Air Voids 

Base Thick. 

~ Viscosity @ 140"F 

.30 .35 .40 .15 

Rut Depth, In. 

a. Wet-Freeze Data Set 

Coefficients for Terms In 

b; G 

0.183 0.0289 
0 -0.189 
0 -0.181 
0 -0.592 
0 1.80 X 10-S 
0 -0.0436 
0 
0 3.23 X 1<r 

RMSE in Log10 (Rut Depth) = 0.19 

HMAC Air Voids '"-t----.,.----~ 

Days> 90"F 

Annual Prec. 

Subgrade < #200 L--,---" 

HMACThick. 

.20 .25 .30 

Rut Depth, In. 

.35 

b. Dry-No Freeze Data Set 

.40 

Figure 1. Results From Sensitivity Analysis for Rutting in HMAC Over Granular Base 
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To illustrate how different the sensitivities may be from one environmental zone to another, 
the sensitivity analysis results for the dry-no freeze environmental zone are included as 
Figure lb. Most of the variables are the same as for the wet-freeze zone, but there are 
some differences and the relative levels of sensitivities vary between environmental zones. 

Unfortunately, the number of test sections for specific combinations of distress type and 
pavement type was not sufficient for the portland cement concrete (PCC) pavement studies 
to allow development of regional models. Consequently, the reliabilities of these equations 
are generally somewhat lower than those for the HMAC regional equations. 

While the sensitivity analyses offer useful insight, it must be remembered that most of these 
pavements are in very good shape, so the interactive effects of water seeping through cracks 
and expediting deterioration in lower layers really is not represented here. 

The twelve most significant variables from the sensitivity analyses for HMAC pavements are 
listed below by distress type in order of relative ranking, with the most significant variable 
at the top and the least at the bottom: 

Ruttin& 

KESALs 
Air Voids in HMAC 
HMAC Thickness 
Base Thickness 
Subgrade < #200 Sieve 
Days With Temp. > 9<1F (32• C) 
HMAC Aggregate < #4 Sieve 
Asphalt Viscosity 
Annual Precipitation 
Freeze Index 
Base Compaction 
Average Annual Min. Temp. 

Chanae in Rouwess 

KESALs 
Asphalt Viscosity 
Days With Temp. > 9dF (32. C) 
HMAC Thickness 
Base Thickness 
Freeze Index 
Subgrade < #200 Sieve 
Air Voids in HMAC 
Base Compaction 
Annual Precipitation 
Daily Temp. Range 
Annual Freeze-Thaw Cycles 

Transverse Crackina 

Age 
Annual Precipitation 
HMAC Thickness 
Base Thickness 
Asphalt Viscosity 
Base Compaction 
Freeze Index 
Days With Temp.>90"F (3tC) 
Subgrade < #200 Sieve 
Annual KESALs 
Annual Freeze-Thaw Cycles 
HMAC Aggregate < #4 Sieve 

The assignment of rankings for PCC pavements is more complex because of the strong 
impacts of dowels and reinforcement on performance. The general significance rankings for 
all ten PCC models combined follow: 

1. Age 7. Percentage of Steel 
2. CESALs 8. Tied Shoulders 
3. Slab Thickness 9. Annual Freeze-Thaw Cycles 
4. Static k-Value 10. Type of Subgrade 
5. Precipitation 11. PCC Flexural Strength 
6. Joint Spacing 12. Monthly Temperature Range 
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Other useful results follow: 

• For joint faulting of jointed concrete pavements (JCP) and roughness in jointed plain 
concrete pavements, the analyses indicate that environment becomes important only 
if the joints are not doweled. Therefore, the use of dowels is especially important 
in wet or cold climates and for high traffic. 

• Joint spalling is generally dependent on age and the environment. 

• The use of shorter slabs for JCP tends to reduce joint faulting and transverse 
cracking, which results in less roughness. 

• The use of a widened traffic lane appears to reduce roughness in continuously 
reinforced concrete pavement. 

• It is important not to overcompact HMAC, because this will reduce the air flow 
through the mix. In mixes of moderately high air voids (5 to 9%), early hardening 
occurs, which stiffens the mix and substantially reduces the rate of compaction under 
traffic. (It is also important to get sufficient compaction so that the early compaction 
under traffic is not excessive.) 

• The HMAC aggregate passing a #4 sieve was selected to represent the effects of 
gradation. Within its inference spaces in the separate data sets, increasing amounts 
of aggregate passing a #4 sieve appeared beneficial in reducing rutting. 
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1 

Introduction 

Because of the diversity of the research activities and the bulk of the text required to 
describe them, this report has been produced in five reports, which include an Executive 
Summary. The overall title is Early Analyses of LTPP General Pavement Studies Data, 
but each separate report has an additional title as follows: 

• SHRP-P-392, Executive Summaty 

• SHRP-P-684, Data Processing and Evaluation 

• SHRP-P-393, Sensitivity Analyses for Selected Pavement Distresses 

• SHRP-P-394, Evaluation of the AASHTO Design Equations and 
Recommended Improvements 

• SHRP-P-680, Lessons Learned and Recommendations for Future Analyses 
ofLTPP Data 

Each report is written as a stand-alone document, but it may be useful to refer to other 
reports for additional detail. 

This is a report on the results from data evaluations and sensitivity analyses for Strategic 
Highway Research Program (SHRP) Contract P-020, "Data Analysis," which served as 
the primary vehicle for harvesting the results from the first 5 years of the SHRP Long
Term Pavement Performance (LTPP) studies and transforming this new information into 
implementable products supporting the LTPP goal and objectives. The research was 
conducted by Brent Rauhut Engineering Inc. and ERES Consultants, Inc. 
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The goal for the LTPP studies, as stated in the Strategic Highway Research Program 
Research Plans, (1986)1

, is 

To increase pavement life by investigation of various designs of pavement 
structures and rehabilitated pavement structures, using different materials and 
under different loads, environments, subgrade soil, and maintenance practices. 

LTPP Objectives and Expected Products 

The following six objectives were established by the SHRP Pavement Performance 
Advisory Committee in 1985 to accomplish the overall goal: 

• evaluate existing design methods; 

• develop improved design methods and strategies for pavement rehabilita
tion; 

• develop improved design equations for new and reconstructed pavements; 

• determine the effects of (1) loading, (2) environment, (3) material proper
ties and variability, (4) construction quality, and (5) maintenance levels on 
pavement distress and performance; 

• determine the effects of specific design features on pavement performance; 
and 

• establish a national long-term pavement data base to support other SHRP 
objectives and future needs. 

This research was the first to use the National Pavement Data Base Oater renamed the 
National Information Management System [NIMS]) to pursue these objectives. The 
early products that were expected from this data analysis are listed below and related to 
project tasks (to be described later): 

10 

• A better understanding of the effects of a broad range of loading, design, 
environmental, materials, construction, and maintenance variables on 
pavement performance (Task 2); 

• Evaluation of and improvements to the models included in the 1986 
American Association of State Highway and Transportation Officials 
(AASHTO) Pavement Design Guide (Tasks 3 and 4); 

• Evaluation and improvement of AASHTO overlay design procedures using 
data from the General Pavement Studies (GPS) (Task 5); and 



• Data analysis plans for future analyses as GPS time sequence data and 
Specific Pavement Studies (SPS} data enter the NIMS and the LTPP 
Traffic Data Base and offer opportunities for further insight and design 
improvements (Task 6}. 

This project began with development of tentative analysis plans for this initial analytical 
effort. These plans were presented July 31, 1990, to the SHRP Expert Task Group on 
Experimental Design and Analysis and on August 2, 1990, to the highway community in 
a SHRP data analysis workshop. A detailed work plan was developed from the initial 
plans, and from the comments and guidance received from these and subsequent 
meetings. Guidance was furnished to the contractors throughout the research by a Data 
Analysis Working Group (composed of SHRP staff and SHRP contractors}, the Expert 
Task Group on Experimental Design and Analysis, and the Pavement Performance 
Advisory Committee. 

Research Tasks 

The specified tasks for SHRP Contract P-020a were 

• Task 1- Develop data evaluation procedure and hold workshop, 

• Task 1A- Process and evaluate data, 

• Task 2- Perform sensitivity analysis of explanatory variables in 
the National Pavement Performance Data Base, 

• Task 3- Evaluate the AASHTO design equations, 

• Task 4- Improve the AASHTO design equations, 

• Task 5- Evaluate and improve AASHTO overlay 
procedures using GPS data, and 

• Task 6- Develop future LTPP data analysis plans. 

The relationships between the tasks and the general flow of the research appear in 
Figure 1.1. This report documents Task 2. As can be seen, this task provided the data 
and information needed for Tasks 3, 4, 5, and 6. 
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Data Bases Used in the Analyses 

The NIMS will eventually include data for both the GPS and SPS, but only the GPS data 
were even marginally adequate for these early analyses. In May 1993, the SPS data were 
only beginning to be entered into the NIMS for projects recently constructed, and many 
of the projects are not yet constructed. It should be noted that all data collected for 
LTPP studies are for test sections 500 feet (152.4 meters) in length and include only the 
outside traffic lane. 

The GPS experiments are identified and briefly described in Table 1.1. The sensitivity 
analyses were conducted only for the five data sets for pavements that had not yet been 
rehabilitated, i.e., were in their first service period before being overlaid or otherwise 
rehabilitated (GPS-1 through GPS-5). The limited data bases available for the pave
ments with overlays were used for Task 5, Evaluate and Improve AASHTO Overlay 
Procedures Using GPS Data (see Volume 4 of this report). There were not sufficient 
test sections in GPS-6, GPS-7, and GPS-9, for which condition prior to overlay was 
known, to support development of reasonable predictive models for conducting sensitivity 
analyses. 

Table 1.1. Listing of SHRP LTPP General Pavement Studies Experiments 

GPS Experiment Brief Description No. of Projects in 
Number the Database 

1 Asphalt Concrete Pavement on Granular Base 253 

2 Asphalt Concrete Pavement on Bound Base 133 

3 Jointed Plain Concrete Pavement (JPCP) 126 

4 Jointed Reinforced Concrete Pavement (JRCP) 71 

5 Continuously Reinforced Concrete Pavement (CRCP) 85 

6A AC Overlay of AC Pavement (Prior Condition 
Unknown) 61 

6B AC Overlay of AC Pavement (Prior Condition Known) 31 

7A AC Overlay of Concrete Pavement (Prior Condition 
Unknown) 34 

7B AC Overlay of Concrete Pavement (Prior Condition 
Known) 15 

9 Unbonded PCC Overlays of Concrete Pavement 28 
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Some statisticians prefer to call the GPS experimental factorials "sampling templates" 
rather than experimental factorials, because existing in-service pavements were used 
instead of test sections that were constructed to satisfy rigorous experimental designs. In 
fact, the factorials were established to encourage reasonable distributions of the 
parameters expected to be significant, and test sections were sought to meet the factorial 
requirements. The SPS will follow the requirements of designed experiments. 

The environmental factors considered in the sampling templates were freeze, no freeze, 
wet, and dry. These broad factors were applied to encourage selection of test sections 
with distributions of environmental variables. The four environmental zones (or regions) 
considered for the selection of test sections appear in Figure 1.2. Where feasible, data 
sets for the individual distress types were further divided into four separate data bases by 
environmental zones, and separate analyses were conducted on each. 

Definition of Sensitivity Analysis 

"Sensitivity analysis" is not a common descriptor for either research engineers or 
statisticians, but it has come to have a specific meaning to some individuals from both 
disciplines. The definition as applied to this research follows: 

Sensitivity analyses are statistical studies to determine the sensitivity of a 
dependent variable to variations in independent variables (sometimes called 
explanatory variables) over reasonable ranges. 

An example is the study of the sensitivity of rutting in hot mix asphalt concrete (HMAC) 
pavements to variations in layer thicknesses, traffic, material properties, or other 
variables significant to the occurrence of rutting. Such studies are generally conducted 
by first developing predictive equations for the distresses of interest and then studying 
the effects of varying individual explanatory variables across reasonable ranges. 

There is no single method of conducting sensitivity analyses. Some involve standardizing 
the values of the independent variables so that the coefficients in the equations indicate 
directly the relative sensitivity of the distress of interest to the explanatory variable the 
coefficient multiplies. The procedure used for the studies reported involved setting all 
explanatory variables in a predictive equation at their means and then varying each one 
independently from one standard deviation below the mean to one standard deviation 
above the mean. The relative sensitivity of the distress prediction for that variable is the 
change in the predicted distress across the range of two standard deviations, compared to 
the changes when other explanatory variables were varied in the same manner. Because 
the relative sensitivities depend on the predictive equations selected, they would be 
expected to change somewhat if other equations were used. 
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No matter what procedure is used to establish the sensitivities, most of the work is spent 
on statistical evaluations of the data that identify the independent variables significant to 
the occurrence of the pavement distress of interest and the development of suitable 
predictive equations by using the significant independent variables that were identified. 

Analytical Limitations Resulting From Data Shortcomings 

This project involves the analysis of data gleaned from in-service pavements, and none of 
the early results may be expected to exceed in quality the adequacy of the database from 
which they are developed. Therefore, it is important to discuss the data resources 
available to the research team. There are certain limitations to the studies that are an 
unavoidable consequence of the timing of the early data analyses. For instance, excellent 
traffic data will be available to future data analysts from the recently installed monitoring 
equipment but this early data analysis must rely on estimates of past equivalent single 
axle loads (ESALs) of limited accuracy. While years of time sequence monitoring data 
will be available later, these studies have distress measurements for only one or at most 
two points in time. For most distresses, an additional data point may be inferred for 
conditions just after construction; e.g., rutting, cracking, faulting of joints, and so on were 
generally determined as zero initially. Analyses for roughness increases depend for most 
test sections on educated estimates for initial roughness (derived from State Highway 
Agencies [SHAs] estimates of initial Pavement Serviceability Index [PSI]). 

The distribution in ages of the test sections offered some assistance in overcoming the 
lack of time sequence data. As an example, Figure 1.2 shows the distribution of 
pavement age for the GPS-1 experiment, Asphalt Concrete Over Granular Base. A 
number of test sections are represented in all time intervals through 20 years of age. 

Another shortcoming of the databases that influenced the results were missing items of 
inventory data, collected from SHAs that concern the design and construction of the 
pavements. Inventory data include such elements as date of construction, pavement 
structure, and mix design. Some data elements were available for all the test sections, 
while others such as asphalt viscosity were not known for some test sections and could 
not be found. Unfortunately, it will generally not be possible to obtain these missing 
inventory data so they will be missing for future analyses as well. 

The plans developed for these analyses were well accepted, but during the processing 
and evaluation of the data, it became apparent that all the plans could not be carried 
out. Reflecting a tendency for SHAs to offer only pavements in reasonable condition, 
many test sections had not experienced distresses as yet, and those that had generally 
had only one or two distress types. The only type of distress that was generally available 
for all test sections was roughness, and it was necessary to estimate the initial roughness 
to study increases in roughness. For flexible pavements, rutting information was also 
available for all these test sections. It was not possible to study alligator cracking in 
flexible pavements, because only eighteen test sections were reported to have any of this 
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Figure 1.3. Distribution of Pavement Age, Experiment GPS-1, AC Over Granular Base 

cracking. Similarly, raveling and weathering could not be studied because only three test 
sections had experienced this distress. The only three distress types for flexible 
pavements for which sufficient data were available to support the studies were rutting, 
change in roughness (measured as International Roughness Index [IRI]), and transverse 
(or thermal} cracking. 

Friction loss was also eliminated from the studies because there were only three data 
elements in addition to ESALs, to use for independent variables and none of them 
would be expected to relate closely to the polishing of aggregates. Also, initial friction 
values were not available and would have to be estimated to study friction loss. 

The study of overlaid pavements was to have been of high priority, but it was generally 
agreed that pavement condition prior to overlay was an important variable and this 
information was not available for pavements that were overlaid prior to entering the 
GPS. It was decided early in the implementation of the L TPP studies that test sections 
would be sought for pavements for which overlays were imminent, so that the condition 
prior to overlay would be available. A number of such test sections have been 
implemented, but none of these are old enough to have appreciable distress. The total 
number of overlaid pavements was limited, and for the reasons discussed above only a 
few had sufficient information for successful analyses. Consequently, analyses for the 
overlaid pavements have been limited to the studies in Task 5, i.e., used only to evaluate 
the AASHTO overlay design equations. 
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It should be noted that the roughness reported for a test section is an average for that 
test section. Software called PROQUAL2 was applied to the profile data to check it for 
anomalies. Values of IRI were calculated for each of the five 100 foot intervals in a test 
section. In some cases, there were significant differences in roughness among the 100 
foot intervals, which may contribute to the unexplained error in the equations developed 
to predict roughness or change in roughness. 

It was also proposed that current knowledge be integrated into the analyses by use of 
mechanistic clusters of variables in the regression equations to predict distresses, which 
would then be used to conduct the sensitivity analyses. This plan to use mechanistic 
clusters of variables, based on theory, was thwarted by a lack of layer stiffness data, 
which only started to become available in fall 1992, and were still not all available as this 
report was being written. Because the mechanistic theory required layer moduli of 
elasticity, use of mechanistic clusters was limited to providing guidance for organizing 
interaction terms to try in the multiple regressions used to develop the predictive 
equations for distresses. 

As with any data analysis, the analysis staff had to be concerned about potential biases in 
the databases. Several areas of concern identified by Paul Benson, a member of the 
Expert Task Group for Experimental Design and Analysis, were (1) imbalances in the 
number of sections provided by different states, leading to possible undue influence from 
one state's design, construction, and maintenance practices; (2) the possibility of 
systematic differences in the interpretation of SHRP guidelines for test section selection 
by the states and the four SHRP regional offices and their engineers; (3) uneven 
distribution of test sections in experimental factorials; (4) the possibility that the older 
non overlaid pavements selected represent survivors, which are not typical of pavements 
in general; and (5) in a similar vein, the possibility that by basing much of our analysis 
on older pavements we may not be reflecting changes already made in modem 
construction and design practices. The following recommendations by Mr. Benson were 
followed in the analyses: 

• Limit the inference space of a model where the data are limited or grossly 
unbalanced, and consider regional models where the data do not warrant a 
national model. 

• Combine experiments (where distress mechanisms may be similar) to achieve a 
better balance (specifically GPS experiments 1 and 2). 

• Examine the distributions of independent and dependent variables for non 
normality, bi-modulism, and extreme values; where such are found, attempt to 
determine their source. 

• Conduct a thorough residual examination as soon as preliminary models are 
available, comparing residuals to project age, state, season tested, and other 
variables to determine possible sources of bias. 
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Sets of distress types to be studied were separately selected for pavements with asphalt 
concrete (AC) and portland cement concrete (PCC) surfaces, in coordination with the 
Expert Task Group on Experimental Design and Analysis, SHRP staff, and other 
interested parties. Once these distress types were selected, separate tables for flexible 
and rigid pavements, with the distress types as columns and all the data elements as 
rows, were furnished to a set of experts. These experts were asked to indicate on a scale 
of 1 to 3 how significant they believed a particular data element would be to the 
occurrence of each of the distresses. The results from these surveys were then combined, 
and studies were conducted to consider the expected availability of the individual data 
elements and possibility of substituting other correlated data elements when important 
data elements were not available. These studies identified data sets for the 
sensitivity studies to be used for the combinations of distress types and pavement types, 
and are described in more detail in Chapter 2. 
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2 

Preliminary Selection of Data Elements for Sensitivity 
Analyses 

The National Information Management System (NIMS) has "bins•• for 117 data elements 
for pavements with asphalt concrete surfaces, 128 data elements for jointed concrete 
pavements (JCP), and 120 data elements for continuously reinforced concrete pavements 
(CRCP). Because it clearly would not be practical to attempt to model pavement 
performance with so many independent variables and literally hundreds of potential 
interactions, it was necessary to considerably reduce the number of variables (data 
elements) to develop meaningful performance prediction equations and reasonable 
estimates of the relative significance of the independent variables to the occurrence of 
specific distresses (dependent variables). 

Relative Significance Studies 

The approach adopted for preliminary elimination of less significant variables was to 
obtain relative significance rankings from experts in pavement performance modeling. 
This offered a means for bringing expert knowledge into the analysis at an early stage, as 
well as offering insight for selecting the variables to be considered in the analyses. 
These selections require balancing relative significance, data availability, and correlations 
with other variables. Tables were developed for the three pavement types that listed the 
data elements as rows and the significant distresses selected for study as columns. These 
significance tables were distributed to various experts who had agreed to participate. 

Three levels of significance were considered. The assignment of a ••1" indicated that the 
rater considered the data element to be clearly significant in predicting the distress of 
interest. Assignment of a "2 •• indicated moderate significance, and a "3 •• indicated little or 
no significance. Space was also included in the tables for listing other data elements that 
were believed to be correlated with the one identified on that line. 
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When the significance rating forms were returned, the entries for each block were 
averaged. H the average score for a data element and distress combination was less than 
2, that data element was considered to be significant for prediction of that distress. H 
the average score was exactly 2, it was retained in the significance studies in some cases 
but not in others on the basis of the research team's judgment. Data elements with 
scores greater than 2 were not considered further. 

Criteria for Selection of Data Elements 

Upon completion of the relative significance studies discussed above, sets of independent 
variables had been developed that individually were believed to be significant to the 
prediction of specific distresses. However, significant independent variables to be 
included in the studies needed also to be available in the database. Therefore, the 
percentage of data expected to be available had to be considered in selection of the data 
elements to be included in the sensitivity analyses. 

It was soon apparent that many of the data elements considered to be individually 
significant would not be available in sufficient numbers to support the analyses. 
However, a great many of these variables were correlated to various degrees with other 
independent variables that were represented in greater percentages of the test sections 
involved. These correlations were considered, and it became apparent that the "explana
tion" of variations in the distresses (dependent variables) could for the most part be 
offered by other data elements with which they were correlated. That is, by omitting 
many of the variables the growth in the error pool would be manageable because of the 
inclusion of other correlated variables. 

It was possible through consideration of correlations as discussed above to replace most 
of the significant explanatory variables. However, a few of the significant data elements 
remained that were not replaceable with other correlated data elements. The level of 
the effect on the results was evaluated, as well as the probability of finding values for 
them, which resulted in a very small group of data elements for which the Strategic 
Highway Research Program (SHRP) regional offices were asked to seek values. As an 
example, the database includes bins for grade, penetration, and viscosity of the original 
asphalt cement for flexible pavements. Because these data cannot be obtained by testing 
the hardened asphalt taken from the in-service pavements, there was no source other 
than the inventory data from the files of the State and Provincial Highway Agencies. It 
was concluded that approximate values of the other two could be obtained if any one of 
the three was known. Therefore, values were sought in the few cases where none of the 
three values were furnished. 

Appendix A provides a document developed in March 1991 to record the results from 
the studies described briefly above for pavements with AC surfaces. The general 
procedure applied is illustrated in Figure 2.1. 
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In summary, the criteria for selecting the data elements to be included in the sensitivity 
analyses were (1) the data element must have been rated by the experts as significant, 
(2) the data must be available for a sufficient number of the test sections, and (3) the 
data element should not be highly correlated to other data elements considered to be 
more significant or to have data for more test sections. 

Data Elements Selected for Sensitivity Analyses 

The data elements that survived the preliminary selection process described above are 
listed in Tables 2.1 and 2.2. For Table 2.1,an "X" in a box representing a specific data 
element and specific distress indicates that the data element would be included in the 
development of predictive equations for the specific distress, and would be further 
considered in the sensitivity analyses if the statistical studies support the opinions of the 
experts as to its importance. As discussed previously, data elements with average 
significance rating scores greater than 2 were not considered further. However, those 
that were considered very significant by at least one rater have been identified by a "#" 
in Table 2.1 and may be considered further in future analyses when more data and time 
are available. 

Table 2.2 provides combined information for both JCP and CRCP. An "X" indicates 
selection for a JCP distress, whereas an "0" indicates selection for the CRCP studies. As 
an example, portland cement concrete (PCC) surface thickness is considered significant 
for transverse cracking, longitudinal cracking, pumping, roughness, and joint faulting for 
JCP, but is only considered significant for localized failures, pumping, and roughness for 
CRCP. As for flexible pavements, data elements that one rater considered to be very 
significant have been identified in Table 2.2 by a "#" symbol for JCP and a "+"symbol 
for CRCP. 

It can be readily seen that a number of data elements are available for some distress 
types, while there are only a few for others. 

There are no surprises in the data elements selected as significant. Thicknesses and 
stiffnesses of layers control strains in the pavement structure, while other data elements 
reflecting material properties (e.g., asphalt viscosity, percentage of air voids, gradations 
of aggregates and base materials, and strengths) affect layer stiffnesses and durability 
under the impacts of loads and the environment. Plasticity indices of the subgrades 
affect roughness through differential volume change by interacting with moisture content. 
Drainage can affect moisture content in base, subbase, and subgrade, which in tum 
affects layer stiffnesses and loss of fines. Performance of JCP depends heavily on joint 
efficiency from deflection measurements, which indicate movements in joints under 
loads. 
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Table 2.1. · Significant Data Elements for Predicting Distresses in 
Pavements With Asphalt Concrete Surfaces 

Significant Distress Types 
Data 

Elements Alligator Transverse Friction 
Cracking Cracking Rutting Roughness Loss 

Surface Thickness X X X X 

Base/Subbase Thickness X X X 

Surface Stiffness X X X 

Unbound Base/Subbase X X 
Stiffness 

Bound Base/Subbase X # X 
Stiffness 

Subgrade Stiffness X X X 

Age of Pavement X X X X X 

Cumulative ESALs X X X X X 

Asphalt Viscosity X X X # 

Asphalt Content X X X # 

Percentage of Air Voids X X X # 

HMAC Aggregate X X # 
Gradation 

Percentage of X X 
Compaction of 
Base/Subbase 

Subgrade Soil # X # 
Classification 

In Situ Moisture Content # X 
of Subgrade 

Subsurface Drainage # X X 
Yes/No 

Geological Classification X 
of Course Aggregate in 
HMAC 

% of Subgrade Soil # X 
Passing #200 Sieve 

Raveling/ 
Weathering 

X 

X 

X 

X 

# 
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Table 2.1(continued). Significant Data Elements for Predicting Distresses in 
Pavements With Asphalt Concrete Surfaces 

Significant Distress Types 
Data 

Elements Alligator Transverse Friction Raveling/ 
Cracking Cracking Rutting Roughness Loss Weathering 

Plasticity Index of # # X 
Subgrade Soil 

Liquid Limit # # # 

Percent of Subgrade Soil # X 
Finer Than 0.02 mm 

Type of Environment # # X X X X 

Average Maximum Daily # # X # # 
Temperature by Month 

Average Minimum Daily # # # # X 
Temperature by Month 

Thomthwaite Index # # X 

Freeze Index # X # X 

No. of Days Minimum X X # X 
Temperature <3tF 
(O•C) 

No. of Days Maximum X # X X # 
Temperature > 90•F 
(32.C) 

Number of Air Freeze- X X # X X 
. Thaw Cycles 

Annual Precipitation X X X X X 

Notes: X = data element was selected for analyses. 
# 

ESALS 
= average score greater than 2, but considered very significant by at least one rater. 

equivalent single axle loads; HMAC = hot mix asphalt concrete. 
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Table 2.2. Significant Data Elements for Predicting Distresses in 
Pavements With Portland Cement Concrete Surfaces 

Significant Distress Types 
Data 

Elements Longitudinal 
Cracking 

Transverse (JCP)/ Pumping Roughness Friction Joint 
Cracking Localized Loss Faulting 

Failures 
(CRCP) 

PCC Surface X X X X X 
Thickness 0 0 0 

Base Thickness # # X X X 
0 0 0 

PCC Surface X X X # # 
Stiffness 0 0 + 

Base Stiffness X X X X X 
0 0 0 

Subgrade Stiffness X X X X X 
0 0 0 

Age of Pavement X X X X X 
0 + 0 0 

Cumulative 18 kip X X X X X X 
ESAL 0 0 0 0 

Type of Coarse X X X X # 
Aggr. for PCC 0 + 0 

Gradation of Coarse # # # # # X 
Aggr. for PCC 0 + + 

PCC Compressive X X X 
Strength 0 0 

AASHTO Soil Class 0 X X X 
Base/Subbase 0 0 

% Compact. of # # X X X 
Base/Subbase 0 0 

Coarse Aggregate # 0 X # X 
Gradation of 0 
Base/Subbase 

Joint/ 
Crack 

Spalling 

# 
+ 

+ 

# 
0 

+ 

X 
0 

X 
0 

X 
0 

X 
0 

X 
0 

# 
0 

# 
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Table 2.2(continued). Significant Data Elements for Predicting Distresses in 
Pavements With Portland Cement Concrete Surfaces 

Significant Distress Types 
Data 

Elements Longitudinal 
Cracking 

Transverse (JCP)/ Pumping Roughness Friction Joint 
Cracking Localized Loss Faulting 

Failures 
(CRCP) 

Fine Aggr. # # X # 
Gradation of + 0 
Base/Subbase 

AASHTO Soil X X X X 
Classification of 0 0 0 
Subgrade 

Subgrade % Passing + X # 
#200 Sieve 0 + 

Moisture Content of # # X # 
Subgrade + 

Joint Efficiency # X X X 

Thomthwaite Index # # X X # X 
0 0 0 

Annual Precipitation X 0 X # X 
0 0 

Precipitation Days 0 X # X 
by Year 0 0 

Shoulder Type X # # # # 
0 0 0 

Subsurface Drainage X # # # X 
Type 0 0 0 

Avg. Max. Daily X X X X X 
Temperature by 0 0 0 
Month 
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Crack 

Spalling 

X 

# 

X 

+ 

X 
0 

X 
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Table 2.2(continued). Significant Data Elements for Predicting Distresses in 
Pavements With Portland Cement Concrete Surfaces 

Significant 
Data 

Elements 

Avg. Min. Daily 
Temp. by Month 

No. of Days Min. 
Temp. < 3tF (0" C) 

No. of Days Max. 
Temp. > 90"F 
(32"C) 

Air Freeze-Thaw 
Cycles 

Notes: X 
0 
# 
PCC 
ESAL 

AASHTO= 
JCP = 
CRCP = 

Distress Types 

Longitudinal 
Cracking 

Transverse (JCP)/ Pumping 
Cracking Localized 

Failures 
(CRCP) 

X X X 
0 0 

X X 0 
0 

0 X 

X X X 

data element was selected for JCP studies 
data element was selected for CRCP studies 

Roughness 

X 
0 

0 

X 

Friction Joint 
Loss Faulting 

X 

X 

X 

average score greater than 2, but considered very significant by at least one rater. 
portland cement concrete 
equivalent single axle load 
American Association of State Highway and Transportation Officials 
jointed concrete pavement 
continuously reinforced concrete pavement 

Joint/ 
Crack 

Spalling 

X 
0 

0 

X 

X 
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Large sets of deflection measurements are available for each test section, but these were 
not included in the sensitivity analyses. Although it is logical to include deflections in a 
predictive equation to be used for overlay design or other purposes, it is not appropriate 
to include them in models built for sensitivity analyses, because the responses to load are 
already explained by other data elements that represent the pavement structure. 
Including the deflection responses would account twice for the same effects. 

From the significance ratings and studies described above the data elements (or 
independent variables) were selected that were included in the sensitivity analyses for 
each distress type. Separate analyses are planned for each of the distress types that 
appear in Tables 2.1 and 2.2 and for each of the applicable GPS experiments. Data 
limitations and logic led to combinations of data into studies that were not strictly along 
the GPS experiment lines. These revised data sets (or studies) are described in the next 
chapter. 
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3 

Restructuring of Sensitivity Analysis Plans 

In the original experimental design for the General Pavement Studies ( GPS) each 
experiment was to be analyzed separately. However, subsequent changes in the experi
mental designs (possibly more reasonably called sampling plans as the test sections were 
acquired from in-service highways rather than being test sections rigidly controlled as to 
construction details) and other database limitations led to logical groupings of the data 
sets to obtain as many test sections with a distress type of interest as possible. This led 
to combining data sets from GPS-1 and GPS-2 that really fit either experiment, and in 
combining data sets from GPS-3 and GPS-4, where the presence or lack of reinforce
ment would have a limited effect on the occurrence of distress. The restructuring of the 
data sets is discussed separately below for pavements with asphalt concrete surfaces and 
those with portland cement concrete (PCC) surfaces. 

Pavements With Asphalt Concrete Surfaces 

Studies were conducted on the combined GPS-1 and GPS-2 data in early 1991 with only 
the inventory data available at that time. Twelve different categories of pavement 
structures were identified (Column 1 of Table 3.1), and the number of test sections for 
each were determined (Column 2 of Table 3.1). It can be seen that an ample database 
appeared to be available for hot-mix asphalt concrete (HMAC) on granular base, and 
that reasonable numbers were available for full-depth HMAC without stabilized 
subgrade and for HMAC on a cement aggregate mixture base. In general, there were 
not enough test sections. of the other types for meaningful individual analysis. Therefore, 
a study was conducted to identify potential analysis combinations, which appear in Table 
3.2. 

Table 3.2 indicates pavements with bases that are not subject to vertical shrinkage cracks 
and those with bases that are subject to vertical shrinkage cracks. This differentiation 
was made because of its anticipated importance to the modeling of transverse cracking. 
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w 
N Table 3.1. Categories of Pavement Structures in GPS-1/GPS-2 Data Pool and Number of Test Sections 

for Which Data Are Available 

(2) (3) 
(1) Total Test Total Test Test Sections With Data for 

Category of Pavement Structure Sections Sections 
Based on Based on (4) (5) (6) 
Inventory Available Transverse 

Data Data Rutting Roughness Cracking 

1. HMAC on Granular Base 218 202 152 108 85 

2. HMAC on Asphalt-Treated Base (ATB) and Granular Base 11 2 2 2 2 

3. Full-Depth HMAC With Unstabilized Subgrade 52 50 46 33 22 

4. Full-Depth HMAC With Lime-Stabilized Subgrade 7 14 14 12 6 

5. Full-Depth HMAC With Cement-Stabilized Subgrade 3 1 1 1 0 

6. HMAC Over ATB With Unstabilized Subgrade 18 27 17 21 8 

7. HMAC Over ATB With Lime-Stabilized Subgrade 3 3 3 2 0 

8. HMAC Over ATB With Cement-Stabilized Subgrade 1 0 0 0 0 

9. HMAC with Soil Cement Base 20 16 11 5 8 

10. HMAC with Lean Concrete Base 4 6 5 5 4 

11. HMAC with Cement Aggregate Mixture Base 40 38 31 26 23 

12. HMAC with Pozzolanic Aggregate Mixture Base 2 1 1 0 0 

TOTALS 379 360 283 215 158 



(j.) 
(j.) 

Table 3.2. Potential Analysis Combinations, GPS-1/GPS-2 Data Pool 

Category Combinations Test Sections Includes 

1 218 All HMAC on Granular Base 

1,2,3,&6 299 All Pavements with Bases Not Subject to Vertical Shrinkage 
Cracks 

4, 5, 7, 8, 9, 10, 11, & 12 80 All Pavements with Bases Subject to Vertical Shrinkage Cracks 

3,4, &5 62 All Full-Depth HMAC 

3 52 All Full-Depth HMAC with Unstabilized Subgrade 

4&5 10 All Full-Depth HMAC with Lime or Cement-Stabilized Subgrade 

9 20 All HMAC with Soil Cement Base 

9, 10, 11, & 12 66 All HMAC with Soil Cement, Lean Concrete, Cement Aggregate 
Mixture, or Pozzolanic Aggregate Base 

NOTE: The selection of a combination will depend on type of distress and type of structure, as well as reflect 
experience from other analyses. 

HMAC = hot mix asphalt concrete 
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Study of the data that appeared to be available (Column 2, Table 3.1) and the potential 
analysis combinations (Table 3.2) led to the proposed steps in the analyses for the 
distresses indicated in Tables 3.3 and 3.4. The general objective was to start with large 
data sets and learn as much as possible about suitable equation forms and variable 
clusters. This experience would then be brought to bear as other combinations were 
studied and comparisons carried out. 

All test sections were assumed to be included in the analyses; however, when only a few 
test sections were available for a structure type, these test sections would olllly be used 
for trials of equations that had been developed from larger databases to see if they might 
be adequate for somewhat different pavement structures as well. As discussed 
previously, these plans were developed from inventory data and prior to the availability 
of data from actual monitoring and material testing. Although friction loss and 
raveling/weathering were not studied, Table 3.5 has been included because of its 
potential use to future analysts. 

The research team studied the data to see what test sections had experienced the 
distresses of interest and had the data required for use in the analyses. Table 3.1 also 
indicates results from these later studies as follows: ( 1) the numbers of test sections by 
pavement structure category that generally had sufficient data available for use in 
analyses (Column 3) and (2) the number of these test sections that had experienced each 
of the three types of distresses to be studied (Columns 4, 5, and 6). The actual numbers 
of test sections that could be used in analyses for a particular distress were generally 
much smaller than originally expected. It became apparent that data limitations would 
considerably reduce the opportunities for analysis, and some test sections were moved to 
other categories when materials data from sampling and testing became available. As 
discussed previously, the only distress types for which the data would support the planned 
analyses were rutting, roughness, and transverse cracking. There were only eighteen test 
sections for which fatigue cracking data were available. Future analyses may possibly 
include those test sections that have not as yet experienced the distresses of interest. 
These techniques are identified for future consideration in SHRP-P-680, Early Analyses 
of L TPP General Pavement Studies Data. Lessons Learned and Recommendations for 
Future Analyses of L TPP Data. 

Pavements With Portland Cement Concrete Surfaces 

The categories of PCC pavements that were available for the analyses were the jointed 
plain concrete pavements (JPCP) of GPS-3, the jointed reinforced concrete pavements 
(JRCP) of GPS-4, and the continuously reinforced concrete pavements (CRCP) of GPS-
5. As for the HMAC pavements, there was an investigation to determine whether it 
would be possible to combine the data available into more logical data sets that would 
be amenable to the development of the required predictive models. 

Unlike HMAC pavements, however, most types of distress that occur on PCC pavements 
are directly related to the surface type (JCPC, JRCP, or CRCP). In fact, the 
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mechanisms of distress for PCC pavements almost always relate to the surface type. For 
example, the distress mechanisms for CRCP are generally different from those for 
jointed concrete pavements (JCP), and different models are often required for JPCP and 
JRCP to adequately predict the same type of distress. 

Consequently, it was not feasible to combine data sets, other than to combine JPCP and 
JRCP for faulting and roughness. Even then, because of the strong effects of dowels on 
the occurrence of joint-related distresses, it was necessary to separate the data sets into 
one for test sections with dowels and one for those without dowels. 

Table 3.3. Proposed Steps in Separate Analyses for Alligator Cracking, Rutting, 
and Roughness in Pavements With Asphalt Concrete Surfaces 

1. Develop regression equations by using the Statistical Analysis System {SAS•)3 PROC REG 
procedure and the data for HMAC over granular base (218 test sections). 

2. H the data elements found to be significant are available for the 11 HMAC/ATB/granular base 
sections, use their data to see if their performance varies appreciably from that of sections with 
HMAC on granular base. (Do equations from Step 1 provide reasonable predictions for the 11 
HMAC/ATB/granular base sections?) 

Note: If the equations from Step 1 are adequate for the 11 HMAC/ATB/granular base 
sections, the resultant predictive equations may be recommended for such pavements 
that include ATB. 

3. Apply experience from Step 1 on equation forms and clusters in the development of regression 
equations with data for the 52 full-depth HMAC sections without stabilized subgrade. If Step 2 
indicates that pavements that include an ATB layer do not perform significantly different from 
sections whose bituminous layers are all HMAC, then include the 18 HMAC over ATB without 
stabilized subgrade for a total of 70. 

4. H the 18 HMAC over ATB sections are not included in Step 3, use the equations from Step 3 
and the data from the 18 HMAC over ATB sections to see if their performance varies apprecia
bly from that of sections with full-depth HMAC. 

5. Apply experience from previous steps on equation forms and clusters in the development of 
regression equations with data for the 60 test sections with HMAC over soil cement base {20) or 
cement-aggregate mixture base {40). 

6. Use the equations from Step 5 and data for the 4 sections with lean concrete base and the 2 
sections with pozzolanic-aggregate mixture base to determine whether the equations developed 
in Step 5 provide reasonable predictions for these types of nonbituminous base. 

7. Review the results from the previous steps to see if better equations could be developed by 
revising clusters or equation forms. H significant improvements appear possible, pursue the 
improved equations. 

8. Conduct sensitivity analyses on the predictive equations developed. 

9. Develop graphs and/or other means of presenting the results of the sensitivity analyses. 
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Table 3.4. Proposed Steps in Sensitivity Analyses for Transverse Cracking in 
Pavements With Asphalt Concrete Surfaces 

1. Develop regression equations using SASe3 PROC REG and the data for all HMAC sections 
without nonbituminous bound base or stabilized subgrade. These will include 218 HMAC over 
granular base, 11 HMAC over ATB over granular base, 52 full-depth HMAC without stabilized 
subgrade, and 18 full-depth HMAC over A TB without stabilized subgrade. 

2. From the experience from Step 1 concerning equation forms and clusters, develop regression 
equations for all full-depth HMAC sections with stabilized subgrade (10), HMAC over ATB 
with stabilized subgrade (4), and HMAC with nonbituminous bound base (66). These includes 
the following: 

a. 10 test sections with full-depth HMAC (or HMAC/ATB) over lime-stabilized 
subgrade. 

b. ~test sections with full-depth HMAC (or HMAC/ATB) over lime- or cement
stabilized subgrade. 

c. 20 test sections with HMAC over soil-cement base. 

d. ~ HMAC test sections over lean concrete base. 

e. ~ HMAC test sections with cement-aggregate mixture base. 

f. ~ HMAC test sections with pozzolanic-aggregate mixture base. 

3. Compare the two resulting equations from Steps 1 and 2 by applying the equation from Step 1 
to the data used in Step 2, and vice versa. Study residuals in each case to learn what can be 
done about the effects of differences in base materials on the prediction of transverse cracking. 

4. If there do not appear to be serious differences attributable to whether base materials were 
subject to initial vertical fractures because of shrinkage cracking, regress again, with all data. 
Study the residuals from each of the equations developed and decide which is to be used for the 
sensitivity analyses. 

5. Conduct sensitivity analyses on the predictive equations developed. 

6. Develop graphs and/ or other means of presenting the results of the sensitivity analyses. 
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Table 3.5. Proposed Steps in Separate Analyses for Friction Loss and Ravel
ing/Weathering in Pavements With Asphalt Concrete Surfaces 

It appears reasonable to assume that the effects from characteristics of layers below the surface layer will 
be minor, especially in view of the limited data available that are considered significant to the occurrence 
of these distresses. Consequently, data from all 379 test sections will be used in the analyses when these 
data are available. Friction measurements and initial estimates will not be available for all test sections. 

It is obvious that the presence of a seal coat, friction course, and such surface treatments will affect the 
occurrences of these distresses, so identification of the type of surface treatment (if any) and its 
characteristics (when available) will also be considered in the analysis. However, no testing of thin 
non-HMAC layers is conducted in the SHRP laboratories, other than measurements of thickness and 
designation as a seal coat, porous friction course, or surface treatment. The other possibilities for data 
are from the inventory data or maintenance data. The inventory data only include a code that identifies 
what type of seal it is (chip, slurry, fog, sand, or chip with modified binder) and the layer thickness. 
There are virtually no maintenance data currently in the database, but future maintenance activities will 
be recorded in great detail for future analyses. 

The only three available data elements considered to be significant for predicting friction loss are (1) age 
of pavement, (2) cumulative ESALs, and (3) geological classification of course aggregate. As the latter 
data element will only be available for HMAC surfaces, there is really no hope for developing equations 
to predict friction loss for pavements with thin layers of seal coat, porous friction course, or other surface 
treatments. Consequently, test sections with such surface layers will be omitted from the analyses. 
Similarly, materials information will also not be available for raveling/weathering of such thin surface 
layers, so these test sections will be omitted from studies of this distress as well. 

The proposed steps follow: 

1. Develop regression equations using SAS• PROC REG3 and. data for all 379 test 
sections, except those with a thin surface layer other than HMAC and those for which 
distress data are not available. 

2. Conduct sensitivity analyses on the predictive equations developed. 

3. Develop graphs and/or other means of presenting the results of the sensitivity analyses. 
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4 

Theoretical Variable Clusters and Constraints Imposed by 
Late and Missing Data 

The research staff had hoped to use theoretical clusters of variables to impose current 
knowledge into the predictive models and to decrease the number of variables to be 
regressed. The intent was to apply partial differentiation to segregate the relative 
sensitivities for the individual explanatory variables. In support of this intention, Dr. 
Robert L. Lytton, consultant to the project, applied mechanistic theory to develop such 
clusters of variables for use in the studies of pavements with asphalt concrete surfaces. 
This technical memorandum appears as Appendix B. 

Similarly, Drs. Michael I. Darter and Emmanuel Owusu-Antwi developed clusters of 
variables for use in the studies of pavements with portland cement concrete surfaces. 
This technical memorandum appears as Appendix C. 

Because the use of these theoretical clusters of variables depends on knowing the elastic 
modulus of the various layers, it was not possible to use these as intended in the 
regressions. Resilient modulus testing in the laboratories to gain the elastic moduli of 
the layers did not reach the production testing stage until mid-1992, because of problems 
in resolving issues in testing protocols and procedures and conducting the round robin 
tests between laboratories to ensure uniformity. Results from laboratory testing were 
still not available at the time writing began on this report. Similarly, the capabilities for 
conducting backcalculations on deflection data were delayed while software was devel
oped to interface with the Regional Information Management Systems, and this software 
was not available until the analyses were in an advanced stage. As a result, the research 
staff could use the technical developments only as guidelines in structuring interactive 
terms within the regression equations. 

The technical memoranda discussed above are included in this report; they will have 
direct applicability for future analyses when the necessary data are available. 
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5 

General Procedures Followed in Developing Predictive 
Equations for the Sensitivity Analyses 

To conduct successful sensitivity analyses of the type considered here, it is necessary to 
develop equations that are both statistically linear and contain a minimum of collinearity 
between the independent variables to predict the distresses of interest. Predictive 
equations linear in the coefficients are required for sensitivity analyses for the following 
reasons: 

• The magnitudes of the effects from varying the individual independent 
variables would not be directly comparable, otherwise. 

• Nonlinear regression techniques are deficient in the diagnostics needed to 
identify collinearity and influential observations. Because collinearity must 
be minimized if the relative sensitivities are to be meaningful, use of 
nonlinear regressions could seriously limit confidence in the results. 

• The research staff, including Dr. Olga J. Pendleton, the statistical 
consultant, are not aware of any existing procedures for conducting 
sensitivity analyses on nonlinear models; therefore, it would have been 
necessary to develop a complex computer program which would have been 
far out of the scope and funding for these studies. 

Because it became obvious early in the contract period that there would be delays in 
delivery of the required data, it was decided to develop a practice data base that Dr. 
Pendleton could use to demonstrate the appropriate statistical procedures. A practice 
database was developed for the General Pavement Studies ( GPS)-1 experiment by the 
research staff, who used a combination of data from a variety of sources, some of which 
were necessarily estimated on the basis of engineering judgment, and by using other 
available data. These data and sources are indicated below: 
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• Inventory data that describe the pavement structure, its materials, and 
some construction information. 

• Distress data from early visual surveys during initial acceptance visits to the 
test sections. 

• Equivalent singl axle loads (ESALs) per year from early State Highway 
Agencies (SHAs) estimates during candidate test section recruitment. 

• Environmental data from climatic isobar maps. 

• Stiffness data for asphalt concrete (AC) and base, estimated through 
consideration of materials types, classification data from state records, and 
other inventory data. 

• Subgrade stiffness calculated from Sensor 6 deflections. 

• AC layers combined and base and subbase combined to restrict data to 
three-layer structures. 

This practice database was used to study the nature of the data and develop the 
procedures to be used. Because the Statistical Analysis Systems (SASj software3 was 
selected for conducting the studies, the procedures developed were based on that 
software and identification of subroutines all refer to the SAS® software. 

A tutorial was conducted for the research staff from both Brent Rauhut Engineering Inc. 
(BRE) and ERES Consultants, Inc. (ERES) at Texas A&M University. The technical 
manager for the Strategic Highway Research Program (SHRP), Dr. Robert Raab, also 
attended. Amy Simpson, BRE's staff engineer, who was later trained, conducted the 
sensitivity analyses. A detailed technical memorandum was written to explain these 
procedures in detail and gives examples. This technical memorandum appears in 
Appendix D. While this chapter will provide a brief discussion of these procedures, the 
technical memorandum provides additional detail. 

General Procedures 

A flow chart for the general procedures to be applied appears in Figure 5 .1. The 
selections of independent variables to be included in the studies are described in Chapter 
2, and the development of theoretical clusters of variables was discussed briefly in 
Chapter 4. The selections of transformations of the variable (e.g.,in logarithmic form 
rather than arithmetic) and interactions were primarily carried out as part of the 
multiple regressions themselves, which were part of the multivariate analyses indicated in 
Figure 5.1. 
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Identify and Create New Variables 
(Cluster Variables, Transfonnations, etc.) 

,/ 

UNIVARIATE ANALYSES 

' 

BIVARIATE ANALYSES 

'/ 

MULTIVARIATE ANALYSES 

Figure 5.1. Flow Chart for Data Studies and Development of Equations to Predict 
Significant Distresses 

The univariate analyses examine the data to determine potential distributional problems 
and anomalies. (Results from similar studies appear in SHRP-P-684, Early Analyses of 
L TPP General Pavement Studies Data. Data Processing and Evaluation for each GPS 
experiment.) The purposes were to examine marginal distributions, identify gaps in the 
data, identify any unusual observations, and identify functional forms. The procedures 
included studies of continuous data descriptive statistics and frequency distributions by 
using PROC UNIVARIATE, and partitioning continuous variables by categorical ones, 
by using PROC UNIVARIATE with BY option. 
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The bivariate analyses were used to study pairs of data elements, which may tum out to 
be unusual although each variable by itself is not unusual. The specific expectations 
from the bivariate analyses are to identify two-variable relationships, bivariate unusual 
points, bivariate collinearities, data gaps, functional forms, and data clusters. The 
procedures are as follows: 

• Study two-variable scatter plots produced from PROC PLOT. 

• Study correlations produced by PROC CORR. 

• Study categorical data contingency tables obtained by PROC FREQ. 

• Study partitioned correlations or plots by categorical data levels, produced 
by PROC CORR and PROC PWT with BY option. 

The final step in the development of the predictive equations is collectively termed 
"multivariate analyses." These analyses included studies to identify multivariate collinear
ities and the development of the pavement distress models. The procedures planned 
included the following: 

• Discriminant analysis to identify distressed and nondistressed pavements, 
using PROC REG with transformed variables. 

• Development of regression analysis models for distressed pavements, using 
PROCREG. 

• Analysis of variance, comparing the means of independent variables for 
distressed and nondistressed pavements, using PROC GLM. 

The procedures described above were carried out as indicated, but it became apparent 
during the analyses that revisions and additions would be required. These are discussed 
in the next section of this chapter. 

Principal component analysis was used to detect collinearity and influential observations. 
This method uses plots of eigenvector pairs to identify collinearities that may be masked 
by outliers.4 

In addition to the use of the univariate and principal component analysis procedures to 
detect outliers and influential observations, a procedure was used that is very similar to 
the principal component analysis. Once the model had been completely developed, the 
observations were examined in n-dimensional space to determine which were the farthest 
from the center of the data set. The center was found by determining the average of 
each data element. The five observations found to be the farthest from the center of the 
data set were deleted from each regression. It was not determined whether these five 
observations were significant influential observations. In the future, contours can be 
drawn around the data sets at specific significance levels. Any points lying outside the 
95% contour should be considered significant influential observations. 
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It should be noted that the measured distresses for the in-service pavements do not 
include the period just after the lane was opened to traffic. Consequently, early 
compaction from traffic is not directly represented. As a boundary condition, the log of 
cumulative KESALs (1,000 ESALs) was included in each equation as a separate term to 
enforce zero rutting with zero ESALs. Mathematically, the equations are undefined at 
zero ESALs; however, for practical purposes it is assumed that zero to some power is 
zero. The same boundary condition was enforced to ensure zero change in International 
Roughness Index (IRI) with zero cumulative ESALs, and age was used to enforce zero 
transverse cracking at the time of construction. Consequently, the predicted progression 
of distresses very early in a pavement's life is not reliable (and not especially important 
either as will be seen later). 

Problems Encountered and Modifications to Procedures 

Once the procedures were developed, work began with the complete database. The first 
distress type considered was rutting of hot mix asphalt concrete (HMAC) pavements over 
granular base. As problems were encountered, this data set was used as a "test bed" for 
identifying problems and working out solutions before continuing with data sets for other 
distresses and pavement types. 

As required for the sensitivity analyses, modeling was conducted using the least squares 
linear regression technique which minimizes random error. This technique also assumes 
that the dependent variable is normally distributed about the regression line and that the 
independent variables are fixed and without error. It is believed that the distresses have 
approximately log-normal distributions about the regression line; therefore, the 
regressions were conducted to predict the common logarithm of the distress. 

The first step was to analyze the individual independent variables with the SAs• all 
possible subset selection procedure. This procedure allows the user to offer a list of 
independent variables, and the system will select which of these variables, singly and in 
combination, best predict the dependent variable. This procedure was not expected to 
give the final model; however, it was expected to aid in determining which variables were 
the most influential to prediction of the dependent variable. 

The second step was similar to the first, except that all possible two- and three-way 
interactions were tried in the regressions. The interactive terms were selected through 
consideration of the theoretical variable clusters discussed in Chapter 4, terms appearing 
in prior distress equations, and engineering experience and judgment. When the 
sensitivity analyses were conducted on the resulting model, it became apparent that each 
independent variable needed to be in either log form or nonlog form, but not in both. 
This model did not meet that criterion. For example, asphalt thickness was present both 
as asphalt thickness and log asphalt thickness. Although both an independent variable 
and its logarithm might be found to contribute to the explanation of the variance in the 
dependent variable, only one or the other was considered for subsequent models. 
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The third step was to raise variables within the model to some power. The power was 
determined through an iterative process that found the models with the best root mean 
square error (RMSE), coefficient of determination (Jil), and P value on the individual 
variable. The P value is used to determine whether the independent variable is 
significant to the prediction of the dependent variable. However, the sensitivity analysis 
on the resulting equation did not produce logical or believable results. These results led 
to serious discussions and experimentation, which then led to the conclusion that three
way interactions (containing three independent variables in a single term) and the 
powers of the variables were confounding the sensitivity analyses. It was decided to limit 
the models to main effects (single independent variables) and two-way interactions. 
While the fit of the resultant models was slightly (though not significantly) worse, the 
sensitivity results appeared much more logical. 

As an additional trial, it was decided to try producing a predictive model for rutting by 
using only test sections with two rutting measurements taken at different points in time. 
Two measurements (other than the zero at construction) were available for 121 sections, 
and those sections with only one measurement were deleted for this trial only. The 
analyses were rerun, but the model statistics were no better than before. The two points 
were no more (and generally less) than 2 years apart; it is likely that more time series 
data will be required to improve the fit. 

To determine the stability of the model, regression analyses were completed on five 
different sets of 80% of the complete data set (a different 20% deleted each time), by 
using the same equation form. The coefficients for each independent variable for each 
run were compared and found to be quite variable. If the equation had been stable, the 
coefficients would have been very similar. 

Correlation among independent variables can lead to estimates of model coefficients that 
are illogical in sign. For example, when the variables "average monthly maximum 
temperature" and "annual number of days greater than 90°F (32°C)" were used in the 
equation for rutting, they had opposite signs. Although these nonintuitive model 
estimates do not generally mar the model's predictive ability, they are somewhat 
disconcerting to the practitioner and are difficult to explain. At this point it was decided 
to try the technique of ridge regression,5 a statistical method that adjusts for collinearity 
(correlated independent variables) and produces more stable and logical model 
estimates. One may visualize the procedure as adding m dummy equations of condition 
to the n real equations of condition, where m is the number of independent variables in 
the regression, and n is the number of observations. (An equation of condition is an 
equation in the form of the desired regression between the dependent variable for a 
given observation and the independent variables for that same observation.) The 
parameter estimates in many cases change dramatically when the ridge regression 
procedure is used. At some point during the iterative model developments the change in 
the parameter estimates becomes much smaller, and this equation is the final one that is 
used. 
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The terms in the equations previously checked by using five different sets of 80% of the 
data set had been primarily interactions between the independent variables. Thus, some 
of the main effects (individual independent variables) were added to the equation form, 
and the regressions were repeated, with a different 80% of the data set for each model. 
The comparisons of the five sets of coefficients proved to be much more consistent, 
which indicated that the revised equation form fit the data better. 

The model was found to contain certain highly correlated variables such as age and 
KESALs and subgrade moisture and annual precipitation. These pairs were identified 
and the variables in each pair with relatively low sensitivities were replaced by the 
variables with which they were correlated. The sensitivity analysis results for this 
equation were much more reasonable. The equation was then changed so that the other 
half of the pair was used in the interactions. The model created by using the variables 
with higher sensitivities produced much more logical results. 

All the models produced to this point and their resulting statistics were established from 
a data set that involved the entire data set. In an effort to improve model statistics, the 
data were separated according to the four environmental zones used in the sampling 
templates, and each data set was regressed using the equation form that contained the 
better half of the pair. The results from some of the sensitivity analyses were not always 
reasonable. To try to remedy the problems encountered in the sensitivity analyses, 
models were (as described above) found using main effects alone. The R2s decreased 
and RMSEs increased somewhat; however, the results from the sensitivity analyses were 
more reasonable. Next, interactions that had previously been found to work well 
(including some of the three-way interactions) were added to the equations with just 
main effects. Values of R2 and RMSE were improved, but the results from the 
sensitivity analyses were not all reasonable. The above interactions were dropped from 
the equations, and only two-way interactions were added. The values of R2 and RMSE 
were not as good as those that included the three-way interactions but were better than 
the equations with just main effects. The results from the sensitivity analyses were more 
logical but still problematic, particularly for the wet-no freeze and dry-no freeze zones. 

For the wet-no freeze and dry-no freeze zones, log(KESALs) was replaced with age in 
the equations. Problems still existed for the sensitivity analyses for these zones. Age 
was then replaced by log(KESALs) in these two equations, and new two-way interactions 
were introduced. Sensitivity analysis results for the dry-freeze zone were somewhat 
improved. 

Coordination with the statistical consultant indicated that sufficient collinearity had not 
been expelled from the equation, so eigenanalysis (see Appendix D) was used to identify 
additional variables to delete from the models. The ridge regressions mentioned 
previously were then used to develop new models. In each of the models, KESALs and 
structural thicknesses were forced into the equations. That is, the variables were placed 
in the models even if they did not improve the statistics. 
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It was concluded, at this point, that the five models- one for the entire data set and one 
each for each of the four environmental zones- were as good as could reasonably be 
expected within the constraints imposed by the requirements for sensitivity analyses and 
by limitations in the data sets available (primarily lack of adequate time sequence data 
for these early analyses). The techniques finally used for the rutting model were then 
adopted for other distresses and pavement types. 

Procedures Adopted for Developing Distress Models for 
Sensitivity Analyses 

The procedure, arrived at by the experimentation described above for developing distress 
models to be used for sensitivity analyses, is described in the next chapter. The 
modeling and sensitivity analyses are best combined as one process, so judgment can be 
applied to iterate toward the optimum models for use. The analyst must carefully reach 
a balance between (1) expectations and knowledge from past research and (2) 
maintaining opportunity for the data to communicate new knowledge. 

This procedure does not offer the best models for predicting pavement distress. It is 
likely that nonlinear regression techniques would result in better models. However, 
these models would not have been practical for the sensitivity analyses, because 
sensitivity analyses for nonlinear models are much more complex, and there are no 
computer programs (such as SAS® for linear models) to use in conducting them. 
However, this does not preclude common transformations, such as the use of logarithms 
or powers of the independent variables, as long as the equations are linear in the 
coefficients. 

Alternative Procedures Used for Developing Models for 
PCC Pavement Distresses 

The procedures used by ERES research staff for developing the portland cement 
concrete (PCC) pavement models were essentially those discussed above, except that the 
staff decided to take advantage of some graphical capabilities in the S-Plus statistical 
software while the studies were in progress6

• This allowed them to easily view scatter 
plots and three-dimensional plots of the data, which indicated relationships between all 
the dependent and independent variables being considered. From observations of the 
two- and three-dimensional plots, the explanatory variables that were not linearly related 
to the dependent variables were noted. Such variables were linearized by determining 
the best exponents for these variables, which was done by use of the Alternating 
Conditional Expectations (ACE) algorithm introduced by Breiman and Friedman, along 
with the Box-Cox transformation. Detailed descriptions of these techniques are provided 
in "Design of Joints in Concrete Pavements" by R.D. Bradbury7

• 
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These procedures were used to develop the final models used in the sensitivity analyses. 
In several cases, this general procedure had to be modified to meet the specific demands 
for the model to be developed. 
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6 

General Procedures for Establishing Sensitivities of 
Predicted Distresses to Variations in Significant 
Independent Variables 

The original intent was to standardize all independent variables in a distress model so 
that the coefficients on each term would represent the impact of that term. This step 
would be done by subtracting each observation from the mean for that variable (to 
calculate deviation from the mean) and dividing by the standard deviation. The model 
would then be regressed again with these standardized observations and using the same 
equation form. The sensitivity of the distress to an independent variable would then be 
determined by varying each variable in the standardized equation individually from one 
standard deviation above its mean to one standard deviation below its mean. The 
resulting change in predicted distress would then represent the relative sensitivity of the 
distress type to that independent variable. 

Depending on the types of independent variables, short-cut mathematical transformations 
can at times be used to facilitate computations. In the days of hand calculations, 
independent variables that were evenly spaced could be recoded with an orthogonal 
coding scheme to make such hand calculations easier. This is not an issue in today's 
world of computers and is mentioned here only to relate to previous sensitivity analyses 
that were able to take advantage of this simplification. In reality, x-variables are seldom, 
if ever equally spaced, especially with observational, noncontrolled experimental 
situations. All that is necessary is to subtract the mean and divide by the standard 
deviation of each x-variable (standardization). In analyses where a single x-variable is 
actually a cluster of more than one independent variable, and the sensitivity of the 
individual components of the cluster is of interest, this standardization is slightly 
modified. The cluster is standardized in the usual fashion. To determine the sensitivity 
of a given component of the cluster, all other components in the cluster are set to their 
mean and the component of interest is varied. 
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General Procedures for Establishing Sensitivities of 
Predicted Distresses for HMAC Pavements 

All the previously discussed trials were run on the data set for rutting in hot mix asphalt 
concrete (HMAC) pavements on granular base. These procedures led to an algorithm 
that has been consistently used to determine all the models. The algorithm appears in 
Figure 6.1 as a flow chart and is also described below: 

1. Starting with log traffic, each single variable of the set of variables considered and 
its transformations are tried in the model. If a variable is found to improve the 
coefficient of determination (R2

), adjusted R2
, and root mean square error 

(RMSE) without adding collinearity, it is allowed to stay. After all the individual 
independent variables have been tried once, any that are not in the model at that 
point are tried again. For consistency's sake the frrst set of variables tried after 
log traffic are those dealing with the HMAC layers. Next, the variables 
identifying the base layers are tried, followed by the subgrade variables, and 
finally the environmental variables. 

2. Once an equation with the main effects (variables identified as significant) has 
been established, other equations are tried that include two-way interactions of 
the main effects. If a trial interaction improves the R2

, the adjusted R2
, and the 

RMSE, but does not add collinearity, it is allowed to stay in the model. This 
process is repeated until all possible two-way interactions have been tried. 
Although techniques previously described were used to identify outliers, the 
analyst should be alert for other outliers that may be revealed as the analysis 
continues. It should be noted that the main effects in some cases were replaced 
by interactions. 

3. The ridge regression technique is then applied to stabilize the model, using the 
main effects and interactions that survived Step 2. 

4. The sensitivity analysis on the final model is conducted as discussed above. 

It should be understood that the calculated sensitivities that are assigned for the 
individual independent variables very much depend on the predictive equation itself. 
The values will vary, depending on the form of the equation and the set of independent 
variables included. As will be seen in the next chapter, models for different 
environmental zones can vary considerably in form and in variables that are significant to 
the prediction of a distress. Therefore, the relative sensitivities of the independent 
variables should be considered indicative of their relative significance, rather than as 
absolute measures of the relative importance of the variables in terms of magnitude. As 
obvious examples, it can be concluded that traffic, HMAC thickness, and precipitation 
merit consideration in design and pavement management, but one may not be exactly 
twice as important or a half as important than another. 

52 



Start regression 
withKESALs 

alone 

Add Layer 
Thicknesses 

Add Asphalt 
Content 

Leave the variable 
in the model 

'0 
~ 

~ 

>----:~ Try another 

Try all variables 
not currently in the 
model one time 

variable 

"S 

~ 
'0 

8 

Figure 6.1. Flow Chart for Developing Distress Models and Conducting 
Sensitivity Analyses 
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Figure 6.1(continued). Flow Chart for Developing Distress Models and Conducting 
Sensitivity Analyses 
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Figure 6.1( continued). Flow Chart for Developing Distress Models and Conducting 
Sensitivity Analyses 
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Figure 6.1(continued). Flow Chart for Developing Distress Models and Conducting 
Sensitivity Analyses 



While future predictive equations may be more precise and consequently offer higher 
confidence in the relative importance of individual variables, it is likely that truly precise 
evaluations may never be reached. However, the present equations should suffice if the 
significant variables here continue to be found significant in future analyses and are 
found to have more or less the same relative importance in relation to each other. 

General Procedures for Establishing Sensitivities of 
Predicted Distresses for PCC Pavements 

The only differences between the procedures used for the sensitivity analyses for HMAC 
and portland cement concrete (PCC) pavements were in the modeling process, as 
discussed in Chapter 5. The use by the ERES staff of the S-PluslM plotting capabilities 
and their linearization of the independent variables replaced the use of ridge regression 
and some of the iterations in the HMAC procedures discussed above. Figure 6.2 shows 
the procedures that were used to develop distress/International Roughness Index (IRI) 
models for PCC pavements. 

Once modeling had been completed, the ERES research staff used the same procedures 
to determine the sensitivities of the dependent variable to variations in the independent 
variables as were used for the HMAC data. These procedures are also shown in Figure 
6.2. 
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Figure 6.2. Flow Chart for Developing Distress Models for Rigid Pavements 
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Figure 6.2(continued). Flow Chart for Developing Distress Models 
for Rigid Pavements 
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7 

Predictive Equations for Distress Types and Results of 
Sensitivity Analyses for Asphalt Concrete Pavements 

Previous chapters have dealt with the methodology applied to select significant data 
elements that impact the occurrence of pavement distresses, to sort the data into data 
sets for analysis, to develop predictive distress models, and to conduct sensitivity 
analyses. This chapter presents the results in terms of predictive equations and relative 
sensitivity analysis results for hot mix asphalt concrete (HMAC) pavements. The results 
for the various combinations of distress and pavement types are discussed separately 
below. 

Data Review and Evaluation 

Detailed statistical evaluations of the data were conducted for each specific combination 
of distress and pavement types as described in Chapter 5. Products from these 
evaluations that were used in the development of predictive equations included the 
following: 

• Two-variable scatter plots 
• Variable frequency distributions for the entire database and by 

enviromental zones 
• Correlation matrices for the separate data sets individually 
• Complete eigenanalysis for each data set individually 
• Residual plots for trial equations 
• Plots of predicted versus actual distresses 

Traffic data were also reviewed for individual test sections as to their reasonability while 
they were being processed into each data set. 
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These ~roducts are far too voluminous to include in this report. The Statistical Analysis 
System (SAS•) correlation analyses alone filled a stack of paper 3/4-in. (19 mm) thick. 
Most of these data appear in SHRP-P-684, Early Analyses of LTPP General Pavement 
Studies Data. Data Processin& and Evaluation, except they are recorded by General 
Pavement Studies ( GPS) experiment rather than by the databases used in these analyses. 
Some examples are included in this section, and plots of predicted versus actual 
distresses and residuals versus predicted distresses appear in subsequent sections for the 
equations selected. 

Figures 7.1, 7.2, and 7.3 show scatter plots for rut depth, change in roughness, and 
transverse cracking versus cumulative KESALs (1,0000 equivalent single axle loads), 
cumulative KESALs, and age, respectively, for the HMAC over granular base data set. 
While the scatter when plotting a single variable versus another single variable is always 
broad, these plots do provide some insight as to what type of function would fit the data. 

Figure 7.4 shows the frequency distribution of cumulative KESALs by environmental 
zone for the HMAC over granular base data set for change in roughness. Because these 
distributions appear to be more log normal than normal, this fact influenced the research 
staff to conduct the regressions on log(KESALs). The general equation forms selected 
also provided for zero distress when KESALs were zero. 

Figures 7.5, 7.6, and 7.7 show distributions of rut depth, change in International 
Roughness Index (IRI), and transverse crack spacing, respectively, for the HMAC over 
granular base data sets. It should be remembered that the test sections represented by 
each data set are not the same for the different distresses. The tendency toward log 
normal distributions illustrated in these figures contributed to the research staffs 
decision to develop the regression equations for the logarithm of distress as the 
dependent variable in each case. 

Table 7.1 shows the correlation matrix (as it is printed out with the SAS8 software) for 
change in roughness (DIRI) of HMAC over granular base. The top line for a variable 
identified in the left-hand column reports the correlation between that variable and a 
specific variable of those identified along the top row. The bottom line reports the 
probability that the variables identified in a column and row are not correlated. H the 
probability indicated in the bottom line is less than 0.05, significant correlation may be 
assumed. As can be seen, the first two pages in the table are required to include all 
variables identified in the rows, and the third and fourth pages add additional columns. 
This was necessary to include all twenty-two variables in the analysis. Items found to 
have significant correlation have been shaded. 

Although some of the variables in the correlation matrix can be easily identified, others 
cannot, and so they are identified below: 
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DIRI 
BOTiflRI 
INITIRI3 
A THICK 

= 
= 
= 
= 

change in roughness measured as IRI 
measured IRI 
estimated initial IRI 
thickness of HMAC layers combined 



ASPHALT 
AIR VOID 
NO FOUR 
VISC 140 
B THiCK 

COMPACfl 
PI 
#200 
YEARS 
KESALs 
TOTPREC 
AVG90 

AVGFRZTH 
AVGMAX 

AVGMIN 

TEMPDIF 
MAXTEMP 

= 
= 
= 
= 
= 

= 
= 
= 
= 
= 
= 
= 

= 
= 

= 

= 
= 

asphalt content 
air voids in HMAC layer in place 
percentage of HMAC aggregate passing a #4 sieve 
viscosity of asphalt at 140°F (60°C) 
thickness of granular base and subbase layers 
combined 
base compaction 
Plasticity Index of subgrade soil 
percentage of subgrade soil passing a #200 sieve 
age of pavement 
cumulative equivalent single axle loads in thousands 
total precipitation 
average days per year when air temperature exceeds 
90°F (32°C) 
average number of air freeze-thaw cycles per year 
average of maximum daily temperatures for each 
month 
average of minimum daily temperatures for each 
month 
average daily temperature range 
average maximum temperature for June, July, and 
August 

MINTEMP = average minimum temperature for December, January, 
and February 

It can be seen from Table 7.1 that DIRI is apparently only directly correlated with 
asphalt viscosity. The correlation matrix was used primarily to identify independent 
variables that were correlated with other independent variables. H two variables were 
highly correlated, only one would be included in a trial equation. In some cases where 
the correlations were more limited, the two variables were sometimes combined in an 
interaction and were included in a trial equation. 

It can also be seen from Table 7.1 that most of the climatic variables are highly 
correlated, so one variable could often explain the effects of several others. 

The eigenanalysis is described in Appendix D. 

Rutting of HMAC Pavements on Granular Base 

The predictive equations for the entire data set and those for the four environmental 
zones appear in Table 7.2. As discussed previously, the actual regressions were 
conducted to predict log10(rut depth), which led to the equation form indicated at the top 
of the table, which applies for all five predictive equations. The statistics for the 
equations also appear below each equation box, as well as the number (n) of 
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Figure 7.1. Scatter Plots of Rut Depth vs. Cumulative KESALs for Complete and 
Regional Data Sets, HMAC Over Granular Base 
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Figure 7 .3. Scatter Plots of Transverse Crack Spacing vs. Pavement Age for Complete 
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Table 7 .1. Correlation Matrix for Change in Roughness, 
HMAC Over Granular Base Data Set 

Pearson Correlation Coefficients I Prob > IRI under Ho: Rho=O IN= 108 

DIRI BOTIIIRI INmRI3 A TIIICK ASPHALT AIR VOID NO FOUR VISC 140 B_TIIICK COMPACI1 PI #200 

DIRI 1.00000 0.88143 -0.17099 -0.12691 -0.00707 0.06997 0.02287 0.23778 0.10633 0.09125 0.01271 ..().02079 

rt;'= ii\WM 0.0768 0.1906 0.9421 0.4718 0.8143 nmw. 0.2734 0.3476 0.8961 0.8309 

BOTHIRI 0.88143 1.00000 0.31466 -0.15473 0.09117 0.10859 0.05846 0.10084 0.07918 0.05307 0.07275 0.06294 

!A!m! ~~!~ ~~:- 0.1098 0.3481 0.2633 0.5479 0.2991 0.4153 0.5854 0.4543 0.5176 

INITIRI3 -0.17099 0.31466 1.00000 -0.06m 0.20437 0.08589 0.07598 -0.26751 -0.04852 -0.07267 0.12621 0.17307 
0.0768 !~4- mt~ 0.4861 w:m~ 0.3768 0.4345 m:m 0.6180 0.4548 0.1931 0.0733 

A THICK -0.12691 -0.15473 -0.06m 1.00000 -0.14417 0.03075 -0.42021 -0.02556 -0.15076 -0.24537 -0.00011 0.11704 
0.1906 0.1098 0.4861 !~II 0.1366 0.7520 i~9::B: 0.7929 0.1194 ttil1®. 0.9991 0.2277 

ASPHALT -0.00707 0.09117 0.20437 -0.14417 1.00000 -0.00673 0.29286 -0.02425 0.04925 -0.16311 0.06108 -0.02333 
0.9421 0.3481 ~:~- 0.1366 i~:t~~ 0.9449 ~:m• 0.8032 0.6128 0.0917 0.5300 0.8106 

AIR VOID 0.06997 0.10859 0.08589 0.03075 -0.00673 1.00000 0.00615 0.01327 -0.22606 -0.07205 0.25431 0.13204 
0.4718 0.2633 0.3768 0.7520 0.9449 }1-P 0.9496 0.8915 %B. 0.4587 l!MU 0.1731 

NO FOUR 0.02287 0.05846 0.07598 -0.42021 0.29286 0.00615 1.00000 -0.02016 -0.01747 0.01653 0.05208 0.00447 
0.8143 0.5479 0.4345 11~ 11!3!U 0.9496 1~@ 0.8360 0.8576 0.8652 0.5924 0.9634 

VISC 140 0.23778 0.10084 -0.26751 -0.02556 -0.02425 0.01327 -0.02016 1.00000 0.00455 -0.08200 0.02187 -0.00992 
~~n'O=m 
;.;.;.;.;.;.;.;.;.;.;.;.; 

0.2991 ~t~! 0.7929 0.8032 0.8915 0.8360 Jl 0.9627 0.3989 0.8222 0.9188 

B TIIICK 0.10633 0.07918 -0.04852 -0.15076 0.04925 -0.22606 -0.01747 0.00455 1.00000 0.02149 -0.08744 -0.08300 
0.2734 0.4153 0.6180 0.1194 0.6128 J!ml 0.8576 0.9627 ~1!,, 0.8253 0.3682 0.3931 

COMPACTI 0.09125 0.05307 -0.07267 -0.24537 -0.16311 -0.07205 0.01653 -0.08200 0.02149 1.00000 -0.14149 0.06529 
0.3476 0.5854 0.4548 ~~l.M.@ 0.0917 0.4587 0.8652 0.3989 0.8253 ~(f.P: 0.1441 0.5020 

PI 0.01271 0.07275 0.12621 -0.00011 0.06108 0.25431 0.05208 0.02187 -0.08744 -0.14149 1.00000 0.67760 
0.8961 0.4543 0.1931 0.9991 0.5300 ma 0.5924 0.8222 0.3682 0.1441 ;!m! i!tB 

#200 -0.02079 0.06294 0.17307 0.11704 -0.02333 0.13204 0.00447 -0.00992 ..().08300 0.06529 0.67760 1.00000 
0.8309 0.5176 0.0733 0.2277 0.8106 0.1731 0.9634 0.9188 0.3931 0.5020 il:& ilt 

....,J YFARS 0.12576 0.12485 0.00770 0.07936 0.03888 0.02990 -0.22338 -0.20628 -0.13731 -0.10496 0.04603 -0.07589 - 0.1947 0.1979 0.9369 0.4143 0.6895 0.7587 ,. - 0.1565 0.2797 0.6362 0.4350 



-...J Table 7.1(continued). Correlation Matrix for Change in Roughness, 
tv HMAC Over Granular Base Data Set 

Peaxson Correlation Coefficients I Prob > IRI under Ho: Rho=O IN= 108 

DIRI BonBRI INITIRI3 A TIIICK ASPHALT AIR VOID NO FOUR VISC 140 B TIIICK COMPAC PI #200 

KESALS -0.11516 -0.12573 -0.03084 0.23864 -0.01649 -0.20252 -0.17381 -0.01869 -0.09752 -0.13282 0.02818 -0.07018 
0.2353 0.1948 0.7514 limB 0.86.55 m~• 0.0720 0.8478 0.3153 0.1706 0.7722 0.4704 

TOTPREC 0.05260 -0.07162 -0.25511 0.11943 -0.27849 0.10620 -0.21061 0.12514 0.06981 0.11496 -0.19360 -0.21890 
05887 0.4614 tfiB 0.2183 0.0035 0.2740 !.!~- 0.1969 0.4728 0.2361 [E, ~l--

AVG90 -0.11766 -0.01663 0.20176 -0.27298 0.05639 0.01791 0.06111 -0.04020 -0.22241 -0.02503 0.25609 0.10154 
0.2252 0.8644 !1~- liB. 05622 0.8541 05298 0.6795 ~~~- 0.7971 t• 0.2957 

AVGFRZIH -0.05688 -0.03449 0.04235 0.39033 -0.07553 -0.16665 -0.10392 -0.37441 0.01923 0.02268 -0.16446 0.10770 
05588 0.7231 0.6634 !!~- 0.4372 0.0847 0.2845 ili:!P.I 0.8434 0.8157 0.0890 0.2672 

AVGMAX -0.00782 -0.00145 0.01270 -0.29055 0.05046 0.13023 0.02320 0.36393 -0.22995 -0.02792 0.29232 0.11073 
0.9360 0.9882 0.8962 !I:M 0.6040 0.1791 0.8116 llf.IJU !!m.H 0.7742 !m' 0.2539 

AVGMIN 0.05247 0.02414 -0.05508 -0.31438 0.04656 0.19245 0.03753 0.47569 -0.11259 -0.01558 0.22970 0.03253 
05897 0.8041 05113 mm 0.6323 li~~- 0.6998 !IJII 0.2460 0.8728 !Btl 0.7382 

1EMPDIF -0.17565 -0.07471 0.19716 0.04303 0.01766 -0.16738 -0.0386.5 -0.29303 -0.36039 -0.04136 0.20846 0.23913 
0.0690 0.4422 m~• 0.6584 0.8561 0.0834 0.6913 1liU m;g 0.6708 \IE 0.0127 

MAXTEMP -0.12943 -0.07028 0.11349 -0.23229 -0.02815 0.03610 0.00696 0.10890 -0.31561 0.00870 0.25207 0.15661 
0.1819 0.4698 0.2422 Ktm 0.7724 0.7107 0.9430 0.2619 rm• 0.9288 ~f.- 0.1055 

MINI'EMP 0.08081 0.03011 -0.09958 -0.28311 0.09456 0.16270 0.05903 05486.5 -0.09562 -0.03861 0.23188 0.03162 
0,4058 0.7570 0.3052 ,~. 0.3303 0.0925 05440 Gam :·:·:·:·:·:·:·:·:·:·:·: 

0.3249 0.6916 ~l!MM 0.7453 



Table 7.1(continued). Correlation Matrix for Change in Roughness, 
HMAC Over Granular Base Data Set 

Pearson Correlation Coefficients I Prob > IRI under Ho: Rho=O IN= 108 

YEARS KESALS TOTPREC AVG90 AVGFRZTH AVGMAX AVGMIN TEMPDIF MAXTEMP MINI'EMP 

DIRI 0.12576 -0.11516 0.05260 -0.11766 -0.05688 -0.00782 0.05247 -0.17565 -0.12943 0.08081 
0.1947 0.2353 05887 0.2252 05588 0.9360 05897 0.0690 0.1819 0.4058 

BOTIIIRI 0.12485 -0.12573 -0.07162 -0.01663 -0.03449 -0.00145 0.02414 -0.07471 -0.07028 0.03011 
0.1979 0.1948 0.4614 0.8644 0.7231 0.9882 0.8041 0.4422 0.4698 0.7570 

INmRI3 0.00770 -0.03084 -0.25511 0.20176 0.04235 0.01270 -0.05508 0.19716 0.11349 -0.09958 
0.9369 0.7514 !B il:& 0.6634 0.8962 05713 i!!~- 0.2422 0.3052 

A1HICK 0.07936 0.23864 0.11943 -0.27298 0.39033 -0.29055 -0.31438 0.04303 -0.23229 -0.28311 
0.4143 m~,a 0.2183 i!!~'-!~ Hf:P1tl !!IJJ !illR 0.6584 i!!~& !i!J!M 

ASPHALT 0.03888 -0.01649 -0.27849 0.05639 -0.07553 0.05046 0.04656 0.01766 -0.02815 0.09456 
0.6895 0.8655 irt:a 05622 0.4372 0.6040 0.6323 0.8561 0.7724 0.3303 

AIR VOID 0.02990 -0.20252 0.10620 0.01791 -0.16665 0.13023 0.19245 -0.16738 0.03610 0.16270 
0.7587 J!mM 0.2740 0.8541 0.0847 0.1791 !I'B 0.0834 0.7107 0.0925 

NO FOUR -0.22338 -0.17381 -0.21061 0.06111 -0.10392 0.02320 0.03753 -0.03865 0.00696 0.05903 

!t.W.9.J 0.0720 i!W.E 05298 0.2845 0.8116 0.6998 0.6913 0.9430 05440 

VISC 140 -0.20628 -0.01869 0.12514 -0.04020 -0.37441 0.36393 0.47569 -0.29303 0.10890 054865 
0.0322 0.8478 0.1969 0.6795 Jl'®.t! ii!l'®.t! ii!:tM! i'!t.& 0.2619 me. 

B1HICK -0.13731 -0.09752 0.06981 -0.22241 0.01923 -0.22995 -0.11259 -0.36039 -0.31561 -0.09562 
0.1565 0.3153 0.4728 i!!~- 0.8434 ;;nm'l 

•!•:·:·:·:·:·:·:·:·=·:·:· 
0.2460 !I& !~- 0.3249 

COMPACTI -0.10496 -0.13282 0.11496 -0.02503 0.02268 -0.02792 -0.01558 -0.04136 0.00870 -0.03861 
0.2797 0.1706 0.2361 0.7971 0.8157 0.7742 0.8728 0.6708 0.9288 0.6916 

PI 0.04603 0.02818 -0.19360 0.25609 -0.16446 0.29232 0.22970 0.20846 0.25207 0.23188 
0.6362 o.m2 &~fl:l i!!~- 0.0890 i!f:,B Hm!M !i!:E i!!~- !lim 

#200 -0.07589 -0.07018 -0.21890 0.10154 0.10770 0.11073 0.03253 0.23913 0.15661 0.03162 
0.4350 0.4704 !i!'R 0.2957 0.2672 0.2539 0.7382 i!!~- 0.1055 0.7453 

YEARS 1.00000 0.18467 -0.12147 -0.03530 0.18787 -0.04280 -0.12622 0.23922 0.00942 -0.11580 

!ill 0.0557 0.2105 0.7168 0.0515 0.6601 0.1930 !!!I 0.9229 0.2327 
......:1 w 



~ 

YEARS KESALS 

KESALS 0.18467 1.00000 
0.0557 If~ 

!•!•!•!•!• 

TOTPREC -0.12147 -0.17853 
0.2105 0.0645 

AVG90 -0.03530 0.34734 
0.7168 1& 

AVGFRZTII 0.18787 -0.13264 
0.0515 0.1712 

AVGMAX -0.04280 0.22466 
0.6601 il.t.UI 

AVGMIN -0.12622 0.10222 
0.1930 0.2925 

TEMPDIF 0.23922 0.37627 
0.0127 iJlwt~ 

MAXI'EMP 0.00942 0.34116 
0.9229 liB 

MINTEMP -0.11580 0.08073 
0.2327 0.4062 

Table 7.1(continued). Correlation Matrix for Change in Roughness, 
HMAC Over Granular Base Data Set 

Pearson Correlation Coefficients I Prob > IRI under Ho: Rho=O IN = 108 

TOTPREC_ AVG90 AVGFRZTII AVGMAX AVGMIN TEMPDIF 

-0.17853 0.34734 -0.13264 0.22466 0.10222 0.37627 
0.0645 !lim 0.1712 iiiE 0.2925 !4111 
1.00000 -0.24481 -0.05586 -0.03056 0.11291 -0.42048 

ii,b! il!~flfl 0.5658 0.7535 0.2446 ii., 
-0.24481 1.00000 -0.61900 0.79802 0.67049 0.44159 

i~mw. ill !lB. !!B ~~;- !&B 
-0.05586 -0.61900 1.00000 -0.78168 -0.88533 0.23124 
0.5658 m:• i!l.t 11.8 [fJMt !MtM 

-0.03056 0.79802 -0.78168 1.00000 0.94309 0.25401 
0.7535 filii f:f.lm ii!M fiB 11.U.J 
0.11291 0.67049 -0.88533 0.94309 1.00000 -0.08202 
0.2446 l-' 1AB.t 1At!&t ;g 0.3988 

-0.42048 0.44159 0.23124 0.25401 -0.08202 1.00000 

ilf!IU lt.!M.tt ~~- t:t.M 0.3988 til 
-0.20238 0.92603 -0.55399 0.87040 0.72164 0.50964 

lilll!1 ~-: ill·~ lJlD.~ illS~ i~W.-
0.11456 0.55817 -0.84834 0.91084 0.96875 -0.08781 
0.2378 'bli.l fiJI ~- !IH 0.3661 

MAXI'EMP MINTEMP 

0.34116 0.08073 

!liM 0.4062 

-0.20238 0.11456 

t!B! 0.2378 

0.92603 0.55817 

!illwt 1B 
-0.55399 -0.84834 

i!B ~~~-
0.87040 0.91084 

iiiJMt liB 
0.72164 0.96875 

liB I:M. 
0.50964 -0.08781 

liE! 0.3661 

1.00000 0.61956 

iM liB! 
0.61956 1.00000 

1,11!! • :-:-:-:-:·: 



Table 7 .2. Coefficients for Regression Equations Developed to Predict Rutting in HMAC 
Pavements Over Granular Base 

Rut Depth = N8 lOc 
(ln.) 

Where N = Number of Cumulative KESALs 
B = bo + bl xl + b2 x2 + ... + bn Xn 
C = Co + cl xl + ~ x2 + ... + en Xn 

a. Entire Data Set 

Explanatory Variable or Interaction Coefficients for Terms In 
(X;) Units 

bi Ct 

Constant Term - 0.151 -0.00415 

Log (HMAC Aggregate < #4 Sieve) % byWeight 0 -0.596 

Log (Air Voids in HMAC) % byVolume -0.0726 0 

Log (Base Thickness) Inches 0 0.190 

Subgrade < #200 Sieve % byWeight 0 0.00582 

Freeze Index Degree-Days 8.49X 1<r 0 

(Log (HMAC Thickness) • Inches 
Log (Base Thickness)) Inches 0 -0.161 

n = 152 If= 0.45 Adjusted If = 0.41 RMSE in Log10(Rut Depth) = 0.18 

b. Wet-No Freeze Data Set 

Explanatory Variable or Interaction Coefficients for Terms In 
(X;) Units 

b; C; 

Constant Term - 0.0739 0.00998 

Log (HMAC Aggregate < #4 Sieve) % byWeight 0 -0.373 

Log (Air Voids in HMAC) % byVolume 0 -0.215 

Subgrade < #200 Sieve % byWeight -0.00056 0 

Annual Number of Days > 90"F Number 0 -0.00022 

Log (Annual Freeze-Thaw Cycles + 1) Number 0 0.0337 

(Log (HMAC Thickness) • Inches 
Log (Base Thickness)) Inches 0 -0.135 

n = 41 If= 0.72 Adjusted If = 0.66 RMSE in Log10(Rut Depth) = 0.18 

' 
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Table 7.2(continued). CoeMcients for Regression Equations Developed to Predict 
Rutting iD HMAC Pavements Over Granular Base 

Rut Depth = N8 10c 
(In.) 

Where N = Number of Cumulative KESALs 
B = b0 + b1 x1 + b2 x2 + ... + bn Xn 
C = Co + Ct X1 + ~ X2 + · · · + Cn Xn 

c. Wet-Freeze Data Set 

Explanatory Variable or Interaction Coefficients for Terms In 
(xJ Units 

b, c, 

Constant Term - 0.183 0.0289 

Log (Air Voids in HMAC) 9fi by Volume 0 -0.189 

Log (HMAC Thickness) Inches 0 -0.181 

Log (HMAC Aggregate < #4 Sieve) 9fi by Weight 0 -0.592 

Asphalt Viscosity at 140"F Poise 0 1.80X 10-s 

Log (Base Thickness) Inches 0 -0.0436 

(Annual Precipitation • Inches 
Freeze Index) Degree-Days 0 3'.23X 10-6 

n =41. If= 0.73 Adjusted If = 0.68 RMSB in Log10 (Rut Depth) = 0.19 

d. Dry-No Freeze Data Set 

Bxplmatory Variable or Interaction Coefficients for Terms In 
(xJ Units 

bi ci 

Constant Term - 0.156 -0.00163 

Log (HMAC Aggregate < #4 Sieve) 9fi by Weight 0 -0.628 

Log (HMAC Thickness) Inches 0 0.0918 

Log (Air Voids in HMAC) 9fi by Volume -0.0988 0 

Base Thickness Inches 0 0.00257 

Subgrade < #200 Sieve 9fi by Weight 0 0.00153 

(Annual Precipitation • Inches 
Annual Number of Days > 90"F) Numbers 0 6.588X 10-s 

n = 36 If= 0.75 Adjusted If = 0. 70 RMSB in Log10 (Rut Depth) = 0.16 
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Table 7.2(continued). Coemcients for Regression Equations Developed to Predict 
Rutting in HMAC Pavements Over Granular Base 

Rut Depth = N8 10c 
(In.) 

Where N = Number of Cumulative KESAls 
B = b0 + b1 x1 + b2 x2 + ... + bn Xn 
C = Co + c1 x1 + ~ x2 + ... + Cn Xn 

e. Dry-Freeze Data Set 

Explanatory Variable or Interaction Coefficients for Terms n 
(X;) Units 

bi t; 

Constant Term - 0.0394 0.00451 

Log (HMAC Thickness) Inches 0 0.0600 

Mod. AASHTO Base Compaction % of Max. Density 0 -0.00849 

(Base Thickness • Inches 
Log (HMAC Thickness)) Inches 0 0.00875 

(Log (Subgrade < #200 Sieve) • %by Weight 
Log (Freeze Index + 1)) Degree-Days 0 0.0107 

(Log (Subgrade < #200 Sieve) • %by Weight 
Log (Air Voids in HMAC)) %by Volume 0 -0.00567 

n = 34 Adjusted R2 = 0.81 RMSE in Log10 (Rut Depth) = 0.11 

observations (test sections) upon which the equation was based. It can be seen that only 
152 of the 218 available test sections survived the data evaluations. 

It should be noted that the quoted root mean square error (RMSE) is in log10 of rut 
depth. The meaning of a standard error of regression, or RMSE on a logarithmic 
variable, in terms of the effect on the variable itself, can be explained as follows, by 
using arbitrary yet convenient values for an example. Assume that the RMSE of fit for a 
regression on logy is 0.3. This means that 68% of the values of logy for a specific set of 
X; lie between w - 0.3 and w + 0.3, where w is the value of logy predicted by the 
regression. Assume w is 1.0 (i.e., y = 10), then 68% of the values of logy lie between 
0.7 and 1.3. This means that 68% of the values ofy lie between 5 and 20, or stated 
another way, they lie within a factor of approximately 2 (antilog 0.30 = 1.995) of 10. 

Thus, we see that an RMSE of € in logy may be expressed as precision of prediction to 
within a factor of (antilog €) in the value of y itself. 

Some typical values of € and the corresponding factor (antilog €) are 

~ 

0.05 
0.10 
0.15 

Antilo" € 

1.122 
1.259 
1.412 
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0.20 
0.25 
0.30 

1.585 
1.778 
1.995 

The values of adjusted R2 look quite reasonable for the data available as of May 1993, 
but the RMSEs indicate that the equations are of limited reliability. As an example, the 
equation for predicting rutting in the wet-freeze environmental zone appears in Table 
7.2.c. For simplicity, assume that all values of independent variables are at their means 
so we can use the plots in Figure 7.10. A rut depth of approximately 0.16 in. (4 mm) is 
predicted for 100 KESALs and about 0.21 in. (5 mm) for 500 KESALs. The RMSE for 
this case in log(rut depth) is 0.19 and the antilog is 1.55. H this is applied as a factor 
value, then 

Predicted (Predicted Rut (Predicted Rut 
Rut Depth Depth) + 1.55 Depth ) x 1.55 

KESAIJa (In.) (In.) (In,) 
100 0.16 0.10 0.25 
500 0.21 0.14 0.33 

At a 68% confidence level in the log of rut depth, the upper and lower confidence levels 
for rut depth after 100 KESALs have been applied are 0.25 and 0.10 in. ( 6 and 3 mm), 
respectively. Those for 500 KESALs are 0.33 and 0.14 in. (8 and 4 mm), respectively. 
Thus, the precisions for these equations are poor, even though the values of R2 look 
quite good. 

Figure 7.8 shows plots of predicted versus actual rut depths for the four environmental 
zones, each with its own predictive equation. Figure 7.9 shows plots of the residuals 
versus predicted rut depths. 

Figure 7.10 shows the predicted rut depths versus KESALs for each environmental zone 
when the independent variables appearing in the five separate predictive equations are 
held at their means for their respective data sets. From these graphs the following may 
be determined: 
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• A substantial portion of rutting may be expected to occur very early in the life 
of a pavement. 

• After the rapid densification early in a pavement's life, the rate of rutting 
decreases rapidly, approaching a much reduced rate for the rest of the 
pavement's life. While the rate appears to be constant in the plots, it does 
continue to decrease slightly but might be expected to increase again when 
cracking starts and moisture increases occur in the base/subbase and subgrade 
(However, pavements are generally repaired well before rapid acceleration of 
rutting begins.) 
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Figure 7.8. Plots of Predicted vs. Actual Rut Depth for HMAC Over 
Granular Base Data Sets 
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Figure 7.9. Plots of Residuals vs. Predicted l.ng(Rut Depth) for HMAC Over 
Granular Base Data Sets 
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Figure 7.10. Predicted Rutting vs. KESALs With All Other Independent 
Variables at Their Mean Values, HMAC Pavements on Granular Base 

500 

• On a cursory basis, it might be decided that typical pavements in the dry 
zones rut more than those in wet zones; however, this finding could be a 
consequence of the particular test sections selected. It should be noted that 
the mean values for rutting in all the zones are relatively low, which probably 
indicates a bias resulting from the better highways being offered by State 
Highway Agencies (SHAs). 

• The graph for the wet-no freeze zone appears to indicate virtually no increase 
in rutting after a very few K.ESALs. It is probable that this result is from a 
bias caused by the presence of some older highways, with very high traffic but 
very little rutting, in that particular data set. 

It is critical to remember that plots of predicted distress in terms of one independent 
variable are useful but can be very misleading. Figures 7.1, 7.2, and 7.3 and the scatter 
plots in SHRP-P-684, Early Analyses of LTPP General Pavement Studies Data. Data 
ProcessinK and Evaluation, illustrate the actual variances when the independent variables 
are not held at their mean values. 

There are several causes of rutting, including densification of the HMAC mixtures, 
horizontal displacement of the HMAC mixture, densification and/ or horizontal 
displacement of unbound materials, combinations of these, and probably others. The 
mechanisms for rutting are not considered directly in the predictive equations, but may 
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be partially explained implicitly through such independent variables as air voids, layer 
thicknesses, asphalt viscosity, climatic variables, and the interactions between variables. 

The results from the sensitivity analyses conducted on the equations appearing in Table 
7.2 appear in Figures 7.11 and 7.12. The vertical lines through the boxes are located at 
the predicted mean values of rut depth for each data set. For Figure 7.11, this mean is 
between 0.25 and 0.26 in. (6 and 7 mm). The boxes begin and end at the rut depths 
calculated when that independent variable is varied from one standard deviation above 
to one standard deviation below the mean value, with all other independent variables at 
their mean values. The arrows within the boxes indicate whether an increase in that 
variable increases or decreases predicted rut depth. As an example, increasing KESAI.s 
in Figure 7.11 increases rut depth and increasing HMAC thickness decreases rut depth. 

The dashed boxes with arrows pointing to the left that appear to the left of the mean rut 
depths for KESAI.s in Figures 7.11, 7.12b, and 7.12c, simply indicate that the standard 
deviations for KESAI.s in these cases exceeded the mean, and that negative values of 
KESAI.s have no physical meaning. This phenomenon was caused by a number of test 
sections that had very high levels of KESALs. 

The relative sensitivities for specific independent variables are indicated by the 
horizontal widths of the boxes in the figures, and the relative sensitivity levels decrease 
from top to bottom. For example, the occurrence of rut depth for the entire data set 
represented in Figure 7.11 is most sensitive to KESAI.s and least sensitive to the 
percentage of the subgrade soils passing a #200 sieve. For each of these two variables, 
increases in the independent variables result in increases in predicted rut depth. 

By comparing the sensitivity plots (Figure 7.12) for the four environmental zones, it can 
be seen that predicted rut depths for three zones are most sensitive to KESAI.s, while 
predicted rut depths for the dry-freeze zone are more sensitive to four other variables 
than to KESAI.s. In the latter case, rut depth appears to be most sensitive to base 
compaction. Although we can theorize about the relative sensitivities and their causes, 
the causes are not always obvious. One might speculate that, in general for the test 
sections in the dry-freeze data set, compaction was not quite adequate and that much of 
the densification was in the base. This theory is supported by the fact that base 
thickness is the next variable in level of sensitivity. 

Also, air voids in the HMAC appear to be significant for all four zones, and higher air 
voids (within the ranges in the data sets) tend to decrease rutting. At first glance, this 
scenario appears questionable but has been found to be the case by other researchers. 
The hypothesis for this phenomenon is that increased air flow through the HMAC results 
in earlier aging and stiffness, which in turn decreases rutting. 

The independent variables found to be significant to rut depth predictions are not always 
the same between zones, and the relative significance of specific variables also varies 
between zones. As an example, base thickness is not very important in three zones and 
increases in it tend to decrease rutting, while it is quite significant in the dry-freeze zone 
and tends to increase rutting as it increases. This finding seems to be consistent with the 
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hypothesis offered above that base compaction is generally not adequate and that 
substantial densification occurs in the base. 

It can also be seen that the percentage of the HMAC aggregate passing a #4 sieve 
appears to be moderately significant for three of the four zones, and that rutting tends to 
decrease in mixes with more material passing a #4 sieve (within the ranges existing in 
the data sets). 

Different environmental variables were found to be significant for the different 
environmental zones. This is not surprising, but it should be remembered that many (if 
not most) of the environmental variables are correlated. One would expect correlations 
among freeze index, annual air freeze-thaw cycles, and number of days per year 
experiencing temperatures greater than 90 DF (32 a C). Consequently, one data element 
may represent one or more other data elements in the predictive equations. 

As the graphs in Figure 7.10 represent predicted rut depths when all variables are at 
their mean values in the separate data sets, they do not represent directly the poor 
pavements that will experience considerable rutting or the good pavements that will 
experience very little. To provide some insight, fourteen cases were examined for the 
wet-no freeze environmental zone, as indicated in Table 7.3, by using three levels for 
each variable. Because it would have required 6561 case studies to consider the entire 
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Table 7.3. Calculated Rut Depths for Various Combinations of Independent Variable Magnitudes, Wet-No Freeze 
Equation 

- -

Independent Case Numbers 
Variable 

1 2 3 4 5 6 7 8 9 10 11 12 13 

KESALs 100 5000 20,000 5000 5000 5000 5000 5000 5000 5000 5000 20,000 5000 

HMAC Thickness 6 6 6 2 2 10 6 6 6 6 6 10 6 

HMAC Air Voids 5 5 5 3 5 5 3 8 5 5 5 5 3 

Subgrade < #200 60 60 60 20 60 20 20 20 100 100 100 100 60 

HMACAggr. < 50 50 50 30 50 50 50 50 50 30 50 70 30 
#4 

Base Thickness 12 12 12 4 12 12 12 12 12 12 20 20 12 

Days> 90"F 60 60 60 0 60 60 60 60 60 60 60 60 60 

Ann. Freeze- 30 30 30 60 30 30 30 30 30 30 30 0 30 
Thaw Cycles 

Calculated Rut 0.17 0.20 0.21 0.42 0.23 0.22 0.27 0.22 0.16 0.20 0.16 0.11 0.27 
Depth 

-

14 

5000 

10 

5 

20 

50 

4 

60 

30 

0.26 



factorial at three levels, the 14 were selected to include the worst case (Case 4) and to 
illustrate the effects of variations in the most significant independent variables. 

Cases 1, 2, and 3 show the effects of KESALs. Note that the majority of the rutting is 
expected early in the life of a pavement, with the rest occurring at a rate decreasing with 
cumulative ESALs. The other cases represent various combinations of variable 
magnitudes. Case 12 represents a pavement with a heavy structure, heavy traffic, and a 
mix with 70% of its aggregate passing a #4 sieve and compacted to 5% air voids. The 
predicted rut depth was 0.11 in. (3 mm), whereas the prediction for Case 3 (same traffic 
but less structure) was 0.21 in. (5 mm). 

Because the predicted rut depths for full-depth HMAC pavements and those with 
portland cement treated-base would be expected to vary similarly with variations in their 
independent variables, similar examples have subsequently not been provided for those 
types of pavements. 

The discussion of the meaning of RMSE in terms of a dependent variable when RMSE 
is expressed in the log of that dependent variable applies to all the other results reported 
in this chapter, so this discussion will not be repeated. 

Rutting of Full-Depth HMAC Pavements 

Only forty-two of the fifty-two full-depth HMAC pavements with unstabilized subgrade 
survived the data evaluations. Because the number of test sections was quite small, 
models were developed for the entire data set, a data set of the two dry zones, a data set 
of the two wet zones, a data set of the two no freeze zones, and a data set of the two 
freeze zones. The predictive equation for the entire data set appears in Table 7.4, the 
prediction equations for the wet and dry data sets in Table 7 5, and the equations for the 
no freeze and freeze data sets in Table 7.6. As with the HMAC over granular base, the 
multiple regressions were conducted to predict log(rut depth), which led to the same 
equation form appearing at the top of each table. The statistics for the equations for 
full-depth HMAC are essentially comparable to those developed for HMAC over 
granular base, even though the numbers of observations were much lower. 

Figure 7.13 shows plots of predicted versus actual rut depths for the four full-depth 
HMAC models for the different environmental zones, and Figure 7.14 shows plots of the 
residuals versus predicted log(rut depth). 

Figure 7.15 shows the predicted rut depths versus KESALs when the other independent 
variables in the five separate predictive equations are held at their means for their 
respective data sets. It can be seen that the forms of the equations are similar to those 
for HMAC on granular base. 
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Table 7.4. Coefficients for Regression Equations Developed to Predict Rutting in 
Full-Depth HMAC Pavements, Entire Data Set 

Rut Depth = N8 10c 
(In.) 

Where N = Number of Cumulative KESALs 
B = bo + bl xl + b2 x2 + ... + bn Xn 
C = Co + c1 x1 + ~ x2 + ... + en Xn 

I 

Explanatory Variable or Interaction Coefficients for Terms In 
(X;) Units 

bi <; 

Constant Term - 0.0280 -0.0149 

Log (HMAC Thickness) Inches 0.0184 0 

Log (Subgrade < #200) %by Weight 0.0810 0 

Log (Daily Temperature Range) op 0 -0.715 

(Log (Air Voids in HMAC) * %by Volume 
Log (Subgrade < #200)) %by Weight 0 -O.U9 

(Annual Precipitation * Inches 
Log (Daily Temperature Range)) op 0 0.00094 

n = 42 Adjusted R2 = 0.54 RMSE in Log10 (Rut Depth) = 0.20 

Also, the magnitudes of the predicted rut depths for the equation from the dry data set 
are much higher than those for the equation from the wet data set. The actual mean rut 
depths are 0.38 and 0.28 in. (10 and 7 mm), respectively. The broad implication is that 
more rutting may be expected in the dry areas of western North America than in the wet 
areas of eastern North America. However, this theory is far too simplistic. Traffic rates 
are generally higher in the wet zones, so the pavement structures should generally be 
more substantial. However, the thirteen test sections for the dry zones included five test 
sections in Arizona that had experienced an estimated 4000 to 23,000 KESALs (mean of 
12,000 KESALs), which had resulted in rutting from 0.16 to 0.99 in. (4 to 25 mm), with a 
mean of 0.43 in. (11 mm). One must be very careful about generalizing on the basis of 
predictions from these equations when distress is plotted against one or even two 
independent variables. The scatter plots in Figure 7.1 and those in SHRP-P-684, ~ 
Analyses of L TPP General Pavement Studies Data. Data Processin~ and Evaluation, 
clearly indicate the variance that actually occurs when the distresses are considered as 
functions of only one independent variable. The difference in rutting between the no 
freeze and freeze zones, based on these predictions, appear to be rather minor. 

The results from the sensitivity analysis on the equation appearing in Table 7.4 appear in 
Figure 7.16. As for the HMAC on granular base, number of KESALs was the most 
significant independent variable. However, as the amount of fines in the subgrade soil 
took on more significance, HMAC thickness dropped in relative importance, and daily 
temperature range and annual precipitation replaced freeze index in representing the 
environment. In assessing the importance of these comparisons, it should be 
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Table 7.5. Coefficients for Regression Equations Developed to Predict Rutting in 
Full-Depth HMAC Pavements, Wet and Dry Data Sets 

Rut Depth = N8 lOc 
(In.) 

Where N = Number of Cumulative KESALs 
B = b0 + b1 x1 + b2 x2 + ... + bn Xn 
C = Co + Ct Xt + ~ X2 + · · · + Cn Xn 

a. Wet Data Set 

Explanatory Variable or Interaction Coefficients for Terms n 
(x;) Units 

bi ci 

Constant Term - 0.242 -0.0160 

Log (HMAC Thickness) Inches 0 -0.615 

Log (Air Voids in HMAC) %by Volume -0.0740 0 

Log (Annual No. of Days > 90"F) Number 0 -0.363 

(Log (Subgrade < #200 )) * % byWeight 
(Asphalt Viscosity at 140"F) Poise 0 0.000119 

(Log (Viscosity at 140"F) * Poise 
Log (HMAC Aggregate < #4 Sieve)) % byWeight 0 -8.60X 10..s 

n = 27 If= 0.79 Adjusted If = 0. 73 RMSE in Log10 (Rut Depth) = 0.17 

b. Dry Data Set 

Explanatory Variable or Interaction Coefficients for Terms n 
(x;) Units 

bi ci 

Constant Term - 0.0111 0.558 

HMAC Thickness Inches 0.00222 0 

Average Annual Minimum Temperature "F 0 -0.0412 

(Log (Subgrade < #200) * % byWeight 
Annual Number of Days > 90"F) "F 0 0.00650 

n = 13 If= 0.87 Adjusted If = 0. 79 RMSE in Log10 (Rut Depth) = 0.10 
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Table 7 .6. CoeMcients for Regression Equations Developed to Predict Rutting in 
Full-Depth HMAC Pavements, No Freeze and Freeze Data Sets 

Rut Depth = N8 we 
(In.) 

Where N = Number of Cumulative KESALs 
B = b0 + b1 x1 + b2 x2 + ... + bn Xn 
C = Co + C1 X1 + ~ X2 + · · · + Cn Xn 

a. No Freeze Data Set 

Explanatory Variable or Interaction Coefficients for Terms n 
(x;) Units 

bi ci 

Constant Term - -o.0717 -1.053 

Log (HMAC Thickness) Inches -o.0458 0 

Log (Subgrade < #200) % byWeight 0.0446 0 

Log (Annual Precipitation) Inches 0 0.00532 

Annual Number of Days > 90"F Number 0.00168 0 

(Log (HMAC Thickness) • Inches 
Daily Temperature Range) "F 0 0.0128 

(Annual Number of Days > 90"F • Number 
Asphalt Viscosity at 140•F) Poise 0 -1.618X 10-6 

n = 22 If= 0.70 Adjusted If = O.SS RMSE in Log10 (Rut Depth) = 0.14 

b. Freeze Data Set 

Explanatory Variable or Interaction Coefficients for Terms n 
(x;) Units 

bi ci 

Constant Term - 0.149 -o.0159 

Asphalt Content % byWeight 0 -o.l16 

HMAC Thickness Inches -o.00443 0 

Log (Air Voids in HMAC) %by Volume -o.121 0 

Log (Subgrade < #200 Sieve) % byWeight 0.0687 0 

Annual Number of Days > 90•p Number 0 -o.292 

n = 18 If= 0.84 Adjusted If = 0. 78 RMSE in Log10 (Rut Depth) = 0.15 
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remembered that neither the equation for the HMAC on granular base or full-depth 
HMAC was considered very acceptable, which was the reason for developing models for 
different environmental zones. 

The sensitivities developed from the four environmental models appear in Figure 7.17. 
It can be seen that KESALs were found to be most significant for the data sets from the 
wet, no freeze, and freeze zones. The environmental variables appear to be more 
significant for the data set from the dry zones. The HMAC thickness was retained in 
each equation, even though it was found to be marginally significant for most of them. 
The amount of fines in the subgrade soil also appeared in all four equations. Number of 
days per year experiencing temperatures greater than 90°F (32°C) also appeared in all 
four equations and was found to be quite significant. 

Rutting of HMAC Pavements on Portland Cement-Treated 
Base 

This data set is identified as Combinations 9, 10, 11, and 12 in Table 3.2, and the specific 
types of base materials and numbers of each appear in Table 3.1. Of the sixty-six test 
sections, only forty-nine survived the data evaluations for use in the analyses. These test 
sections were distributed as follows by environmental zones: 

• Wet-no freeze - 22 
• Wet freeze- 8 
• Dry-no freeze- 11 
• Dry freeze - 8 

Because only one environmental zone had sufficient test sections for modeling, the entire 
data set had to be used to develop predictive equations. The resulting equation appears 
in Table 7.7. It can be seen from the statistics that the equation should not be 
considered very reliable. 

Figure 7.18 shows plots of predicted versus actual rut depths for HMAC over Portland 
cement-treated base, and Figure 7.19 shows plots of the residuals versus predicted 
log(rut depth). 

A plot of rut depths, predicted by the equation in Table 7.7, versus KESALs appears in 
Figure 7 .20. The primary thing to be noted is that the equation appears to predict that 
most of the rutting will occur very early in the pavement's life (at least with other 
independent variables at their means). 

The results from the sensitivity analysis appear in Figure 7.21. It may be noted that 
these results are similar to those obtained for HMAC pavements over granular base and 
full-depth HMAC pavements. 
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Table 7. 7. Coemcients for Regression Equations Developed to Predict Rutting in HMAC 
Pavements on Portland Cement-Treated Base 

Rut Depth = N8 10c 
(In.) 

Where N = Number of Cumulative KESALs 
B = b0 + b1 x1 + b2 x2 + ... + bn Xu. 
C = Co + Ct X1 + ~ X2 + ··· + Cn Xu. 

Explanatory Variable or Interaction Coefficients for Terms In 
(Xj) Units 

bi c; 

Constant Term - -0.218 -0.126 

HMAC Aggregate < #4 Sieve %by Weight 0.00412 0 

Log (Base Thickness) Inches 0 -0.474 

(Log (HMAC Thickness) • Inches 
Log (Air Voids in HMAC)) %by Volume 0 -0.401 

(Log (HMAC Thickness) • Inches 
{Asphalt Viscosity at 140.F)) Poise 0 0.000104 

(HMAC Aggregate < #4 Sieve • %by Weight 
Log (Annual Minimum Temperature)) "F 0 -0.00198 

n = 49 Adjusted R2 = 051 RMSE in Log10 (Rut Depth) = 0.21 

Summary of Sensitivity Analyses for Rutting in HMAC 
Pavements 

The data base limitations for developing predictive models for HMAC have been 
previously discussed and will be discussed again later. In general, these restrictions apply 
to individual models, but some statistical advantage should be gained by comparing 
results from the eleven models and their sensitivity analyses. 

Table 7.8 lists the rankings for the individual independent variables, in terms of relative 
sensitivities, for each of the eleven separate models and sensitivity analyses. One column 
indicates the number of models for which a specific independent variable was found to 
be significant. The far right column gives average rankings, with a ranking of 10 
arbitrarily assigned for cases when the variable was not found to be significant and is not 
included in the model. The numbers of independent variables varied from 5 to 8 per 
model, with a mean of 6.7, so the assigned priority when not significant had to be greater 
than 8. Because there could be other nonsignificant variables having more sensitivity, 
the value of 10 appeared logical. 

The independent variables are listed below in order of combined rankings. One list is 
based on average rankings and one is based on the number of models in which the 
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variable was included (in the case of a "tie", the other ranking basis was used to order 
the two variables): 

Ranking 
by Ayera&es 

KESALs 
Air Voids in HMAC 
HMAC Thickness 
Base Thickness 
Subgrade < #200 Sieve 
Days With Temp. > 90oF 
HMAC Aggregate < #4 Sieve 
Asphalt Viscosity 
Annual Precipitation 
Freeze Index 
Base Compaction 
Average Annual Minimum Temp. 
Daily Temp. Range 
Asphalt Content 
Annual Freeze-Thaw Cycles 

Ranking by Number 
of Models Found Silmificant 

KESALs 
HMAC Thickness 
Base Thickness 
Air Voids in HMAC 
Subgrade < #200 Sieve 
Days With Temp. > 90°F 
HMAC Aggregate < #4 Sieve 
Asphalt Viscosity 
Annual Precipitation 
Freeze Index 
Average Annual Minimum Temp. 
Daily Temp. Range 
Base Compaction 
Asphalt Content 
Annual Freeze-Thaw Cycles 

It can be seen that nine of the fifteen independent variables have the same rankings for 
both bases, and the others never vary more than two positions. The rankings generally 
appear to be logical. 

Change in Roughness in HMAC Pavements on Granular 
Base 

The IRI was used to study changes in roughness. The values of IRI were available from 
profile monitoring data, while estimates of initial IRI were obtained from State Highway 
Agencies (SHAs) estimates of initial Present Serviceability Index (PSI) by using the 
following equation8: 

Initial IRI = 347 ln (5/Initial PSI) 

The change in IRI was taken to be the difference between the monitored value and the 
estimated initial value. 

The multiple regressions were conducted with log10 (AIRI) as the dependent variable, 
and the same equation forms used for rut depth predictions apply. The resulting 
equations for the entire data set and the four environmental zones appear in Table 7.9. 

98 



\0 
\0 

Table 7.8. Orders of Significance for Independent Variables, All Models for Rutting of HMAC Pavements 
-- -- -

Independent HMAC on Granular Base Full-Depth HMAC HMACon No. of Models 
Variables Portland Cement- Found 

All WNF WF DNF DF All w D NF F Zones Treated Base Significant 
Zones Zones Zones Zones Zones Zones Zones Zones Zones 

KESALs 1 1 1 1 5 1 1 3 1 1 1 All 

HMACAir 2 3 4 2 4 3 4 - - 2 2 9 
Voids 

HMAC 3 2 5 7 3 5 5 5 7 6 6 All 
Thickness 

HMAC 4 5 3 5 - - - - - - 4 5 
Aggr.< #4 

Asphalt - - 8 - - - 6 - 3 - 5 4 
Viscosity 

Asphalt - - - - - - - - - 4 - 1 
Content 

Base 5 6 7 8 2 N/A N/A N/A N/A N/A 3 All 
Thickness 

Base - - - - 1 N/A N/A N/A N/A N/A - 1 
Compaction 

Sub grade 7 4 - 6 7 2 3 4 4 5 - 9 
<#200 

Days> 90"F - 8 - 3 - - 2 1 5 3 - 6 

Annual - - 6 4 - - - - 2 - - 3 
Precipitation 

Freeze Index 6 - 2 - 6 - - - - - - 3 

Annual - 7 - - - - - - - - - 1 
Freeze-Thaw 
Cycles 

Daily Temp. - - - - - 4 - - 6 - - 2 
Range 

Avg.Annual - - - - - - - 2 - - 7 2 
Min. Temp. 

Note: N/A = Variable not in equation 

Average 
Rankings 

1.5 

4.2 

4.9 

7.4 

8.4 

9.5 

5.2 

8.5 

5.6 

6.5 

8.4 

8.5 

9.7 

9.1 

9.0 



Figure 7.22 shows plots of predicted versus actual changes in roughness for HMAC over 
granular base models for the four environmental zones, and Figure 7.23 shows plots of 
the residuals versus predicted changes in roughness. 

Figure 7.24 shows the predicted changes in roughness versus KESALs for the entire data 
set and for each environmental zone, when the independent variables appearing in the 
five separate predictive equations are held at their means for the respective data sets. It 
appears from these graphs that the change in IRI was much greater in the freeze zones 
than in the no freeze zones, and the rate of change in IRI was also much greater for the 
freeze zones than for the no freeze zones. 

The results from the sensitivity analyses conducted on the equations in Table 7.9 appear 
in Figures 7.25 and 7.26. KESALs were found to be the most significant independent 
variable for the wet freeze and dry-no freeze data sets, while other variables were found 
to be more significant for the wet-no freeze and dry freeze data sets. HMAC thickness 
was found to be significant in each of the equations, as it had been for rutting, but 
generally significance was only moderate. Somewhat surprisingly, the amount of the 
subgrade passing the #200 sieve was only found to be significant for the dry-no freeze 
data set, and there it was ranked sixth, although the variations and relative significance 
in this case were fairly minor. This result may have come from a bias toward coarse
grained subgrades in the data set. 

As the lines in Figure 7.24 represent predicted changes in IRI when all variables are at 
their mean values in the separate data sets, fourteen case studies were conducted for the 
wet-freeze zone to provide some insight as to the effects of variations of these variables 
from their means. As occurred in the similar rutting studies, three levels of most 
variables were used in various combinations of variable magnitudes. The magnitudes of 
variables for each case study and the resulting calculated changes in IRI appear in Table 
7.10. 

Cases 1, 2, and 3 show the effects of KESALs. Unlike rutting, the predicted changes in 
roughness do not so much indicate the distress early in the life of a pavement, but that 
the rate of roughness decreases over the pavement's life. 

Case 12 represents a substantial pavement structure with heavy traffic and a freeze index 
typical for parts of the northern United States. Its moderately high increase in roughness 
likely reflects the unexpected finding that roughness in this zone increases with increasing 
HMAC thickness (see Figure 7.26.c). Because this effect is the opposite that indicated 
for the other three zones and does not appear to be logical, it may have been a 
consequence of a bias in the data set. 

The highest predicted change in IRI in this set of cases was found for Case 4, which was 
conducted as a worst case scenario. Case 8 resulted in the next highest prediction, 
reflecting the relatively high positive sensitivity to increases in HMAC air voids. It can 
be seen from Figure 7.26 that there are differences in sense (positive or negative 
sensitivities) among zones for several of the independent variables. 
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Figure 7 .22. Plots of Predicted vs. Actual Change in IRI for HMAC Over 
Granular Base Data Set 
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Figure 7 .23. Plots of Residuals vs. Predicted Log(IRI) for HMAC Over Granular 
Base Data Set 
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Figure 7 .25. Results From Sensitivity Analyses for Change in IRI on HMAC 
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-----------

Table 7.9. Coefficients for Regression Equations Developed to Predict Change in 
Roughness in HMAC on Granular Base 

AIRI = NB lOC 
(ln./Mile) 

a. Entire Data Set 

Where N = Number of Cumulative KESALs 
B = b0 + b1 x1 + b2 x2 + ... + bn Xn 
C = Co + C1 X1 + ~ X2 + ··· + en Xn 

Explanatory Variable or Interaction Coefficients for Terms In 
(X;) Units 

b; C; 

Constant Term - 0.153 -0.000543 

Asphalt Content %by Weight 0 -0.0160 

Annual Precipitation Inches 0 0.000359 

Asphalt Viscosity at 140•p Poise 0 3.634 X 10·S 

Base Thickness Inches 0 -0.00335 

Base Compaction (Mod. AASHTO) % of Max. Density 0 0.0113 

Subgrade < #200 Sieve %by Weight 0 0.00062 

Freeze Index Degree-Days 0 8.107 X 10.s 

(Annual Number of Days > 90•p • Number 
0 

-0.000437 
HMAC Thickness) Inches 

(Annual Number of Days > 90•p • No. 
0 

0.000178 
Air Voids in HMAC) %by Volume 

n = 108 R2 = 0.65 Adjusted R2 = 0.62 RMSE in Log 10 (tJRI) = 0.34 

Change in Roughness for Full-Depth HMAC Pavements 

This data set is identified in Table 3.1 as having fifty-two total test sections, but only 
thirty-three were suitable for the studies on change in roughness (fifteen of thirty-three 
were from the wet-freeze environmental zone). Because the data set was so limited, only 
one equation was developed for the entire data set, and this equation appears as Table 
7.11. The test sections not included were omitted because no profile monitoring data 
were available at the time of these early analyses. However, that data should be 
available for future analyses. 
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Table 7.9(continued). Coemcients for Regression Equations Developed to Predict 
Change in Roughness in HMAC on Granular Base 

AIRI = NB lOc 
(ln./Mile) 

Where: N = Number of Cumulative KF.SALs 
B = b0 + b1 x1 + b2 x2 + ... + bn Xn 
C = Co + Ct X1 + ~ X2 + ... + Cn Xn 

b. Wet-No Freeze Data Set 

Explanatory Variable or Interaction Coefficients for Terms In 
(x;) Units 

b; C; 

Constant Term - 0.210 0.0233 

Base Thickness Inches 0 -0.0372 

Annual Number of Days > 90"F Number 0 0.00249 

Annual Precipitation Inches 0 0.0214 

(HMAC Thickness • Inches 
0 

-0.000761 
Base Compaction (Mod AASHTO)) % of Max. Density 

(Log (Air Voids in HMAC) * % byVolume 
0 

0.0322 
Daily Temperature Range) "F 

(Asphalt Viscosity at 140"F • Poise 
0 

-0.000299 
Log (Annual Freeze-Thaw Cycles + 1)) Number 

(Asphalt Viscosity at 140"F • Poise 
0 

1.702X 10-5 
Daily Temperature Range) op 

n = 32 If= 0.85 Adjusted If = 0.81 RMSE in Log10 (lillU) = 0.31 

c. Wet-Freeze Data Set 

Explanatory Variable or Interaction Coefficients for Terms In 
(x;) Units 

bi ci 

Constant Term - 0.250 0.0403 

Asphalt Viscosity at 140"F Poise 0 0.00014 

Air Voids in HMAC %by Volume 0 0.0704 

Log (HMAC Thickness) Inches 0 0.314 

Base Thickness Inches 0 -0.00162 

Annual Number of Days > 90"F Number 0 -0.00165 

(Freeze Index * Degree-Days 
Air Voids in HMAC) %by Volume 0 1.628X 1W 

n = 35 If= 0.87 Adjusted If = 0.84 RMSE in Log10 (lillU) = 0.27 
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Table 7.9(continued). Coeflicients for Regression Equations Developed to Predict 
Change in Roughness in HMAC Pavements on Granular Base 

AIRI = N8 lOC 
(ln./Mile) 

Where: N = Number of Cumulative KESALs 
B = b0 + b1 x1 + b2 x2 + ... + bn Xn 
C = Co + Ct xl + ~ x2 + ... + Cn Xn 

d. Dry-No Freeze Data Set 

ExplaDatory Variable or Interaction Coefficients for Terms In 
(xJ Units 

b; C; 

Constant Term - 0.406 -0.00994 

HMAC Thickness Inches 0 0.0255 

Asphalt Viscosity at 140•F Poise 0 0.00024 

Base Thickness Inches 0 -0.0329 

Annual Precipitation Inches 0 0.0124 

(Annual Number of Days > 90"F • Number 
HMAC Thickness) Inches 0 -0.00114 

(Subgrade < #200 Sieve • 96 byWeight 
Annual Precipitation) Inches 0 0.000268 

n = 27 If- = 0.95 Adjusted If- = 0.93 RMSE in Log10 (illU) = 0.18 

e. Dry-Freeze Data Set 

Explanatory Variable or Interaction Coefficients for Terms In 
(xJ Units 

b; C; 

Constant Term - 0.271 0.00393 

Asphalt Viscosity at 140"F Poise 0 0.000317 

Base Thickness Inches 0 0.0240 

Annual Number of Days > 90"F Number 0 -0.0125 

(Log (Air Voids in HMAC) • %by Volume 
HMAC Thickness) Inches 0 -0.00197 

(Freeze Index • Degree-Days 
Annual Number of Days > 90"F) Number 0 1.451X 10..S 

n = 14 If- = 0.94 Adjusted If- = 0.92 RMSE in Log10 (illU) = 0.21 
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~ Table 7.10. Calculated Changes in IRI for Various Combinations of Independent Variable Magnitudes, Wet-Freeze 
~ Equation 

Independent Case Numbers 
Variable 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 

KESALs 100 5000 20,000 5000 5000 5000 5000 5000 5000 5000 5000 20,000 5000 5000 

HMAC Air Voids 5 5 5 8 5 5 3 8 5 5 5 5 3 5 

Asphalt Viscosity 1000 1000 1000 2000 1000 1000 1000 1000 2000 2000 2000 1000 1000 500 

HMAC Thickness 6 6 6 10 10 2 6 6 6 6 6 10 6 10 

Freeze Index 600 600 600 1000 1000 1000 1000 1000 1000 600 1000 1000 1000 1000 

Days> 90"F 30 30 30 60 30 30 30 30 30 30 30 30 30 30 

Base Thickness 12 12 12 4 12 12 12 12 12 12 20 20 12 4 

Calculated tJRI 18 48 68 141 61 37 35 94 71 66 69 83 35 53 



Figure 7.27 shows a plot of predicted versus actual changes in roughness for the full
depth HMAC model, and Figure 7.28 shows a plot of the residuals versus predicted 
log(change in roughness). 

A plot of the change in IRI predicted by the equation in Table 7.11 appears as Figure 
7.29. This plot appears to have much the same form as those in Figure 7.24 for HMAC 
on granular base. 

The results from the sensitivity analysis appear in Figure 7.30. KESALs is again the 
most significant independent variable, but freeze index was also very significant. The 
other significant variables in order of significance were subgrade passing the #200 sieve, 
asphalt content, annual numbers of days experiencing a temperature greater than 90 oF, 
and HMAC thickness. It is not clear why the combination of finer subgrade soil and log 
(freeze index + 1) would decrease change in roughness, so this characteristic is assumed 
to result from the specific test sections in the data set. 

Change in Roughness of HMAC Pavements on Portland 
Cement-Treated Base 

Only thirty-seven of the sixty-six test sections in this data set had the data necessary for 
these analyses. Consequently, the analyses were conducted on the entire data set, 
producing the equation appearing in Table 7 .12. 

Figure 7.31 shows a plot of predicted versus actual changes in roughness for the HMAC 
over a portland cement-treated base model, and Figure 7.32 shows a plot of the residuals 
versus predicted log(change in roughness). 

The predicted changes in IRI versus KESALs, with all other variables held at their 
means, appears in Figure 7.33. The general form of the equation appears to 
approximate those for the other models for change in roughness, except a large initial 
change in roughness occurs in the life of the pavement and the rate of change after that 
appears to be smaller than that for the other pavements without portland cement-treated 
bases. This appears similar to the differences noted for rutting. 

The results from the sensitivity analysis appear in Figure 7.34. In this case, the subgrade 
material passing the #200 sieve was found to be the most significant variables, followed 
by KESALs and annual number of days with temperatures greater than 90 OF. 
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Table 7.11. Coefficients for Regression Equations Developed to Predict Change in 
Roughness in Full-Depth HMAC Pavement, Entire Data Set 

AIRI = NB lOC 
(ln./Mile) 

Where: N = Number of Cumulative KESALs 
B = b0 + b1 x1 + b2 x2 + ... + bn Xn 
C = Co + Ct Xt + ~ x2 + ... + Cn Xn 

Explanatory Variable or Interaction Coefficients for Terms n 
(xJ Units 

bi 'i 

Constant Term - 0.373 -0.0126 

Log (HMAC Thickness) Inches 0 -0.145 

Log (Annual Number of Days > 90'F) Number 0 -0.102 

(Subgrade < #200 * %by Weight 
Log (Freeze Index + 1)) Degree-Days 0 -0.00189 

((Log (Asphalt Content)) • %by Weight 
(Log Freeze Index + 1)) Degree-Days 0 0531 

n = 33 If= 0.76 Adjusted If = 0.71 RMSE in Log10(.illU) = 0.39 

Summary of Sensitivity Analyses for Change in Roughness 
of HMAC Pavements 

Table 7.13 lists the rankings for the individual independent variables, in terms of relative 
sensitivities, for each of the seven separate models and sensitivity analyses. One column 
indicates the number of models for which a specific independent variable was found to 
be significant. The far right column gives average rankings, with a rank of 10 arbitrarily 
assigned for cases when the variable was not found to be significant and was not 
included in the model (same logic as for rutting, Table 7.8). 

The independent variables are listed below in order of combined rankings, one list is 
based on average rankings, and one is based on the number of models in which the 
variable was included: 
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Table 7.12. Coemcients for Regression Equations Developed to Predict Change in 
Roughness in HMAC on Portland Cement-Treated Base, Entire Data Set 

AIRI = NB lOc 
(ln./Mile) 

Where: N = Number of Cumulative KESALs 
B = b0 + b1 x1 + b2 x2 + ... + bn Xn 
C = Co + Ct X1 + ~ X2 + · · · + Cn Xn 

Explanatory Variable or Interaction Coefficients for Terms in 
(xJ Units 

bi ci 

Constant Term - 0.126 -0.00394 

Log (Base Thickness) Inches 0 0.560 

Log (Annual Number of Days > 90•F) Number 0 0.0394 

(Log (HMAC Thickness) Inches 
Log (Base Thickness)) Inches 0 -0.501 

(Air Voids in HMAC • % byVolume 
Annual Precipitation) Inches 0 0.000287 

(Subgrade < #200 Sieve • % byWeight 
Log (Annual Number of Days > 90•F)) Number 0 0.00717 

(Annual Precipitation • Inches 
Freeze Index) Degree-Days 0 -1.502X 10-s 

(Freeze Index • Degree-Days 
Log (Annual Number of Days > 90•F)) Number 0 0.00039 

n = 37 If= 0.80 Adjusted If = 0.15 RMSE in Log10 (illU) = 0.33 

Ranking 
by Avera&es 

KESALs 
Asphalt Viscosity 
Days With Temp. > 90oF 
HMAC Thickness 
Base Thickness 
Freeze Index 
Subgrade < #200 Sieve 
Air Voids in HMAC 
Base Compaction 
Annual Precipitation 
Daily Temp. Range 
Annual Freeze-Thaw Cycles 
Asphalt Content 
HMAC Aggregate < #4 Sieve 

Ranking by Number 
of Models Found Si&nificant 

KESALs 
Days With Temp. > 90oF 
HMAC Thickness 
Base Thickness 
Asphalt Viscosity 
Freeze Index 
Air Voids in HMAC 
Subgrade < #200 Sieve 
Annual Precipitation 
Base Compaction 
Daily Temp. Range 
Asphalt Content 
Annual Freeze-Thaw Cycles 
HMAC Aggregate < #4 Sieve 
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Figure 7 .31. Plots of Predicted vs. Actual Change in IRI for HMAC on Portland 
Cement-Treated Base Data Set 
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Figure 7 .32. Plots of Residual vs. Predicted Log( Change in IRI) for HMAC on 
Portland Cement-Treated Base Data Set 
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..... ..... 
0\ Table 7.13. Orders of Significance for Independent Variables, All Models for Change in Roughness of HMAC 

Pavement 

Independent HMAC on Granular Base Full- HMA.Con No. of Average 
Variables Depth Portland Models Ranking 

All WNF WF DNF DF HMAC Cement-Treated Found 

Zones Zones Zones Zones Zones Base Significant 

KESA.U; 1 3 1 1 5 1 2 All 2.0 

Air Voids in HMAC 9 8 2 - 7 - 6 5 7.4 

HMAC Thickness 5 5 4 3 6 6 5 All 4.9 

HMAC Aggr. < #4 - 5 - - - - - 1 93 

Asphalt Viscosity 6 7 3 5 2 - - 5 3.9 

Asphalt Content . 10 - - - - 4 - 2 9.1 

Base Thickness 7 2 7 7 3 N/A 6 All 5.5 

Base Compaction 4 10 - - - N/A 1 3 7.5 

Subgrade < #200 8 4 - 6 - 3 - 4 13 

Days> 90•F 2 9 6 2 4 5 3 All 4.4 

Annual Precipitation 11 4 - 4 - - 4 4 7.6 

Freeze Index 3 - 5 - 1 2 8 5 5.6 

Annual Freeze-Thaw - 1 - - - - - 1 8.7 
Cycles 

Daily Temp. Range - 6 - - - 4 - 2 8.6 

Note: N/A =Variable not in equation 



It can be seen that four of the fourteen independent variables have the same rankings 
for both bases, and the others varied only one to three positions. These rankings also 
appear logical. 

Transverse Cracking of HMAC Pavements on Granular 
Base and Full-Depth HMAC Pavements 

There were not sufficient test sections with transverse cracking in some environmental 
zones for separate analyses for HMAC on granular base and full-depth HMAC, so these 
data sets were combined. In addition, any pavements which had not experienced 
transverse cracking were deleted from the data set. As was the case for rut depth and 
change in roughness, the multiple regressions were conducted with the common log of 
the dependent variable, with the same equation forms. The resulting predictive 
equations appear in Table 7.14. The dependent variable used is transverse crack 
spacing. 

Figure 7.35 shows plots of predicted versus actual transverse crack spacing for the 
combined HMAC over granular base and full-depth HMAC models by environmental 
zones. Figure 7.36 shows plots of residuals versus predicted log( transverse crack 
spacing). 

Figure 7.37 shows predicted crack spacing versus age for the entire data set and for each 
environmental zone when the independent variables appearing in the five separate data 
sets are held at their means. It appears from these graphs that there was more early 
transverse cracking (closer crack spacing) for the pavements in the dry zones than for 
those in the wet zones, and the predicted crack spacing after about 6 to 10 years was 
close to the same for all environmental zones. The predictions for mean conditions in 
the wet-no freeze zone indicate that the crack spacing will eventually be closer than for 
the other zones. This scenario does not appear likely and probably results from only 
having seventeen observations to use in developing the model for this zone. 

The results from the sensitivity analyses conducted on the equations in Table 7.14 appear 
in Figures 7.38 and 7.39. 

As for rutting and change in roughness, fourteen cases were examined for the dry-freeze 
zone to study the effects of variations in the magnitudes of the independent variables in 
various combinations on transverse crack spacing. The magnitudes of variables for each 
case study and the resulting calculated crack spacings appear in Table 7.15. 

Case 1 represents a typical case for the dry-freeze zone, which had a predicted crack 
spacing of 56ft (17m). Case 4 represented the worst case, which had a predicted crack 
spacing of 7 ft (2 m). Case 12 represents a highway with a heavy pavement structure, 
heavy traffic (for this zone), and an age of 17 years. Its predicted crack spacing was 75 ft 
(23m). In general, the predicted crack spacings appeared to be reasonable. 
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Table 7.14. Coefficients for Regression Equations Developed to Predict 
Transverse Crack Spacing in HMAC on Granular Base and Full-Depth 
HMAC Pavement 

Crack Spacing = N8 10c 
(Ft) 

Where N = Age, Years 
B = b0 + b1 x1 + b2 x2 + ... + bn Xn 
C = Co + cl xl + ~ x2 + ... + en Xn 

a. Entire Data Set 

Explauatory Variable or Interaction Coefficients for Terms n 
(x;) Units 

bi C; 

Constant Term - -0.205 0.282 

Log (HMAC Thickness) Inches 0 0.341 

Air Voids in HMAC %by Volume 0 0.00686 

Log (Base Thickness + 1) Inches 0 -0.00310 

Base Compaction (Mod. AASHTO) % of Max. Density 0 0.00646 

(Asphalt Viscosity at 140"F • Poise 
Log (Base Thickness + 1)) Inches 0 0.00013 

(Log (Annual Precipitation) • Inches 
Log (Base Thickness + 1)) Inches 0 0.301 

n = 118 If= 0.37 Adjusted If = 0.33 RMSE in Log10 (Crack Spacing)= 0.53 

b. Wet-No Freeze Data Set 

Explauatory Variable or Interaction Coefficients for Terms In 
(x;) Units 

bl cl 

Constant Term - -1.12 0.0131 

Log (Freeze Index + 1) Degree-Days 0 0.733 

Log (Annual Precipitation) Inches 0 0.534 

(HMAC Thickness • Inches 
Log (Asphalt Viscosity at 140"F)) Poise 0 0.0109 

(Base Thickness • Inches 
Asphalt Content) %by Weight 0 -0.00587 

(Base Compaction • % of Max. Density 
Daily Temperature Range) "F 0 0.000295 

n = 17 If= 0.85 Adjusted If = 0. 75 RMSE in Log10 (Crack Spacing)= 0.52 
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Table 7.14(continued). Coefficients for Regression Equations Developed to Predict 
Transverse Crack Spacing in HMAC on Granular Base and 
Full-Depth HMAC Pavement 

Crack Spacing = NB 10c 
(Ft) 

Where N = Age, Years 
B = b0 + b1 x1 + b2 x2 + ... + b0 Xn 
C = Co + cl xl + ~ x2 + ... + en Xn 

c. Wet-Freeze Data Set 

Explanatory Variable or Interaction Coefficients for Terms n 
('G) Units 

bi <; 

Constant Term - -0.106 -0.0201 

HMAC Aggregate < #4 %by Weight 0 -0.0131 

HMAC Thickness Inches -0.00474 0 

Log (Annual Precipitation) Inches 0 1.84 

Annual No. of Days > 90"F Number -0.0540 0 

(Base Thickness • Inches 
Log (Annual Precipitation)) Inches 0 -0.0159 

(Base Thickness • Inches 
Annual No. of Days > 90"F) Number 0 0.002AO 

(Subgrade < #200 • %by Weight 
Log (Annual Precipitation)) Inches 0 0.00408 

n = 44 Adjusted R2 = 0.83 RMSE in Log10 (Crack Spacing) = 0.30 

d. Dry-No Freeze Data Set 

Explanatory Variable or Interaction Coefficients for Terms n 
('G) Units 

bi <; 

Constant Term - -0.241 -0.00155 

HMAC Thickness Inches 0 -0.0282 

Log (Base Thickness + 1) Inches -0.147 0 

Log (Annual Precipitation) Inches 0 1.89 

n = 23 Adjusted R2 = 0.83 RMSE in Log10 (Crack Spacing) = 035 
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Table 7.14(continued). Coefficients for Regression Equations Developed to Predict 
Transverse Crack Spacing in HMAC on Granular Base and 
Full-Depth HMAC Pavement 

Crack Spacing = N8 toe 
(Ft) 

Where N = Age, Years 

e. Dry-Freeze Data Set 

Explanatory Variable or Interaction 
(x.) 

Constant Term 

Log (Annual Traffic) 

Base Thickness 

Freeze Index 

(HMAC Thickness • 
Base Thickness) 

(HMAC Thickness • 
Asphalt VISCOSity at 140"F) 

(HMAC Thickness • 
Log (Subgrade < #200 +1)) 

(Asphalt VISCOSity at 140"F • 
Log (Subgrade < #200 +1)) 

B = b0 + b1 x1 + b2 x2 + ... + b0 Xu, 

C =Co+ C1X1 + ~X2 + ··· + CnXn 

Coefficients for Terms n 
Units 

bl <; 

- -0.425 0.0468 

KESALs 0 0.854 

Inches 0 -0.00853 

Degree-Days 0 0.00013 

Inches 
Inches 0 0.00398 

Inches 
Poise 0 1.64 X 1()"5 

Inches 
%by Weight 0 -0.0350 

Poise 
%by Weight 0 0.000109 

n = 34 R2 = 0.78 Adjusted R2 = 0.72 RMSE in Log10 (Crack Spacing) = 0.44 
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Table 7.15. Calculated Crack Spacing for Various Combinations of Independent Variable Magnitudes, Dry-Freeze 
Equation 

Independent Case Numbers 
Variable 

1 2 3 4 5 6 7 8 9 10 11 12 13 

Age 30 10 17 17 10 10 10 10 10 10 10 17 10 

Annual KESALs 90 90 90 30 90 150 90 90 90 90 90 150 90 

HMAC Thickness 6 6 6 2 2 10 6 6 6 10 6 10 6 

Base Thickness 12 12 12 4 12 12 12 12 12 12 20 20 12 

Asphalt Viscosity 1000 1000 1000 500 1000 1000 2000 500 1000 1000 1000 1000 2000 

Subgrade < #200 60 60 60 100 60 60 100 100 20 20 20 60 60 

Freeze Index 1000 1000 1000 500 1000 1000 1000 1000 1000 1000 1000 1000 1000 

Calculated Crack 56 33 27 7 33 53 32 22 37 44 49 75 66 
Spacing 
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Summary of Sensitivity Analyses for Transverse Cracking 
in HMAC Pavements 

Table 7.16lists the rankings for the individual independent variables, in terms of relative 
sensitivities, for each of the five separate models and sensitivity analyses. One column 
indicates the number of models for which a specific independent variable was found to 
be significant. The far right column gives average rankings; a rank of 10 was arbitrarily 
assigned for cases when the variable was not found to be significant and was not 
included in the model (same logic as for rutting, Table 7.8). 

The independent variables are listed below in order of combined rankings. One list is 
based on average rankings, and one is based on the number of models in which the 
variable was included: 

Rankings 
by Averu:es 
Age 
Annual Precipitation 
HMAC Thickness 
Base Thickness 
Asphalt Viscosity 
Base Compaction 
Freeze Index 
Days With Temp. > 90oF 
Subgrade < #200 Sieve 
Annual KESALs 
Annual Freeze-Thaw Cycles 
HMAC Aggregate < #4 Sieve 
Asphalt Content 
HMAC Air Voids 
Daily Temperature Range 

Ranking by Number 
of Models Found Si~nificant 
Age 
HMAC Thickness 
Base Thickness 
Annual Precipitation 
Asphalt Viscosity 
Base Compaction 
Freeze Index 
Subgrade < #200 Sieve 
Days With Temp. > 90oF 
Annual KESALs 
Annual Freeze-Thaw Cycles 
HMAC Aggregate < #4 Sieve 
Asphalt Content 
HMAC Air Voids 
Daily Temperature Range 

It can be seen from Table 7.16 that three of the variables appeared in all five models, 
one appeared in four models, one in three models, three in two models, and seven of the 
fifteen variables appeared in only one model each. However, the environmental 
variables are generally correlated with each other, so different combinations may 
represent the climate in the different environmental zones. 
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Table 7.16. Orders of Significance for Independent Variables, All Models for Transverse 
Cracking in HMAC Pavements 

Independent Variables HMAC on Granular Base and No. of Average 
Full-Depth HMAC Models Rankings 

Found 
All WNF WF DNF DF Significant 

Annual KESALs - - - - 2 1 8.4 

Air Voids in HMAC 8 - - - - 1 9.6 

HMAC Thickness 5 5 7 2 6 All 5.0 

HMAC Aggr. < #4 - - 5 - - 1 9.0 

Asphalt Viscosity 3 9 - - 1 3 6.6 

Asphalt Content - 7 - - - 1 9.4 

Base Thickness 7 4 6 4 4 All 5.0 

Base Compaction 1 3 - - - 2 6.8 

Subgrade < #200 - - 4 - 7 2 8.2 

Days > 90"F - - 1 - - 1 8.2 

Annual Precipitation 2 6 3 1 - 4 4.4 

Freeze Index - 2 - - 5 2 7.4 

Annual Freeze-Thaw Cycles 4 - - - - 1 8.8 

Daily Temp. Range - 8 - - - 1 9.6 

Age 6 1 2 3 3 All 3.0 
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Summary of Sensitivity Analysis Results for HMAC 
Pavements 

Tables 7.8, 7.13,and 7.16list rankings for individual independent variables, in terms of 
relative sensitivities, for rutting, change in roughness, and transverse cracking, 
respectively. Much more detail for individual pavement types and environmental zones 
has been provided earlier in this chapter. 

The twelve most significant variables from the sensitivity analyses for HMAC pavements 
are listed below by distress type, in order of relative ranking with the most significant 
variable at the top and the least at the bottom: 

Ruttin1 

KESALs 
Air Voids in HMAC 
HMAC Thickness 
Base Thickness 
Subgrade < #200 Sieve 
Days With Temp. > 90°F 
HMAC Aggregate < #4 Sieve 
Asphalt Viscosity 
Annual Precipitation 
Freeze Index 
Base Compaction 

Average Annual Min. Temp. 

Chan&e in Rouwmess Transverse Crackin1 

KESALs Age 
Asphalt Viscosity 
Days With Temp. 
HMAC Thickness 

Annual Precipitation 
> 90°F HMAC Thickness 

Base Thickness 
Freeze Index 
Subgrade < #200 Sieve 
Air Voids in HMAC 
Base Compaction 
Annual Precipitation 
Daily Temp. Range 

Annual Freeze-Thaw 
Cycles 

Base Thickness 
Asphalt Viscosity 
Base Compaction 
Freeze Index 
Days With Temp.> 90°F 
Sub grade < #200 Sieve 
KESALs 
Annual Freeze-Thaw 
Cycles 
HMAC Agg. < #4 Sieve 

It can be seen that nine of these variables are significant for all three distress types. The 
following are exceptions: 

• Air voids in HMAC was not significant for transverse cracking. 

• HMAC aggregate passing a #4 sieve was not significant for change in 
roughness. 

• Annual number of freeze-thaw cycles was not significant for rutting. 

• Average annual minimum temperature and daily temperature range were 
significant only for rutting and change in roughness, respectively. 

It can also be seen that four environmental variables were found to be significant for 
rutting, five for change in roughness, and four for transverse cracking. 
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Some recommendations and comments that result from the sensitivity analyses follow: 

• The majority of the rutting occurred for these pavements right after the 
pavement was opened to traffic; however, these pavements do not 
represent cases in which deterioration has advanced; water is entering the 
base, subbase, and subgrades; and the rate of rutting is increasing rapidly. 

• It is important not to overcompact HMAC, because this will reduce the air 
flow through the mix, which appears to result in early hardening that 
stiffens the mix and substantially reduces the rate of compaction under 
traffic. (It is also important to get sufficient compaction so that the early 
compaction under traffic is not excessive.) 

• The HMAC aggregate passing a #4 sieve was selected to represent the 
effects of gradation. Within its inference spaces in the separate data sets, 
increasing amounts of aggregate passing a #4 sieve appeared beneficial to 
reducing rutting. 

• As expected, traffic loading is the strongest contributor to the occurrence 
of rutting and roughness, and pavement age had the strongest effect on 
transverse cracking. 

• Thicker HMAC surfaces and granular base layers may be expected to 
generally decrease all three types of distress (again expected). 

There are some results that are difficult to explain. For example, Figures 7.38 and 7.39 
indicate that increasing base compaction, annual precipitation, asphalt viscosity, or 
annual freeze-thaw cycles (or freeze index) tends to increase transverse crack spacing 
(reduce cracking). These results are difficult to understand and cannot be explained 
entirely in terms of reliabilities of the equations, because the regional equations had 
fairly good statistics. 

In summary, most results from the sensitivity analyses appear reasonable; however, 
others are surprises that may (1) have resulted from the specific characteristics of the 
data sets upon which they are based, (2) represent mechanisms we do not yet 
understand, or (3) result from interactions not explained by the equation forms. 
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8 

Predictive Models for Distress Types and Results of 
Sensitivity Analyses for Portland Cement Concrete 
Pavements 

Similar to the work described in the previous chapter, a major part of this study was the 
development of predictive models for key concrete pavement distress types and 
roughness indicators. The methodology used to select the significant data elements 
considered in the development of the models, the initial data exploratory analysis to 
assemble the data into the appropriate sets for analysis, and the model development 
procedure used for concrete pavements have been discussed in the previous chapters. 
The approach used to perform a sensitivity analysis on each of these models has also 
been described. The results obtained from these activities for portland cement concrete 
(PCC) pavements are presented in this chapter. 

Predictive models were developed for ten key distress and roughness indicators, and 
sensitivity analyses were conducted on each of them individually. The models include 
joint faulting of doweled and non-doweled joints; transverse cracking of jointed plain 
concrete pavement (JPCP); transverse crack deterioration of jointed reinforced concrete 
pavement (JRCP); joint spalling of JPCP and JRCP; and International Roughness Index 
(IRI) of doweled JPCP, and non-doweled JPCP, JRCP, and continuously reinforced 
concrete pavement ( CRCP). The development of these models and the results of the 
sensitivity analyses conducted to show the relative effects of the explanatory variables on 
the distress and roughness indicators are described. The development of the first model, 
joint faulting of doweled pavements, is described in detail to illustrate more fully the 
general approach used (described in Chapter 6). All the prediction models are based on 
nationwide data obtained from the Strategic Highway Research Program (SHRP) Long
Term Pavement Performance (LTPP) Database. Because of the limited amount of data 
available for this early concrete pavement analysis, regional models could not be 
developed. 
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Joint Faulting of Doweled Concrete Pavements 

Faulting of doweled transverse joints of concrete pavements contributes greatly to 
longitudinal roughness, and thus to user discomfort and the needs for rehabilitation. It is 
directly related to water pumping and the erosion of the material beneath tlhe slab 
and/ or treated base. Another contributing factor is poor load transfer across the joint. 
Previous studies have shown that the faulting of doweled joints is controlled so much by 
dowels that other factors have much less effect9

• These factors were all taken into 
account in the development of the model. 

Database, Dependent Variables, And Explanatory Variables 

Data on the pavement sections with doweled joints from both General Pavement Studies 
(GPS)-3 (JPCP) and GPS-4 (JRCP) experiments were combined to provide the initial 
database used for this model. The mean faulting of all doweled joints in a pavement 
section, FAULTD, was the dependent variable used in the prediction model. The 
potential explanatory variables initially selected for consideration were chosen from those 
identified by experts to be significant as described in Chapter 2, provided they were 
available in the L TPP Database. The explanatory variables that were initially considered 
are as follows: 
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THICK: 
EPCC: 
PCCAGG: 
BASETYP: 
BASETHK: 
BCOMP: 
BAGG: 
CESAL: 

AGE: 
JTSPACE: 
JEFF: 
DOWDIA: 
EDGES UP: 

slab thickness, in. 
slab modulus of elasticity, psi (laboratory measured) 
gradation of aggregate in concrete 
base type (0 = untreated aggregate; 1 = treated aggregate) 
base thickness, in. 
percentage of compaction of base 
coarse aggregate gradation of base 
cumulative 18,000-lb. (SON) equivalent single axle loads (ESALs) 
in traffic lane, millions 
time since construction, years 
mean transverse joint spacing, ft 
falling weight deflectometer (FWD) measured joint efficiency, % 
diameter of dowels in transverse joints, in. 
edge support (1 = tied concrete shoulder; 0 = any other shoulder 
type) 

DRAIN: drainage provisions (0 = no subdrainage; 1 = subdrainage) 
SUBGRADE: subgrade soil classification (0 = fine grained; 1 = coarse grained) 
KSTATIC: static backcalculated k-value, psi/in. 
PM200: subgrade soil passing #200 sieve, % 
PRECIP: average annual precipitation, in. 
DAYS32: number of days/year with temperature less than 32°F (0°C) 
DAYS90: number of days/year with temperatures greater than 90°F (32°C) 
FI': number of air freeze-thaw cycles 



TRANGE: mean monthly temperature range (mean maximum daily 
temperature minus mean minimum daily temperature for each 
month averaged over the year), °F 

Since there were very little data for several of these variables in the database, it was not 
possible to consider all of them (e.g., PCCAGG, BAGG, BCOMP). In addition, the 
maximum dowel/ concrete bearing stress (BSTRESS, psi), which had been determined to 
be a cluster variable that influences faulting, was considered. It was calculated for each 
section by using the conventional Bradbury approach and the data for the above inputs 
and an assumed 9000 lb ( 40 kN) load located at the comer directly over one dowel? 
However, BSTRESS was found to correlate strongly with dowel diameter as shown in 
Table 8.1, so only dowel diameter was considered in the analysis. 

Data Review and Evaluation 

The data for each section were reviewed to determine if any data expected to be 
significant were missing. Examples of data missing from some test sections included 
joint faulting, CESALs, joint spacing, and FWD data. The pavement sections with such 
data missing were not used in this early analysis. Data exploration started with a 
determination of the mean, minimum, maximum, and standard deviation of each 
dependent and independent variable. All data were then assembled into a matrix and 
sorted several ways including increasing faulting, increasing age, and increasing traffic. 
These results were studied and any abnormalities or obviously erroneous data were 
identified. 

Two-dimensional scatter plots of all variables were prepared and examined. Some of 
these plots are shown as examples in Figures 8.1, 8.2, and 8.3. Figure 8.3 is of special 
interest since it contains mostly climatic variables. The results show that several of the 
climatic variables correlate well with each other, as also indicated in the correlation 
matrix, Table 8.1. For example, TRANGE and DA YS32 correlate very strongly with 
each other. There is also a strong correlation among the temperature variables, and 
some of the temperature variables also correlate well with PRECIP. Other variables 
that show some correlation with FAULTD include AGE, KSTATIC, JTSPACE, and 
CESAL. 

Three-dimensional plots of the raw data were also directly generated to help show the 
general trends of FAULTD with AGE, CESAL, and other variables. Examples of two 
such plots are given in Figures 8.4 and 8.5. Figure 8.4 shows the relationship among 
FAULTD, CESAL, and AGE. This plot also shows an obvious area with no data in the 
CESAL-AGE plane. Figure 8.5 shows the relationship among FAULTD, JTSPACE, 
and CESAL. A number of sharp peaks in the generated surface point to abrupt 
variations in data that require further investigation. The pavement sections causing such 
unusual peaks or reverse slopes were identified. 
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CI!!W. 

CI!!W. 1.000 

BSTitBSS ..().118 

.Jl'SPACE 0.377 

.KSTAnc ..().158 

AGE 0.553 

Ill ..().025 

PllECIP 0.110 

TRANGE 0.017 

OPI!NING 0.349 

DAY!W 0.007 

111ICK 0.117 

I!DGESUP ..().037 

DIWN ..().071 

DOWDJA 0.022 

JIAllLm 0.48S 

Table 8.1. Correlation Matrix for Selected Variables for Doweled Joint Faulting 

BSTRESS 11'SPACE .KSTAnC AGE 

..0.118 

1.000 

..().169 

0.234 

..().151 

..().183 

0.079 

..0.255 

..().175 

..().240 

..().621 

..().26S 

0.347 

..0.849 

..().024 

0.377 

..().169 

1.000 

..().251 

0.549 

..().182 

0.357 

..().0S9 

0.950 

..0.125 

..().011 

0.159 

..0.282 

0.004 

0.399 

..0.158 

0.234 

..().251 

1.000 

..().403 

..().155 

..().143 

..().191 

..().283 

..().031 

0.223 

0.129 

0.140 

0.086 

..().224 

0.553 

..().151 

0.549 

..0.403 

1.000 

..O.lOS 

0.30S 

0.043 

0.493 

..().079 

..().039 

..().073 

..0.369 

..().132 

0.523 

Ill 

..0.025 

..0.183 

..0.182 

..0.155 

..O.lOS 

1.000 

..().516 

0.790 

..().0S7 

0.8S9 

..().187 

..().323 

..().099 

0.201 

..().129 

Plli!CJP 

0.110 

0.079 

0.357 

..0.143 

0.30S 

..0.516 

1.000 

..0.621 

0.220 

..0.627 

0.171 

..().010 

0.018 

..().200 

0.283 

TRANGE OPI!NING DAY!W 

0.017 

..0.255 

..O.OS9 

..0.191 

0.043 

0.790 

..0.621 

1.000 

0.130 

0.907 

..0.215 

..0.193 

..().320 

0.142 

..0.080 

0.349 

..0.175 

0.950 

..0.283 

0.493 

..O.OS7 

0.220 

0.130 

1.000 

0.014 

..O.OS9 

0.165 

..().330 

0.002 

0.327 

0.007 

..0.240 

..0.125 

..0.031 

..0.079 

0.8S9 

..0.627 

0.907 

0.014 

1.000 

..0.156 

..0.230 

..0.183 

0.220 

..0.151 

111ICK 

0.117 

..0.621 

..0.011 

0.223 

..0.039 

..0.187 

0.171 

..0.215 

..0.059 

..0.156 

1.000 

0.397 

..0.020 

0.515 

0.041 

IDGJ!SUP DJWN 

..0.037 

..().265 

0.159 

0.129 

..0.073 

..0.323 

..0.010 

..0.193 

0.165 

..().230 

0.397 

1.000 

..0.015 

0.329 

..0.120 

..0.071 

0.347 

..0.282 

0.140 

..0.369 

..0.099 

0.018 

..().320 

..().330 

..0.183 

..0.020 

..0.015 

1.000 

..0.175 

..0.159 

DOWDIA 

0.022 

..0.849 

0.004 

0.086 

..0.132 

0.201 

..0.200 

0.142 

0.002 

0.220 

0.515 

0.329 

..0.175 

1.000 

..0.177 

PAllLm 

0.48S 

..().024 

0.399 

..0.224 

0.523 

..0.129 

0.283 

..0.080 

0.327 

..0.151 

0.041 

..0.120 

..0.159 

..0.177 

1.000 
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Figure 8.1. Two-Dimensional Plots of Selected Design Variables 
for Doweled Joint Faulting 
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for Doweled Joint Faulting 
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Figure 8.4. Three-Dimensional Plot (FAULTD, AGE, CESAL) 
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Based on all these results, specific sections were identified that had missing, erroneous, 
or questionable data. The sections with missing and erroneous data were deleted, and 
those with questionable data were marked for observation and evaluation during the 
actual model development. These data reviews provided valuable understanding of the 
data and the type of relationships among variables that needed to be explored in detail. 
Fifty-nine pavement sections remained for model development after the data review and 
evaluation. 

Model Development 

The first step in model development for transverse dowel joint faulting was to identify 
the general functional form of the distress with respect to time and traffic. Previous 
studies have shown that faulting increases rapidly with traffic loadings at first, and then 
levels off at a much decreased rate9• 10

• In previous studies where time series faulting 
data were available, the following model form that meets this criteria has been used. 

FAULTD = CESALP * [Explanatory Variables] (8.1) 

This form of the model meets logical boundary conditions with the faulting equal to zero 
when CESAL is zero (i.e., prior to opening to traffic). The exponent Pis usually less 
than 1. To allow the use of linear regression techniques, this form of the model was 
transformed by dividing both sides of the equation by CESALP, to make the ratio 
FAULTD/CESALP the dependent variable. Other transformations of the model, such as 
a logarithmic transformation, were tried but did not improve results. 

Based on expert judgment and previous data observations, several explanatory variables 
were selected for testing in the above model. Regression analyses were conducted with a 
variety of techniques to develop the most useful faulting prediction model. The 
following briefly describe the techniques used in the analyses: 

• Many explanatory variables were tested to determine their actual 
significance in the overall model. Even though some of these variables 
were expected to have an effect on faulting, they were eliminated if they 
were not significant to the prediction of joint faulting. 

• Several interactions between the variables were evaluated and found not to 
be significant. 

• Tests for collinearity between explanatory variables were conducted 
throughout the development phase. When significant collinearity was 
found, one of the variables was eliminated from the model (except for 
AGE, which is explained below). 
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• The two- and three-dimensional plots were studied, and these studies 
indicated that some variables were not linearly related to faulting. These 
included CESAL, KSTATIC, JTSPACE, and AGE. The best exponents for 
these variables were determined by using the Alternating Conditional 
Expectations (ACE) algorithm introduced by Breiman and Friedman along 
with the Box-Cox transformation. Detailed descriptions of these techniques 
are provided in "Design of Joints in Concrete Pavements.'17 

The final model for transverse joint faulting is as follows: 

FAULTD = CESAL 0-'-' • [ 0.0238 + 0.0006 • [ JTS~~CE r 

where FAULTD 
CESAL 
JTSPACE 
KSTATIC 
AGE 
EDGES UP 

DOWDIA 

Statistics: 
N 
R2 
RMSE 

= 
= 
= 
= 
= 
= 

= 

= 
= 
= 

+ 0.0037 * [ 100 
]

2 

+ 0.0039 * 
KSTATIC 

[ A~E r -0.0037 • EDGESUP - 0.0218 • DOWDIA] (8.2) 

mean transverse doweled joint faulting, in. 
cumulative 18,000 lb. (SON) ESALs in traffic lane, millions 
mean transverse joint spacing, ft 
mean backcalculated static k-value, psi/in. 
age since construction, years 
edge support (1-tied concrete shoulder; 0-any other shoulder 
type) 
diameter of dowels in transverse joints, in. 

59 sections 
0.534 
0.028 in. (0.7 mm) 

Figure 8.6 shows a plot of the predicted versus actual faulting for this model, and Figure 
8.7 shows a plot of the residuals versus predicted faulting. A sensitivity analysis of the 
model was conducted with the procedures described in Chapter 6. The results in Figure 
8.8 show that CESALs, joint spacing, age, and the static k-value have the greatest effects 
on doweled joint faulting, and increases in the significant variables appear to result in 
logical increases or decreases in the dependent variable. 
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Figure 8.6. Predicted FAULTD vs. Actual FAULTD 
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Figure 8.8. Sensitmty Analysis for Doweled Joint Faulting Modd 

Predicted faulting increases with increasing CESALs, joint spacing, and age. An increase 
in static k-value, which shows the effect of subgrade stiffness on the development of 
faulting, results in a decrease in faulting. Edge support provided by a tied concrete 
shoulder also causes a slight reduction in faulting. In addition, faulting decreases as 
dowel diameter increases, which reflects the reduction in dowel/ concrete bearing stress 
brought about by the use of the larger dowels. 

Three-dimensional plots of the response surface of this model, generated to show the 
predicted relationship between faulting and CESALs and age, and joint spacing are 
shown in Figures 8.9 and 8.10. As CESALs increase, faulting increases rapidly at first 
and then the rate of increase decreases. Faulting also increases with age and as joint 
spacing increases. 

Although AGE and CESAL were found to be positively correlated with a coefficient of 
correlation of 55%, AGE was included in the model due to its apparent strong individual 
effect. It is believed that AGE reflects the effects of the cycles of climatic changes such 
as joint opening/closing and thermal curling cycles. None of the climatic variables were 
significant enough to appear in the doweled faulting model itself. 

142 



............................. ·············.. ... . ........ ··· .. ·····::: ::::::::::~::>1 

. . . . 

~~· 

Figure 8.9. Three-Dimensional Plot (FAULTD, AGE, CESAL) of 
Doweled Joint Faulting Model 
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Figure 8.10. Three-Dimensional Plot (FAULTD, JTSPACE, CESAL) of 
Doweled Joint Faulting 
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The model includes several variables known from previous studies to affect faulting and 
the effects of these variables appear logical. However, there are several potentially 
significant variables that are missing from the model. For example, base type (untreated 
versus treated) and climate did not show much significance, although they were expected 
from previous studies to be significant. With a coefficient of determination (R2) of only 
0.53 and root mean square error (RMSE) of 0.028 inches (0.7 mm}, there is considerable 
room for improvement of this model. 

Joint Faulting of Non-Doweled Concrete Pavements 

The phenomenon of faulting of non-doweled transverse joints is similar to that described 
in the preceding section for doweled joints. Faulting of non-doweled joints also 
contributes greatly to longitudinal roughness and thus to user discomfort. Several factors 
that have been shown in previous studies to influence the faulting of non-doweled joints 
include traffic, design, materials, and climatic factors.9 Faulting is directly related to 
water pumping and erosion of the support material beneath the slab and/ or treated base 
of a concrete pavement. Another major contributing factor to non-doweled joint faulting 
is poor load transfer across the joint, since aggregate interlock is often the only medium 
of load transfer available. Faulting of non-doweled joints, therefore, depends much more 
on several other variables, such as climate and base type. The general procedure 
outlined in Chapter 6 for model development was used to obtain the non-doweled joint 
faulting model described here. 

Database, Dependent Variables, and Explanatory Variables 

The initial database used for this model was obtained from all the pavement sections 
with non-doweled joints from the GPS-3 (JPCP) experiment. The mean faulting of all 
non-doweled joints in a pavement section, FAUL1ND, was the dependent variable used 
in the model. Potential explanatory variables were chosen as those identified by the 
experts to be significant, provided they were available in the LTPP Database. The initial 
explanatory variables that were considered are as follows: 

THICK: 
EPCC: 
PCCAGG: 
BASETYP: 
BASETHK: 
BCOMP: 
BAGG: 
CESAL: 
AGE: 
JTSPACE: 
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slab thickness, in. 
modulus of elasticity of PCC from laboratory testing, psi 
gradation of aggregate in concrete 
base type (0 = untreated aggregate; 1 = treated aggregate) 
base thickness, in. 
percentage of compaction of base 
coarse aggregate gradation of base 
cumulative 18,000 lb. (80kN} ESALs in traffic lane, millions 
time since construction, years 
mean transverse joint spacing, ft 



JEFF: 
EDGES UP: 

DRAIN: 

FWD-measured joint efficiency, % 
edge support (1 = tied concrete shoulder; 0 = any other shoulder 
type) 
drainage provisions (0 = no subdrainage, 1 = if subdrainage) 

SUBGRADE: subgrade soil classification (0 = fine grained; 1 = coarse grained) 
KSTATIC: static backcalculated k-value, psi/in. 
PM200: subgrade soil passing #200 sieve, % 

DAYS90: 
PRECIP: 

num~er of days/year with temperatures greater than 90°F (32 o C) 
average annual precipitation, in. 

FT: 
TRANGE: 

FI: 

number of air freeze-thaw cycles 
mean monthly temperature range (mean maximum daily 
temperature minus mean minimum daily temperature for each 
month averaged over the year), op 
freeze index, degree-days below freezing 

Since there were very little data for several of these variables (e.g., PCCAGG, BAGG, 
BCOMP, PM200) in the database, it was not possible to consider all of them in the 
model development. 

Data Review and Evaluation 

The data from the GPS-3 test sections were reviewed to determine if data expected to be 
significant were missing. Examples of data missing for some test sections included joint 
faulting, CESALs, joint spacing, and FWD data. These sections with missing data could 
not be used in this early analysis. Data evaluation included an examination of the mean, 
minimum, maximum, and standard deviation of each dependent and independent 
variable. These values appear in SHRP-P-684, Early Analyses of LTPP General 
Pavement Studies Data. Data Processin& and Evaluation. 

The data were also assembled into matrix form and sorted several ways, such as 
increasing faulting, increasing age, and increasing traffic, and studied in order to identify 
any abnormalities or obviously erroneous data. Bivariate plots of all significant variables 
were prepared and examined. A correlation matrix was then obtained to show the 
strength of the correlation between all of dependent and independent variables. This 
correlation matrix is shown in Table 8.2. 

A three-dimensional plot which shows the relationship between faulting, CESALs, and 
age is given in Figure 8.11. This plot shows there are a few abnormal peaks in the plots 
that point to abrupt variations in data. The sections causing the unusual peaks or 
reverse slopes were identified and examined. Twenty-five sections remained for model 
development after the sections identified as having missing and erroneous data identified 
were deleted. 
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Table 8.2. Correlation Matrix for Selected Variables for Non-Doweled Joint Faulting 

CJ!SAL ll'SPACE KSTATIC AGE Ill PRECJP OPENING DAYS3Z 'l'RANGE THICK EDGESUP JIASETBK DllAIN t'AllLTND 

CJ!SAL 1.000 -0.042 0.064 -0.060 -0.110 -0.159 -0.020 0.123 0.083 0.164 0.284 -0.531 0.007 -0.019 

ll'SPACE -0.042 1.000 0.169 0.364 -0.250 0.643 0.497 -0.279 -0.335 0.031 -0.088 0.008 -0.173 0.131 

KSTATIC 0.064 0.169 1.000 0.073 -0.260 0.069 -0.120 -0.109 -0.259 0.175 0.209 0.128 0.033 -0.138 

AGE -0.061 0.364 0.073 1.000 -0.400 0.329 0.069 -0.397 -0.344 0.055 0.020 0.277 -0.118 0.289 

Ill -0.105 -0.245 -0.264 -0.400 1.000 0.039 0.122 0.863 0.664 -0.134 -0.028 0.080 -0.086 0.202 

PRECIP -0.159 0.643 0.069 0.329 0.039 1.000 0.153 -0.092 -0.284 -0.132 -0.115 0.113 -0.297 0.459 

OPENING -0.020 0.497 -0.120 0.069 0.122 0.153 1.000 0.263 0.503 -0.002 0.146 -0.111 0.029 -0.127 

DAYS3Z 0.123 -0.279 -0.109 -0.400 0.863 -0.092 0.263 1.000 0.827 -0.035 0.145 -0.084 -0.194 0.159 

'l'RANGE 0.083 -0.335 -0.259 -0.340 0.664 -0.284 0.503 0.827 1.000 0.006 0.176 -0.070 0.047 -0.072 

THICK 0.164 0.031 0.175 0.055 -0.130 -0.132 -0.002 -0.035 0.006 1.000 0.204 0.243 0.000 0.075 

EDGESUP 0.284 -0.088 0.209 0.020 -0.030 -0.115 0.146 0.145 0.176 0.204 1.000 -0.080 0.071 -0.083 

JIASETBK -0.531 0.008 0.128 0.277 0.080 0.113 -0.111 -0.084 -0.070 0.243 -0.080 1.000 -0.062 0.236 

DllAIN 0.007 -0.173 0.033 -0.120 -0.090 -0.297 0.029 -0.194 0.047 0.000 0.071 -0.062 1.000 -0.269 

t'AllLTND -0.019 0.131 -0.138 0.289 0.202 0.459 -0.127 0.159 -0.072 0.075 -0.083 0.236 -0.269 1.000 
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Figure 8.11. Three-Dimensional Plot (e.g., FAULTND, AGE, CESAL) of 
Doweled Joint Faulting 

Model Development 

The general functional form identified for faulting of nondoweled joints is the same as 
the one identified for faulting of doweled transverse joints in Equation 8.2. It shows 
faulting increasing with traffic loadings at a rapid rate at first and then at a reduced rate 
as time passes. The model also meets the necessary boundary conditions with faulting 
equal to zero when CESAI..s are equal to zero (e.g., prior to opening to traffic). For 
non-doweled pavements, the exponent P is also usually less than 1 for faulting. In order 
to use linear regression techniques, both sides of the equation were divided by CESALP 
and the ratio FAULTND/CESALP was used as the dependent variable. Other 
transformations of the data were tried but were not successful in improving the results. 

With several explanatory variables selected for testing in the above model, regression 
analyses were conducted with a variety of techniques to try to develop the most suitable 
faulting prediction model for sensitivity analysis. The techniques used included the 
following: 

• The explanatory variables were tested to determine their significance in the 
overall faulting model. Those that were not significant were eliminated, 
even though they were expected to affect faulting. 
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• Interactions between the explanatory variables were evaluated, but only the 
interaction between freeze index and precipitation was found to be 
significant. 

• Tests for collinearity between the explanatory variables were conducted 
throughout the development phase, and the results were used to identify 
some of the variables that had to be eliminated from the model. 

• The two- and three-dimensional plots were studied, and these studies 
indicated that there were some variables that are not linearly related to 
faulting of non-doweled transverse joints. These included CESAL, AGE, 
and PRECIP. The ACE algorithm was used to determine the best 
exponents for these variables to use in the model. 

The model finally selected for transverse non-doweled joint faulting, based on the data 
for the JPCP sections of GPS-3, is as follows: 

FAUL1ND = CESAL o.25 + 0.0757 + 0.0251 •J AGE + 0.0013 • [p~;n' r 

where FAULTND = 
CESAL = 
PRECIP = 
FI = 
AGE = 
DRAIN = 

Statistics: 

N = 
R2 = 
RMSE = 
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+ 0.0012 • [FI * ~:CIP) - 0.0378 • DRAIN l 
(8.3) 

mean transverse non-doweled joint faulting, in. 
cumulative 18,000 lb. (80kN) ESALs in traffic lane, millions 
mean annual precipitation, in. 
mean freeze index, degree-days < freezing 
age since construction, years 
1 =longitudinal subdrainage; 0 =otherwise 

25 sections 
0.550 
0.047 in. (1.2 mm) 



The limited number of sections available for the development of this model clearly limits 
its adequacy. Figure 8.12 shows a plot of the predicted versus actual faulting, and Figure 
8.13 shows a plot of the residuals versus predicted faulting. A sensitivity analysis of the 
model was conducted with the procedures described in Chapter 6. The results are shown 
in Figure 8.14. The variables that significantly affect the prediction of non-doweled joint 
faulting include CESAI.s, age, precipitation, freeze index, and drainage. The senses of 
these effects (increase in variables increases or decreases faulting) were consistent with 
results from previous studies and theory9

• 

The form of the model produces physically logical predictions of faulting with traffic 
loadings. Faulting is known to increase rapidly at first, and then level off with continued 
traffic loadings. In addition, this form matches the boundary conditions of zero faulting 
at zero traffic loadings. Although AGE and CESAI.s are strongly correlated, both were 
kept in the models due to their apparent strong individual effects. It is believed that 
AGE in this model represents the effects of cycles of climatic changes such as joint 
opening/ closing and thermal curling cycles. The model indicates an increase in faulting 
with increasing age. A three-dimensional plot of the predicted response surface 
generated with this model that shows the relationship between FAULTND, AGE, and 
CESAL is presented in Figure 8.15. 

Two climatic variables, precipitation and freeze index, were also sufficiently significant to 
enter the model. According to the model, increased precipitation will result in increased 
faulting, and pavements located in areas with a higher freeze index (FI) combined with a 
higher mean annual precipitation (PRECIP) will experience more faulting. The model 
also indicates that the provision of subdrainage will decrease faulting. However, it 
should be noted that most of the non-doweled JPCP sections included in this study did 
not have subdrainage, and had a high potential for erosion and pumping, especially 
because they did not have dowels to limit comer deflections. With only five of the 
sections with subdrainage in the form of longitudinal pipes, the subdrainage variable 
DRAIN included in the model must be viewed with caution. None of the pavement 
sections used in this analysis had a permeable base. 

The model developed includes several variables known from previous studies9
• 

10 to affect 
faulting, and the senses (increase in variable increases or decreases faulting) appear to 
be logical. However, there were several variables expected to be significant that were 
not found to be so. For example, neither base type (untreated versus treated) or joint 
spacing showed up as significant, even though other studies have shown them to be 
so. 9

• 
10 There is much room for improvement of this model, which has an R 2 of 0.55 and 

a fairly high RMSE. 
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Figure 8.12. Predicted vs. Actual FAULTND 
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Transverse Cracking of JPCP 

For this study, transverse cracking of JPCP was defined as all severity levels of cracks 
occurring transversely across the traffic lane. Such transverse cracks eventually spall and 
fault, and lead to longitudinal profile roughness, user discomfort, and the need for 
rehabilitation. The general procedure outlined in Chapter 6 for model development had 
to be modified to obtain a transverse cracking model for JPCP. Since there were only a 
few sections that contained transverse cracking data, the general approach could not be 
used to produce a model. However, this opportunity allowed for a demonstration of the 
development of a more mechanistic type model. The model developed is presented for 
illustration and must not be used for prediction because of the limited number of 
sections actually used to develop it. 

The mechanistic model is based on the principle that transverse cracking results from 
fatigue damage brought on by repeated tensile slab stresses. These tensile stresses are 
caused by a combination of repeated heavy loads, thermal gradient curling, and moisture 
gradient warping (and perhaps temperature and drying shrinkage). By combining all 
these variables into a single calculated fatigue damage value over a pavement's service 
life, the fatigue damage can be related to transverse cracking. This type of approach has 
been used several times in the past and has produced useful results9• 

11
• The use of this 

fatigue damage approach is described in this section. 

Database, Dependent Variables, and Explanatory Variables 

The initial database consisted of sections from the GPS-3 (JPCP) experiment. The 
percentage of slabs cracked (all severities of cracks) in a pavement section 
(PCRACKED) was the dependent variable used in the model. All potential explanatory 
variables identified to be significant by the experts, provided they were available in the 
LTPP Database and could be included in the mechanistic analysis, were used. The 
initial explanatory variables that were considered are as follows: 

THICK: 
PCCSTR: 

EPCC: 
JTEFF: 
JTSPACE: 
KSTATIC: 
LNWIDTH: 
CESAL: 
TGRAD: 

PRECIP: 
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slab thickness, in. 
indirect tensile strength of PCC (cores) converted to flexural 
strength, psi 
modulus of elasticity of PCC measured in the laboratory, psi 
longitudinal lane/shoulder joint load transfer efficiency 
mean transverse joint spacing, ft 
static backcalculated k-value, psi/in. 
traffic lane width, ft 
cumulative 18,000 lb. (80:kN) ESALs in traffic lane, millions 
mean temperature gradients through slab for different geographical 
regions, oF /in. thickness slab 
average annual precipitation, in. 



Data Review and Evaluation 

The usual review of each of the sections was conducted to determine if any critical data 
were missing. The sections with such missing data were then eliminated. A 
comprehensive evaluation of the data and interrelationships was conducted. The goal of 
this evaluation was to identify data that appeared to be inconsistent with a majority of 
the data. These sections were not deleted at this stage, but were simply identified as 
potential errors to be examined further. 

The mean, minimum, maximum, and standard deviation of each dependent and 
independent variable were examined, as were the data that were assembled into a matrix 
and sorted several ways (increasing PCRACKED, increasing CESALS, and increasing 
JTSP ACE). Bivariate plots of all the variables were examined, and a correlation matrix 
of all dependent and independent variables was obtained. This correlation matrix is 
shown in Table 8.3. 

Table 8.3. Correlation Matrix for Selected Variables for JPCP Transverse Cracking 

!'CRACKED THICK PCC5I'R JTSPACE CESAL TGKAD PRECIP JTEJi1l' EPCC KSTATIC 

PCRACKED 1 -0.02 .0.06 0.03 0.37 0.01 0.20 -0.05 -0.16 0.13 

TIDCK -0.02 1 -0.1 0.112 0.036 0.072 0.08 0.079 -0.13 0.201 

PCCSTR -0.06 -0.1 1 -0.441 0.014 0.013 -0.346 0.069 -0.043 0.018 

JTSPACE 0.03 0.112 -0.441 1 0.219 0.318 0.532 0.019 0.175 0.031 

CESAL 0.37 0.036 0.014 0.219 1 0.332 0.032 -0.006 0.037 0.025 

TGRAD 0.01 0.072 0.013 0.318 0.332 1 0.3 0.075 0.243 0.12 

PRECIP 0.20 0.08 -0.346 0.532 0.032 0.3 1 -0.059 0.131 0.003 

JTEFF -0.05 0.079 0.069 0.019 -0.006 0.075 -0.059 1 0.025 0.073 

EPCC -0.16 -0.13 -0.043 0.175 0.037 0.243 0.131 0.025 1 -0.203 

KSTATIC 0.13 0.201 0.018 0.031 0.025 0.12 0.003 0.073 -0.203 1 

These results were studied and any abnormalities or obviously erroneous data were 
identified. For example, one clear abnormality was a thick 12 in. (305 mm) slab, which 
was only 5 years old, did not carry very heavy traffic, and had over 50% cracking. It was 
obvious that the cracking observed was related to construction (such as late joint sawing) 
and not load fatigue. A total of 128 sections remained for the model development after 
the sections with missing and erroneous data had been deleted. Only twelve of these 
sections had experienced any transverse cracking. 
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Mechanistic Inputs 

For the mechanistic-based model developed for transverse cracking of JPCP, the critical 
stress and fatigue damage had to be calculated for each of the pavement sections. The 
critical edge stress was calculated to account for the combined effect of loading and 
positive (daytime) temperature gradient curling. The stress prediction models used are 
based on finite element analyses and are described in "Mechanistic Design Models of 
Loading and Curling in Concrete Pavements"12

• The variables used in the edge stress 
calculation include slab thickness, modulus of elasticity, Poisson's ratio, slab length, 
thermal gradients through the slab, subgrade k-value, single axle load at edge of slab and 
the thermal coefficient of expansion of concrete. Some of these inputs, such as thermal 
coefficient of expansion of concrete and Poisson's ratio, had to be assumed. 

Temperature gradients were based on mean positive gradients during daylight hours. The 
following values obtained from Design for Zero-Maintenance Plane Jointed Concrete 
Pavement11 were used in the analysis: 

Environmental 
Zone 

Non freeze 

Freeze 

Slab 
Thick (in,) 

8 
9 

10 
11 
12 

8 
9 

10 
11 
12 

Mean Annual Thermal 
Gradient (oF /in. slab) 

1.40 
1.30 
1.21 
1.11 
1.01 

1.13 
1.05 
0.96 
0.87 
0.79 

(1 in. = 25.4 mm; °F /in. = 0.0458 °C/mm) 

With these inputs the free edge stress was calculated and then adjusted for load transfer 
for a tied concrete shoulder (i.e., approximately 75% deflection transfer, which results in 
a 15% reduction in edge stress). 

Miner's fatigue damage model was used to determine the accumulated damage over the 
life of each pavement section. Fatigue damage was calculated as follows: 

Fatigue Damage = n/N 
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where n = 

= 

N = 

= 

expected number of applied edge stresses considering CESAL 
loadings and thermal daytime curling 
CESAL * percentage of loads at edge * percentage of trucks 
in daytime hours (with 5% loads at edge for regular width 
lanes, and 0.1% for widened traffic lanes assumed; 75% 
percent trucks assumed in daytime) 
mean number of allowable edge stress loads that causes slab 
cracking 
10 { 2.13 •( 1/RATIO )1.2} 

RATIO = STRESS/STRENGTH 

STRESS = f [EPCC, THICK, POISSON'S RATIO, KSTATIC] 
(computed with finite element techniques described in 
"Portland Cement Concrete Pavement Evaluation System
COPES".) 

STRENGTH = mean 28 day flexural strength, psi (estimated from 
split tensile strengths of cores taken during LTPP data 
collection, adjusted to 28 days) 

Both n and N were computed for each section in the database in this manner from the 
time the pavements were opened to traffic to the time when transverse cracking was 
measured. The ratio n/N was used as the estimated fatigue damage at the slab edge. 

Model Building 

The first step in hulling the model was to identify the general functional form of the 
occurrence of transverse cracking over time. From field observations, transverse 
cracking has been shown to develop slowly in pavements during their early life, then 
increase more rapidly as time passes, and eventually level off as all slabs become 
cracked. The lower limit of cracking is 0% of slabs cracked, and the maximum amount 
of cracking is 100% of slabs cracked. Any cracking that occurs very early in a 
pavement's life is usually the result of inadequate forming of transverse joints or other 
construction problems. 

Two previous studies show that this progression of transverse cracking follows an 
s-shaped curve ·with traffic or time.9• 10 Rehabilitation is usually performed by the time 
50% of the slabs have cracked, so most pavements never experience greater than 50% 
slabs cracked. With percentage of slabs cracked, PCRACKED, as the dependent 
variable, Figure 8.16 was prepared to show the relationship of percentage of cracked 
slabs versus accumulated fatigue damage (n/N) on a logarithmic scale. 
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This plot shows very little cracking for accumulated fatigue damage less than about 1.0. 
Cracking develops for accumulated fatigue damage beyond 1.0. Although there are a 
limited number of cracked sections, there exists a general trend that follows the s-shaped 
curve. Similar results have been obtained in previous studies with far more data than 
were available for this study. 

Conceptually, an s-shaped curve that satisfies the proper boundary conditions should be 
fitted through this data. However, fitting such a curve by regression techniques was not 
successful because of the limited number of cracked sections. Therefore, for illustrative 
purposes only, the bests-shaped curve was fitted through the data with a curve-fitting 
method and is shown in Figure 8.16. The equation of this curve is given below: 

where 

PCRACKED = ----
1
----

0.01 + 10 * 100- loglo( N) 
(8.4) 

PCRACKED 
n 

N 

= percentage of cracked slabs (all severities) 
= expected number of applied edge stresses, 

considering ESALs and thermal daytime curling 
= mean number of allowable edge stress loads that 

cause slab cracking 

The results of a sensitivity analysis of this model are shown in Figure 8.17. Slab 
thickness (THICK) has by far the greatest effect on transverse cracking, followed 
distantly by concrete flexural strength at 28 days. This model is based upon too few data 
points and should only be considered illustrative. As more L TPP data become available, 
especially sections with more slabs cracked, it will be possible to develop a much more 
reliable model for predicting transverse slab cracking for JPCP. 

Another important point to note is that the fatigue damage calculation algorithm used 
was not comprehensive. A much more comprehensive fatigue damage analysis can be 
developed and applied in the future. Such an analysis should consider axle load spectra 
(not CESALs), increased concrete strength over time, erosion beneath the slab, a far 
more accurate representation of thermal gradient over a year, and moisture gradients 
through the slab. Placement of the axle at the slab comer should also be considered 
along with a negative (nighttime) thermal gradient on transverse cracking. 
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Figure 8.17. Sensitivity Analysis for Slab Cracking of JPCP (PCRACKED) Model 

Three-dimensional plots illustrating the relationship between CESAI..s, slab thickness, 
and percentage of slabs with transverse cracks (PCRACKED) for this model are given in 
Figure 8.18. The plots show the effect of a widened traffic lane on transverse cracking of 
JPCP. Clearly, a widened lane decreases transverse cracking of JPCP. 

Transverse Cracking of JRCP 

Transverse cracks in JRCP are of concern when they deteriorate as a result of spalling 
and faulting. Low-severity transverse cracks are a normal occurrence in JRCP the 
reinforcement is designed to hold them tight and prevent deterioration. However, 
deterioration can be caused by repeated vertical shear stresses across the cracks from 
heavy wheel loads and increasing crack widths. As a crack widens, loss of aggregate 
interlock increases, which results in deterioration of the crack. The deterioration of such 
cracks causes longitudinal profile roughness, user discomfort, and the need for premature 
rehabilitation. As a result, only deteriorated (medium- and high-severity) transverse 
cracks were considered in the model development. The general procedure outlined in 
Chapter 6 for model development was utilized to obtain a deteriorated transverse crack 
model. 
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a). Widened Lane 

b). No Widened Lane 

Figure 8.18. Three-Dimensional Plots of JPCP Transverse Cracking Model 
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Database, Dependent Variables, and Explanatory Variables 

Previous studies have shown that the deterioration of transverse cracks in JRCP depends 
on traffic, design, materials, and climatic factors.10 Data on pavement sections from the 
GPS-4 (JRCP) experiment were used to provide the initial database. The number of 
deteriorated cracks (defined as medium- and high-severity cracks) in a pavement section, 
CRACKJR, was the dependent variable used in the model. The initial explanatory 
variables that were considered are as follows: 

THICK: 
EPCC: 
TYPAGG: 
PCCAGG: 

BASETYP: 
BASETHK: 
BCOMP: 
BAGG: 
CESAL: 
AGE: 
JTSPACE: 
EDGESUP: 

PSTEEL: 
DRAIN: 
KSTATIC: 
SUBGRADE: 
PM200: 
FI: 
FI: 
PRECIP: 
TRANGE: 
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slab thickness, in. 
slab modulus of elasticity of PCC measured in the laboratory, psi 
type of coarse aggregate in concrete 
maximum size of coarse aggregate in concrete 

base type (0 = untreated aggregate; 1 = treated aggregate) 
base thickness, in. 
percentage of compaction of base 
coarse aggregate gradation of base 
cumulative 18,000 lb. (80kN) ESALs in traffic lane, millions 
time since construction, years 
mean transverse joint spacing, ft 
edge support (1 = tied concrete shoulder; 0 = any other shoulder 
type) 
percentage of longitudinal steel reinforcement, % area 
drainage provisions {0 = no subdrainage; 1 = subdrainage) 
static backcalculated k-value, psi/in. 
subgrade soil classification (0 = fine grained; 1 = coarse grained) 
subgrade soil passing #200 sieve, % 
freeze index, degree-days 
number of air freeze-thaw cycles 
average annual precipitation, in. 
mean monthly temperature range (mean maximum daily 
temperature minus mean minimum daily temperature for each 
month averaged over year), oF 



Data Review and Evaluation 

A comprehensive evaluation of the data for each section was conducted to determine if 
any critical data were missing. Examples of such data missing for some test sections were 
deteriorated transverse cracks per mile (CRACKJR), CESALs, joint spacing, and 
percentage of steel. Sections with such data missing were eliminated from the study. The 
mean, minimum, maximum, and standard deviation of each dependent and independent 
variable were computed and examined. All data were then assembled into a matrix and 
studied in several ways to detect any abnormalities or obviously erroneous data. This 
study included the use of bivariate plots of all the variables. A correlation matrix that 
shows the strengths of the correlations between all the dependent and independent 
variables is shown in Table 8.4. 

Table 8.4. Correlation Matrix for Selected Variables for Tranverse Crack 
Deterioration for JRCP 

CRACKJK 11iiCK JI'SPACE CESAL PKECIP EPCC KSTATIC AGE PSTEEL TRANGE 

CRACKJR 1 0.27 -0.09 0.0 -0.11 -0.02 0.11 0.02 -0.25 -0.02 

TlfiCK 0.27 1 -0.13 -0.061 0.513 -0.022 0.233 -0.162 -0.523 -0.635 

JTSPACE -0.09 -0.13 1 0.259 0.26 0.071 -0.152 0.097 0.496 -0.316 

CESAL 

PRECIP 

EPCC 

0.0 -0.061 0.259 1 -0.094 -0.068 -0.257 0.449 0.116 0.034 

-0.11 0.513 0.26 -0.094 1 0.364 -0.163 0.147 0.184 -0.898 

-0.02 -0.022 0.071 -0.068 0.364 1 -0.314 0.093 0.13 -0.371 

KSTATIC 0.11 0.233 -0.152 -0.257 -0.163 -0.314 1 -0.39 -0.371 -0.035 

AGE 

PSTEEL 

0.02 -0.162 0.097 0.449 0.147 0.093 -0.39 1 0.422 -0.02 

-0.25 -0.523 0.496 0.116 0.184 0.13 -0.371 0.422 1 0.001 

TRANGE -0.02 -0.635 -0.316 0.034 -0.898 -0.371 -0.035 -0.02 0.001 1 

Three-dimensional plots were also used to study the data further. Two examples of such 
plots are given in Figures 8.19 and 8.20. Figure 8.19 shows the relationship between 
CRACKJR, AGE, and CESALs, and Figure 8.20 shows the relationship between 
CRACKJR, PSTEEL, and CESALs. Any abrupt variations in the data indicated by 
unusual peaks in the surface or reverse slopes were identified and investigated. Twenty
seven sections remained for model development after sections with missing and erroneous 
data were deleted. 

Model Building 

The first step in building the model was to identify the general functional form of the 
occurrence of t~e distress over time. There were no time series data to clearly show the 
functional form of the progression of deteriorated transverse cracks. However, a model 
from a previous study shows that deteriorated transverse cracks develop almost linearly 
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Figure 8.19. 'lbree-Dilllensional Plot (CRACKJR, AGE, CESAL) 
of Deteriorated JRCP Transverse Cracks 

Figure 8.20. 'lbree-Dilllensional Plot (CRACKJR, PSTEEL, CESAL) of 
Deteriorated JRCP Transverse Cracks. 



for several million applications of traffic loadings ( CESALs ), and then accelerate slightly 
with continualloadings.10 It is also known that when CESALs and age are zero (prior to 
the pavement opening to traffic), deteriorated cracks are also zero. 

Based upon expert judgment and the data evaluations, several explanatory variables were 
chosen for testing. Regression analyses were conducted with a variety of techniques to 
try to develop the most suitable model for deteriorated cracks prediction the sensitivity 
analysis. The following briefly describe the techniques utilized in the analyses: 

• The explanatory variables were tested to determine their significance in the 
overall model. Those that showed a lack of significance on transverse 
cracking, even though they logically were expected to have an effect, were 
eliminated. 

• Several interactions between variables were evaluated, but none were 
found to be significant. 

• Tests for collinearity between the explanatory variables were conducted 
throughout the model development phase, and where significant 
collinearity was found, one of the variables was eliminated from the model. 

• Observations of the previous two- and three-dimensional plots indicated 
some variables, including PSTEEL and KSTATIC, were nonlinearly related 
to CRACKJR. The appropriate exponents for these variables were 
determined from graphical observations and the ACE algorithm6

• The 
result was a transformation of KSTATIC and PSTEEL to obtain a linear 
regression model. 

The final model selected for predicting deteriorated transverse cracks for JRCP is as 
follows: 

where 

CRACKJR = -72.9 + 1.9 CESAL + 0.182 [ 
1 l 

PSTEEL 2 

+ 2473 [ 
1 l + 0.697 PRECIP 

KSTATIC (8.5) 

CRACKJR = 
CESAL = 

PSTEEL = 
PRECIP = 
KSTATIC = 

number transverse cracks (medium-/high-severity)/mi. 
cumulative 18,000 lb. (80kN) ESALs in traffic lane, 
millions 
percentage of steel (longitudinal reinforcement) 
annual precipitation, in. 
mean backcalculated k-value, psi/in. 
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Statistics: 

N 
R2 
RMSE 

= 
= 
= 

27 sections 
0.48 
20.8 cracks/mi. (12.5 cracks/km) 

The limited number of sections available for the analysis clearly limits the adequacy of 
the model. Figure 8.21 shows a plot of the predicted versus actual CRACKJR, and 
Figure 8.22 shows a plot of the residuals versus predicted CRACKJR. 

The results of a sensitivity analysis of the model are shown in Figure 8.23. KSTATIC 
has the greatest effect on CRACKJR. For low KSTATIC values (i.e., very soft 
subgrades), CRACKJR increases, which is logical since a low KSTATIC will lead to high 
deflection, which in tum will lead to crack deterioration. PSTEEL also has an effect on 
CRACKJR, with a lower PSTEEL resulting in a higher number of deteriorated cracks. 
This is also logical since lower steel content will result in increased crack width. The 
model indicates that deteriorated cracks will develop at a uniform rate with increased 
traffic loadings ( CESALs ). Crack deterioration is also shown to depend on climate: 
areas with higher precipitation have more crack deterioration. A three-dimensional plot 
that shows the predicted relationship between CRACKJR, CESALs, and PSTEEL from 
this model appears in Figure 8.24. 

Although all the variables recommended by the experts that were available in the LTPP 
Database were examined, only the variables shown in the model were found to be 
significant. Other variables that have been found to be significant in previous studies 
include base type (untreated versus treated), slab thickness, joint spacing, and climatic 
variables.9

' 
10 It is believed that consideration of these factors when more data are 

available will help improve the R2 of 0.48 and RMSE of 21 cracks/mi. (13 cracks/km) 
obtained for the model. 

Joint Spalling of JPCP 

Joint spalling is defined as a breakdown of the concrete near the joint. Spalling 
eventually causes longitudinal profile roughness and user discomfort. Joint spalling can 
be caused by several mechanisms, including the following: 
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• infiltration of incompressibles into the joint over time, causing increased 
stresses in hot weather; 

• misaligned dowels that create high stress concentration points, which leads 
to spalling of the concrete near the joint; and 

• concrete durability problems, such as "D" cracking, that lead to 
deterioration of concrete near the joint. 
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Figure 8.24. 'Ibree-Dbnensional Plot Showing CRACKJR, CESAL, and PSTEEL 
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The general procedure outlined in Chapter 6 for model development was utilized to 
obtain a joint spalling model for JPCP. 

Database, Dependent Variables, and Explanatory Variables 

Data from sections from the GPS-3 (JPCP) experiment were used to provide the initial 
database. The percentage of low-, medium-, and high-severity spalled joints in a 
pavement section, SPALUP, was the dependent variable used in the model. Those 
explanatory variables identified by the experts to be significant that were available in the 
LTPP Database were used. The initial explanatory variables that were considered are as 
follows: 

THICK: 
PCCSTR: 
TYPAGG: 
PCCAGG: 

JTEFF: 
JTSPACE: 
JTSEAL: 
DRAIN: 

slab thickness, in. 
indirect tensile strength of PCC (cores), psi 
type of coarse aggregate in concrete 
gradation of coarse aggregate in concrete 

joint load transfer efficiency 
mean transverse joint spacing, ft 
joint seal type (several types exist in the database) 
drainage provisions (0 = no subdrainage; 1 = if subdrainage) 

BASETYP: base type (0 = untreated aggregate; 1 = treated aggregate) 
SUBGRADE: subgrade soil classification (0 = fine grained; 1 = coarse grained} 
PM200: subgrade soil passing #200 sieve, % 

CESAL: 
AGE: 

FI: 
DAYS90: 
PRECIP: 
Ff: 
TRANGE: 

cumulative 18,000 lb. (80kN} ESALs in traffic lane, millions 
time since construction, years 

freeze index, degree-days 
number of days temperature is greater than 90 oF 
average annual precipitation, in. 
number of air freeze-thaw cycles 
mean monthly temperature range (mean maximum daily 
temperature minus mean minimum daily temperature for each 
month averaged over year), °F. 

There were very little data for several of these variables in the database, which made it 
impossible for them to be considered. These included PCCAGG and PM200. 
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Data Review and Evaluation 

Several of the techniques described previously for the other models were used in a 
comprehensive evaluation of the data. This included an examination of the statistics for 
each dependent and independent variable. A correlation matrix of the dependent and 
independent variables is shown in Table 8.5. Two-dimensional plots of all variables were 
prepared and examined. A three-dimensional plot, which shows the relationship between 
SPALUP, AGE, and Ff is presented in Figure 8.25. Mter deleting the sections with 
missing data and those with any abnormalities or obvious errors, fifty-six sections 
remained for the model development. 

Table 8.5. Correlation Matrix for Selected Variables for JPCP Joint SpaDing 

111ICK JI'SPACE CI!SAL PRECIP DRAIN Fl' DAYS!IO DAYS3Z AGE 'I'RANGE SPALLJP 

111ICK 1.000 0.127 0.137 0.072 -0.065 -0.084 0.190 -0.104 0.006 -0.082 -0.162 

JI'SPACE 0.127 1.000 0.147 0.504 -0.080 -0.136 0.048 -0.227 0.229 -0.197 -0.165 

CI!SAL 0.137 0.147 1.000 -0.012 -0.155 -0.264 0.339 -0.274 0.414 -0.181 0.111 

PRECIP 0.072 0.504 -0.012 1.000 0.262 -0.529 0.067 -0.477 0.091 -0.543 -0.290 

DRAIN -0.065 -0.080 -0.155 0.262 1.000 -0.472 0.308 -0.425 -0.248 -0.504 -0.116 

Fl' -0.084 -0.136 -0.264 -0.529 -0.472 1.000 -0.647 0.925 -0.013 0.839 0.330 

DAYS!IO 0.190 0.048 0.339 0.067 0.308 -0.647 1.000 -0.727 -0.123 -0.448 -0.055 

DAYS3Z -0.104 -0.227 -0.274 -0.477 -0.425 0.925 -0.727 1.000 -0.080 0.879 0.264 

AGE 0.006 0.229 0.414 0.091 -0.248 -0.013 -0.123 -0.08 1.000 -0.095 0.312 

'I'RANGE -0.082 -0.197 -0.181 -0.543 -0.504 0.839 -0.448 0.879 -0.095 1.000 0.263 

SPALI.JP -0.162 -0.165 0.111 -0.290 -0.116 0.330 -0.055 0.264 0.312 0.263 1.000 

Model Building 

An examination of the results from the exploration of the data showed that joint spalling 
develops slowly over the first few years, and then increases more rapidly with age. Two 
models developed from previous studies also show similar results.9

• 
10 It is also known 

that when age is zero (at completion of construction}, joint spalling is zero unless early 
joint sawing causes some spalling. Based on expert judgment and evaluation of the data, 
several of the explanatory variables were selected for testing. Regression analyses were 
conducted with a variety of the techniques previously described to develop the most 
useful joint spalling prediction model. 

Many of the explanatory variables tested did not show any significance nor did any of the 
interactions between them. Where tests showed collinearity between explanatory 
variables, one of the variables was eliminated from the model. This often occurred with 
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the climatic variables. The observations of the previous two- and three-dimensional plots 
indicated that freeze-thaw cycles were not linearly related to SP ALUP. An exponent of 
2 was found to provide a best fit for the limited data. 

With this information, the following model was developed for transverse joint spalling: 

SPALUP = 9.79 + 10.09 *[- 1.227 + 0.0022 *(0.9853 *AGE + 0.1709 *Ff)
2

] (8.6) 

where 

Statistics: 

0 
00 

0 

SPALUP 

Ff 
AGE 

N = 
R2 = 
RMSE = 

= 

= 
= 

predicted mean percentage of transverse joint spalling 
(all severities), percentage of total joints 
mean annual air freeze-thaw cycles 
age since construction, years 

56 sections 
0.335 

11.05 % joints 
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Figure 8.25. Three-Dimensional Plot (SPALUP, AGE, Ff) for JPCP Joint Spalling 
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Figure 8.26 shows a plot of the predicted versus actual SP ALUP, and Figure 8.27 shows 
a plot of the residuals versus predicted SPALUP. 

Only two variables were found to be strongly related to joint spalling of JPCP. The 
results from a sensitivity analysis of the model are shown in Figure 8.28. Both number of 
freeze-thaw cycles and age significantly affect joint spalling. The model rredictions for 
joint spalling are generally consistent with those from previous studies9

• 
1 

• A three
dimensional plot showing the predicted relationship between joint spalling, number of 
freeze-thaw cycles, and age is presented in Figure 8.29. 

The model indicates that spalling generally increases slowly at first and then increases 
more rapidly after several years. A high number of freeze-thaw cycles will tend to 
increase spalling. This is logical since it takes time for the incompressible materials, 
which increase compressive stresses in hot weather, to infiltrate the joints. A high 
number of freeze-thaw cycles of saturated concrete may also slowly weaken the concrete 
near the joints over time, and bring about dowel bar corrosion and subsequent joint 
lockup that may contribute to joint spalling. 

The model includes only two of the several variables known to affect spalling from 
previous studies9

• 
10

• However, it is believed that with an R2 of only 0.34 and RMSE of 
11%, there is considerable room for improvement of this model as more data become 
available. 
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Figure 8.26. Predicted SPALLJP vs. Actual SPALLJP for JPCP 

170 



0 
-.::t * 

* 0 -("t') 

.... 
= 0 - * (1) C'l * ~ * (1) 

* ~ * * ... 0 - * - - * ~ 
::s 

* * * * \ ""0 ..... llllc ,. 
tl:l 

* (1) 0 ..... ... 
~ * • 

~ * * :ifQjc • • * * * lllc* 0 - *lilt: * - * **** I * 
* * 

0 * C'l -
I I I I I 

0 10 20 30 

Predicted SP ALUP, Percent 
Figure 8.27. Plot of Residuals vs. Predicted SPALLJP for JPCP 

Ff.CYCLE 

AGE 

0 5 10 15 

Percent of Joints Spalled 

Figure 8.28. Sensitivity Analysis for Joint Spalling of JPCP (SPALLJP) Model 
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Figure 8.29. '111ree-Dimensional Plot of Joint Spalling Model for JPCP 

Joint Spalling of JRCP 

Joint spalling is defined as a breakdown of the concrete near the joint that results in 
loose pieces. Spalling eventually causes longitudinal profile roughness, user discomfort, 
and the need for rehabilitation. Joint spalling can be caused by several mechanisms, 
including the following: 

• infiltration of incompressibles into the joint over time, which in hot 
weather can lead to a buildup of stresses when the concrete slabs expand; 

• misaligned dowels that create high stress concentration points, which leads 
to spalling of the concrete near the joint; and 

• concrete durability problems, such as "D" cracking that lead to a 
breakdown of concrete near the joint. 

The general procedure outlined in Chapter 6 for model development was utilized to 
obtain a joint spalling model for JRCP. 
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Database, Dependent Variables, and Explanatory Variables 

The initial database comprised data from sections of the GPS-4 (JRCP) experiment. 
The percentage of low-, medium-, and high- severity spalled joints in a pavement section 
(SPALUR) was the dependent variable used in the prediction model. The explanatory 
variables identified by the experts to be significant were selected for consideration, 
provided they were available in the LTPP Database. The initial explanatory variables 
that were considered follow: 

THICK: 
PCCSTR: 
TYPAGG: 
PCCAGG: 

JTSPACE: 
JTEFF: 
JTSEAL: 
DRAIN: 

slab thickness, in. 
indirect tensile strength of PCC (cores), psi 
type of coarse aggregate in concrete 
gradation of coarse aggregate in PCC 

mean transverse joint spacing, ft 
joint load transfer efficiency 
joint seal type (several types are listed in the database) 
drainage provisions (0 = no subdrainage; 1 = subdrainage) 

BASETYP: base type (0 = untreated aggregate; 1 = treated aggregate) 
SUBGRADE:subgrade soil classification (0 = fine grained; 1 = coarse grained) 
PM200: subgrade soil passing #200 sieve, % 

CESAL: 
AGE: 
PRECIP: 
Ff: 
TRANGE: 

FI: 
DAYS90: 

cumulative 18,000 lb. (80kN) ESALs in traffic lane, millions 
time since construction, years 
average annual precipitation, in. 
mean number of annual air freeze-thaw cycles 
mean monthly temperature range (mean maximum daily 
temperature minus mean minimum daily temperature for each 
month averaged over the year), oF 
freeze index, degree-days (oF) below freezing 
number of days temperature greater than 90 oF 

There were very little data for several of these variables (e.g., PCCAGG and PM200) in 
the database, which made it impossible to consider many of them. Each pavement 
section was reviewed to determine if any data were missing. Examples of missing data 
included SP ALUR, JTSP ACE, and TRANGE data. Sections with missing data could 
not be used in the analysis. 

Data Review and Evaluation 

A comprehensive evaluation of the data was conducted to identify those sections with 
data outliers or influential observations. These sections were not deleted at this stage, 
but were simply identified as sections with potential errors to be examained further. The 
mean, minimum, maximum, and standard deviation of each dependent and independent 
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variable were computed and examined. All data were then assembled into a matrix, 
sorted several ways, and studied to identify any abnormalities or obviously erroneous 
data. 

Two-dimensional plots of all variables were prepared and examined. A correlation 
matrix that shows the strength of the correlation between all the dependent and 
independent variables is shown in Table 8.6. Three-dimensional plots were also 
generated to show the relationships between the dependent variable and several of the 
selected explanatory variables. One example of the three-dimensional plots is given in 
Figure 8.30 that shows the relationship between SP ALUR, AGE, and TRANG E. There 
are a few sharp peaks in the surface that indicated abrupt variations in the data. The 
sections causing these unusual peaks or reverse slopes were identified. In the end only 
twenty-five sections remained for model development after sections with missing and 
erroneous data were deleted. 

Model Building 

The first step in building the model was to identify the general functional form of JRCP 
spalling with time and traffic. Two previous studies show that joint spallinf. develops 
slowly over the first few years, and then increases more rapidly with AGE. ' 10 It is also 
known that when AGE is zero (at construction), joint spalling is zero unless early joint 
sawing causes some spalling. Based on this information, expert judgment, and the 
previous data observations, several explanatory variables were chosen for testing in this 
model. Regression analyses were conducted with a variety of techniques to try to 
develop the most suitable model for joint spalling prediction for the sensitivity analysis. 
The following briefly describe the techniques utilized in the analyses: 
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• The explanatory variables were tested to determine their significance in the 
overall model. Due to their lack of significance, many were eliminated, 
even though they were known from previous studies to affect joint spalling. 

• The variables were evaluated to determine the existence of significant 
interactions between them, but none of the interactions were found to be 
significant. 

• Tests for collinearity between the explanatory variables were performed 
throughout the model development phase. When such collinearities were 
found, one of the variables was eliminated from the model. This was 
found to be the case for some of the climatic variables such as Ff and 
TRANGE. For this model, TRANGE was retained as it was more closely 
correlated to spalling than Ff. 



Table 8.6. Correlation Matrix for Selected Variables for JRCP Joint Spalling. 

1111Cit li'SPACE CI!ML PRI!ICIP DIIAIN SEAL Fl' DAY!IJI DAYSJZ AGE TIIANGE SPALIJK 

1111Cit 1.000 -0.048 -0.234 0.560 0.075 -0.106 -0.531 0.424 -0.607 -0.173 -0.676 -0.510 

li'SPACE -0.048 1.000 0.438 0.312 -0.123 -0.096 -0.083 0.082 -0.242 0.306 -0.331 -0.097 

CI!SAL -0.234 0.438 1.000 0.058 -0.166 -0.088 0.108 -0.170 0.118 0.614 0.034 0.169 

PRI!ICIP 0.560 0.312 0.058 1.000 0.120 -0.457 -0.792 0.696 -0.894 0.240 -0.918 -0.424 

DIIAIN 0.075 -0.123 -0.166 0.120 1.000 -0.167 0.084 -0.136 0.006 -0.156 -0.109 0.013 

SEAL -0.106 -0.096 -0.088 -0.457 -0.167 1.000 0.381 -o.2n 0.392 -0.192 0.284 0.174 

Fl' -0.531 -0.083 0.108 -0.792 0.084 0.381 1.000 -0.870 0.917 -0.279 0.746 0.233 

DAYS!IO 0.424 0.082 -0.170 0.696 -0.136 .o.2n -0.870 1.000 -0.873 0.087 -0.633 -0.220 

DAYS3Z -0.607 -0.242 0.118 -0.894 0.006 0.392 0.917 -0.873 1.000 -o.1n 0.890 0.354 

AGE -0.173 0.306 0.614 0.240 -0.156 -0.192 -0.279 0.087 -o.1n 1.000 -0.092 0.385 

'lllANGE -0.676 -0.331 0.034 -0.918 -0.109 0.284 0.746 -0.633 0.890 -0.092 1.000 0.505 

SPALI.JR -0.510 -0.097 0.169 -0.424 0.013 0.174 0.233 -0.220 0.354 0.385 0.505 1.000 
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Figure 8.30. Three-Dimensional Plot (AGE, SPALL.JR, TRANGE) for JRCP 
Joint Spalling. 

• The observations of the previous two- and three-dimensional plots 
indicated that TRANGE and AGE were not linearly related to SP ALUR. 
An exponent of 1.5 for both AGE and TRANGE was found to provide a 
best fit to the limited data. 

The following model was developed for all severities of transverse joint spalling of JRCP 
based on the data from the GPS-4 sections: 

where 

Statistics: 
N= 
R2 = 

SPALUR = 

TRANGE = 

AGE = 

25 sections 
0.644 

RMSE = 16.6% joints 
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(8.7) 

predicted mean percentage of transverse joint spalling 
(all severities), percentage of total joints 
mean monthly temperature range (mean maximum 
daily temperature minus mean minimum daily 
temperature for each month over a year) 
age since construction, years 



The limited number of sections available for the analysis clearly limits the adequacy of 
the model. Although all the variables that were recommended by the experts that were 
available in the database were evaluated, only a few were found to be significant. Figure 
8.31 shows a plot of the predicted versus actual SP ALUR, and Figure 8.32 shows a plot 
of the residuals versus predicted SP ALUR. The results from the sensitivity analysis of 
the model are shown in Figure 8.33. Both AGE and TRANGE have a large and 
approximately equal effect on joint spalling of JRCP. 

The form of the model shows a curvilinear increase in spalling with AGE and with more 
severe temperature conditions (TRANGE). A three-dimensional plot that shows the 
relationship among the predicted SP ALUR, TRANGE, and AGE is shown in Figure 
8.34. This form of the model is generally consistent with the measured development of 
spalling with age in other studies.9

• 
10 

The AGE variable in the model may represent factors such as cycles of climatic changes 
such as joint opening/ closing, thermal curling cycles, cold/hot cycles, freeze-thaw cycles, 
and progressive corrosion of dowels. The TRANGE variable reflects daily and monthly 
temperature ranges to which the pavement is subjected. The higher the TRANGE 
(northern US and Canada), the higher the joint spalling. Greater ranges in temperature 
generally cause increased joint openings, that increase the infiltration of incompressibles 
in cold weather and high compressive stresses in hot weather. TRANGE also correlates 
strongly with other thermal variables, including the number of freeze-thaw cycles, 
number of days above 90°F (32°C), and the freeze index. 

This model includes only two of several variables known to affect spalling from previous 
studies. For example, joint seal type and base type were not found to be significant, but 
have been found to be significant in other studies. Also, data on concrete durability 
were not available in the database, but durability is known to be significant to the 
occurrence of D cracking. Joint spacing, which ranged from 13 to 30ft (4 to 9 m), is 
implicitly included in the model, because the dependent variable is expressed as the 
percentage of joints spalled. This means that as the number of joints per mile increases, 
there will be more joints that can spall. The R2 of 0.64 and the RMSE of 17% indicate 
that there is considerable room for improvement of the model. 
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IRI of Doweled JPCP 

The IRI is calculated from the longitudinal profile and is reported in units of in./mi., 
m/km, or cmjkm. IRI has been shown to correlate well with the subjective rating of 
highway users. An IRI of zero represents a perfectly smooth plane. However, a typical 
IRI for new construction is about 26 in.fmi. (41 cm/km) which correlates to a Present 
Serviceability Index (PSI) of approximately 4.5. A typical IRI of a pavement showing 
considerable roughness is approximately 169 in./mi. (267 cm/km), which correlates to a 
PSI of 2.5. (An increase in IRI with time after construction is caused by the 
development of distresses and also any movement of the foundation.) Thus, IRI is an 
indicator of the highway users' response to the pavement and thus to the needs for 
rehabilitation based on roughness. The general procedure outlined in Chapter 6 for 
model development was used to obtain an IRI model for JPCP. 

Database, Dependent Variables, And Explanatory Variables 

Data on the doweled pavement sections from the GPS-3 (JPCP) experiment provided the 
initial database used in the development of this model. The values of IRI measured 
over the L TPP sections were used to represent the dependent variable. The potential 
explanatory variables selected for investigation were those identified by the experts to be 
significant, provided they were available in the L TPP Database. The initial explanatory 
variables that were considered are as follows: 
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THICK: 
PCCSTR: 
TYPAGG: 
PCCAGG: 

JTEFF: 
JTSPACE: 
JTSEAL: 
EDGES UP: 
DRAIN: 

slab thickness, in. 
indirect tensile strength of PCC (cores), psi 
type of coarse aggregate in concrete 
gradation of coarse aggregate in PCC 

joint load transfer efficiency 
mean transverse joint spacing, ft 
joint seal type (several types exist in the database) 
edge support (1 = tied PCC shoulder; 0 = other shoulder types) 
subdrainage provisions (0 = no subdrainage; 1 = subdrainage) 

BASETYP: base type (0 = untreated aggregate; 1 = treated aggregate) 

KSTATIC: align subgrade with static backcalculated k-value, psi/in. 
SUBGRADE:subgrade soil classification (0 = fine grained; 1 = coarse grained) 
PM200: subgrade soil passing #200 sieve, % 

CESAL: 
AGE: 

PRECIP: 
Ff: 

cumulative 18,000 lb. (80kN) ESALs in traffic lane, millions 
time since construction, years 

average annual precipitation, in. 
mean number of annual air freeze-thaw cycles 



TRANGE: 

FI: 
DAYS90: 

mean monthly temperature range (mean maximum daily 
temperature minus mean minimum daily temperature for each 
month averaged over the year), °F 
freeze index, degree-days (F) below freezing 
number of days temperature greater than 90°F (32°C) 

Sufficient data were not available for some variables even though they were expected to 
be significant. Examples include PCCAGG and PM200. Examples of other data missing 
for some of the test sections include IRI, JTSPACE, CESAL, and TRANGE. Sections 
with such data missing could not be used in the analysis. 

Data Review and Evaluation 

Evaluation of the data was conducted to identify anomalies and errors. Various statistics 
of the dependent and independent variables, such as the mean, minimum, maximum, and 
standard deviation, were computed and examined. All data were then assembled, sorted, 
and studied in several ways to determine any abnormalities or obvious errors. Two
dimensional plots of all variables were also prepared and examined to determine the 
bivariate relationships between selected variables. A matrix that shows the strengths of 
the correlations between dependent and independent variables appears in Table 8.7. 

Three-dimensional plots that show the trends of IRI with AGE, CESALs, and other 
variables were also prepared and examined. One example of such a plot appears in 
Figure 8.35 to show the relationship between IRI, JTSP ACE, and AGE. There are a 
few unusual peaks and reverse slopes in the plot that indicate the existence of abnormal 
data. Twenty-one sections remained for model development after the sections with 
missing and erroneous data had been deleted. 

Model Building 

Model building started with an attempt to identify the general functional form of IRI in 
relation to time and traffic. Although time series data were not available to identify a 
typical functional form for change in IRI, two previous studies on in-service pavements 
show that PSI drops somewhat rapidly at first, and then levels out for a lonf. time, which 
may then be followed by another rapid drop as severe deterioration occurs. ' 10· Because 
PSI is primarily a measure of roughness, this form was assumed for model building. 
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Table 8.7. Correlation Matrix for Selected Variables for Doweled JPCP IRI. 

niiCK Fl' BASEniP CIIML DAYS3Z I!DGBSUP DWIDIA ll'SPACB KSTA'DC AGE PCCSTil SUBGBADB TRANG£ P.RECIP 1R1 

niiCK 1.()()() -0.400 -0.211 -0.037 -0.318 0.442 0.537 -0.105 0.346 -0.300 -0.187 -0.013 -0.460 0.300 0.010 

Fl' -0.373 1.000 -0.202 -0.207 0.917 -0.221 -0.120 0.088 0.042 0.430 -0.095 -0.245 0.774 -0.133 0.320 

BASEniP .0.211 -0.200 1.000 0.044 -0.323 -0.084 -0.012 0.156 -0.084 -0.300 -0.176 -0.258 -0.151 -0.025 0.120 

CIIML -0.037 -0.200 0.044 1.000 -0.266 0.023 -0.034 0.434 -0.096 0.330 -0.291 -0.062 -0.160 -0.161 0.000 

DAYS3Z -0.318 0.920 -0.323 -0.266 1.000 -0.235 -0.105 -0.093 -0.079 0.500 -0.095 -0.138 0.865 -0.162 0.28(} 

J!DGIISUP 0.442 -0.200 -0.084 0.023 -0.235 1.000 0.670 -0.407 0.125 -0.500 -0.164 -0.022 -0.162 -0.351 0.000 

DWIDIA 0.537 -0.100 -0.012 -0.034 -0.105 0.670 1.000 -0.266 0.209 -0.300 -0.127 -0.168 -0.173 -0.179 0.290 

ll'SPACB -0.105 0.090 0.156 0.434 -0.093 -0.407 -0.266 1.000 -0.066 0.480 -0.201 -0.291 -0.197 0.371 0.380 

KSTA'DC 0.346 0.040 -0.084 -0.096 -0.079 0.125 0.209 -0.066 1.000 -0.600 -0.125 0.168 -0.157 0.057 -0.100 

AGE -0.321 0.430 -0.316 0.330 0.501 -0.469 -0.304 0.480 -0.556 1.000 -0.069 -0.185 0.392 0.162 0.340 

PCCSTR -0.187 0.00 -0.176 -0.291 -0.095 -0.164 -0.127 -0.201 -0.125 0.000 1.000 0.097 -0.064 0.156 0.000 

SIJJIGIIADE -0.013 -0.200 -0.258 -0.062 -0.138 -0.022 -0.168 -0.291 0.168 -0.200 0.097 1.000 -0.114 -0.187 -0.700 

TRANGE -0.460 0.770 -0.151 -0.160 0.865 -0.162 -0.173 -0.197 -0.157 0.390 -0.064 -0.114 1.000 -0.406 0.190 

PRECIP 0.300 -0.100 -0.025 -0.161 -0.162 -0351 -0.179 0.371 0.057 0.160 0.156 -0.187 -0.406 1.()()(} 0.170 

IRI 0.012 0.320 0.119 -0.047 0.278 -0.059 0.287 0.383 -0.117 0.340 -0.033 -0.659 0.193 0.166 1.000 



It is also known that immediately after construction when AGE is zero, IRI is not 
necessarily zero due to construction variation. Since the initial IRI was not measured for 
any of the sections, however, it was not possible to utilize the change in IRI as the 
dependent variable. In addition, there is no maximum value of IRI. As a result, the 
measured IRI was selected as the dependent variable for the model to be developed. 

Based upon expert judgment and previous data observations, several explanatory 
variables were selected for testing in the model. Regression analyses were conducted 
with a variety of techniques to try to develop the most suitable IRI prediction model for 
the sensitivity analysis. The following briefly describes the techniques utilized in the 
analyses: 

Figure 8.35. Three-Dimensional Plot (IRI, JTSPACE, AGE) for JPCP 
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• The explanatory variables were tested to determine their significance in the 
overall model. Those that were not found to be significant were 
eliminated, even if they should logically affect IRI. 

• Interactions between the variables were evaluated. One interaction that 
was found to be significant was that between AGE and KSTATIC. 

• Tests for collinearity between the explanatory variables were conducted 
throughout the development of the model. Where such collinearity was 
found, one of the variables was eliminated from the model. 

• Observations of the previous two- and three-dimensional plots indicated 
that KSTATIC was not linearly related to IRI. The relationship was 
linearized by using 1/KSTATIC as the independent variable. 

With these techniques and regression analysis, the following model was developed for 
predicting the IRI of doweled JPCP sections with data from the GPS-3 sections: 

[ 
AGE l IRI = 105.9 + 159.1 * + 2.167 *JTSPACE 

KSTATIC 

- 7.127 *THICK + 13.49 *EDGESUP 
(8.8) 

where IRI = International Roughness Index, in./mi. 
AGE = age since construction, years 
THICK = concrete slab thickness, in. 
KSTATIC = mean backcalculated static k-value, psijin. 
EDGESUP = 1 = tied concrete shoulder; 0 = any other 

shoulder type 
JTSPACE = mean transverse joint spacing, ft 

Statistics: 
N = 21 sections 
R2 = 0.548 
RMSE = 19.06 (in./mi.) (30.6 cm/km) 

Figure 8.36 is a plot of the predicted versus actual IRI, and Figure 8.37 shows a plot of 
the residuals versus predicted IRI for this model. Although all variables recommended 
by the experts that were available in the database were evaluated, only a few were found 
to be significant. The results of a sensitivity analysis of the model showing the level of 
significance of the variables in the model is presented in Figure 8.38. JTSP ACE has the 
largest effect on IRI of doweled JPCP, followed closely by THICK, EDGESUP, AGE, 
and KSTATIC. The form of the model provides for a linear increase in IRI over time. 
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According to the model, as joint spacing increases, IRI increases. (This result may relate 
to the faulting model for doweled JPCP and JRCP, where increased joint spacing 
resulted in increased faulting.) As THICK increases, IRI decreases, perhaps indicating 
that thicker slabs develop fewer distresses such as transverse cracking that cause 
roughness. The indication that the presence of a tied concrete shoulder, EDGESUP, 
results in an increase in IRI is difficult to explain. 

AGE probably represents a combination of factors, including traffic loadings and the 
effect of cycles of climatic changes, such as joint opening/ closing, thermal curling cycles, 
and freeze-thaw cycles, on the pavement. AGE may also represent time-dependent 
settlements or heaves of the foundation. (No climatic variables were sufficiently strong 
enough to appear in the model.) Similar to the results for several of the distress types 
such as faulting and cracking, the model shows that a stiffer subgrade, as measured by 
the backcalculated KSTATIC, lowers the IRI. A three-dimensional plot showing the 
relationship between the predicted IRI, JTSPACE, and AGE is shown in Figure 8.39. 

This model for predicting the IRI of doweled JPCP includes several variables known to 
affect roughness from previous studies, and the senses of the effects (increase with 
variable magnitude increases or decreases the predicted distress) appear logical. There 
are, however, several variables that were expected to have an effect that are not 
represented in the model, including base type (untreated versus treated) and several 
climatic variables. With only an R2 of 0.55 and a RMSE of 19 in./mi. (30.6 cm/km), 
there is considerable room for improvement of this model. 

IRI of Non-Doweled JPCP 

The IRI for non-doweled JPCP is also calculated from the longitudinal profile and is 
reported in units of in./mi., m/km, or cmjkm. As in the previous case, the IRI for non
doweled JPCP has been shown to correlate with the subjective rating of highway users 
and thus to rehabilitation needs based on roughness. The development of a model for 
predicting the IRI of non-doweled JPCP, with the procedure outlined in Chapter 6, is 
described in this section. 

Database, Dependent Variables, and Explanatory Variables 

The data used for the development of an IRI model for non-doweled sections were 
obtained from GPS-3 (JPCP) sections. The IRI measured over the LTPP section was 
used as the dependent variable. 

The potential explanatory variables for the model were chosen as those identified by the 
experts to be significant, provided they were available in the LTPP Database. The initial 
explanatory variables that were considered are as follows: 
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THICK: 
PCCSTR: 
TYPAGG: 
PCCAGG: 
JTSEAL: 
JTSPACE: 
JTEFF: 
DRAIN: 

-------------------

slab thickness, in. 
indirect tensile strength of PCC (cores), psi 
type of coarse aggregate in concrete 
gradation of coarse aggregate in PCC 
joint seal type (several types are listed in the database) 
mean transverse joint spacing, ft 
joint load transfer efficiency 
drainage provisions (0 = no subdrainage; 1 = subdrainage) 

EDGESUP: edge support (1 = tied PCC shoulder; 0 = other shoulder types) 
BASE: base type (0 = untreated aggregate; 1 = treated aggregate) 

KSTATIC: static backcalculated k-value, psi/in. 
SUBGRADE:subgrade soil classification (0 = fine grained; 1 = coarse grained) 
PM200: subgrade soil passing #200 sieve, % 

CESAL: 
AGE: 

PRECIP: 
Ff: 
TRANGE: 

FI: 
DAYS90: 

accumulative 18,000 lb. (80kN) ESALs in traffic lane, millions 
time since construction, years 

average annual precipitation, in. 
mean number of annual air freeze-thaw cycles 
mean monthly temperature range (mean maximum daily 
temperature minus mean minimum daily temperature for each 
month averaged over the year), oF 
freeze index, degree-days (oF) below freezing 
number of days temperature greater than 90 oF (32 o C) 

There were little or no data for some of these variables, including PCCAGG and PM200, 
and these variables were, therefore, not considered in the model development. Review 
of the data for individual test sections indicated that data were missing that were 
expected to be significant to the predictions of IRI of nondoweled JPCP. Examples of 
the variables for which data were missing include IRI, JTSP ACE, CESAL, and 
TRANGE. Sections missing such data could not be used in the analysis. 

Data Review and Evaluation 

Various statistical properties of the data were determined and examined. These included 
the mean, minimum, maximum, and standard deviation of each dependent and 
independent variable to determine their distributions. All data were also assembled, 
sorted several ways, and studied to detect any abnormalities or obvious errors. 
Two-dimensional plots of all the variables were prepared and the bivariate relationships 
were examined. A correlation matrix that shows the strength of the relationship between 
all dependent and independent variables is presented in Table 8.8. 

188 



...... 
00 
\0 

THICK 

Fr 

BASE 

CESAL 

DAYS32 

EDGBSUP 

KSTATIC 

AGB 

PCCS'IR 

SUBGRADE 

TRANGB 

PRBCIP 

lRl 

Table 8.8. Correlation Matrix for Selected Variables for Non-Doweled JPCP IRI 

THICK Fr BASE CESAL DAYS32 EDGESUP KSTA11C AGB PCCS'IR SUBGRAD TRANGB PRBCIP lRl 
B 

1.000 0.000 0.020 0.587 -0.036 -0.004 0.252 0.400 0.492 -0.490 -0.008 -0.137 0.460 

-0.001 1.000 -0.401 -0.264 0.932 0.337 0.031 -0.300 -0.013 -0.018 0.878 -0.215 0.000 

0.020 -0.400 1.000 0.112 -0.558 0.000 0.370 0.260 0.196 0.041 -0.540 -0.338 -0.300 

0.587 -0.300 0.112 1.000 -0.281 -0.206 0.089 0.520 0.213 -0.162 -0.321 0.069 0.600 

-0.036 0.930 -0.558 -0.281 1.000 0.290 -0.186 -0.400 -0.050 0.046 0.931 -0.136 0.040 

-0.004 0.340 0.000 -0.206 0.290 1.000 0.441 -0.100 -0.011 -0.062 0.223 -0.102 -0.100 

0.252 0.030 0.370 0.089 -0.186 0.441 1.000 0.370 0.257 -0.151 -0.251 -0.127 0.000 

0.400 -0.300 0.263 0.523 -0.381 -0.136 0.372 1.000 -0.116 -0.217 -0.314 0.324 0.410 

0.492 0.000 0.196 0.213 -0.050 -0.011 0.257 -0.100 1.000 -0.196 0.000 -0.597 0.000 

-0.490 0.000 0.041 -0.162 0.046 -0.062 -0.151 -0.200 -0.196 1.000 0.023 0.014 -0.200 

-0.008 0.880 -0.540 -0.321 0.931 0.223 -0.251 -0.300 0.000 0.023 1.000 -0.159 0.000 

-0.137 -0.200 -0.338 0.069 -0.136 -0.102 -0.127 0.320 -0.597 0.014 -0.159 1.000 0.470 

0.455 0.000 -0.274 0.602 0.044 -0.111 -0.005 0.410 -0.052 -0.248 -0.025 0.474 1.000 



The effects of multiple explanatory variables on the IRI of non-doweled JPCP were also 
studied by using three-dimensional plots to display general trends in IRI with two 
selected explanatory variables. One example of such a plot is given in Figure 8.40, which 
shows the relationship between IRI, PRECIP, and CESAL. The unusual peaks and 
reverse slopes in the surface of this plot point to anomalies in the data. The data 
causing such abnormalities were identified and closely examined to determine if they 
required any special attention. Twenty-eight sections remained for the development of 
the model after the deletion of sections with missing and erroneous data. 

Model Building 

Model development started with an effort to determine the general functional form of 
IRI over time and traffic. Since time series data were not available to identify a typical 
functional form for change in IRI with time and traffic, the functional form of PSI, which 
is closely related to IRI, was used as a starting point. Two previous studies on in-service 
pavements show a rapid drop in PSI at the beginning of service and then a leveling off 
for a long period thereafter, which may then be followed by another rapid drop as severe 
deterioration sets in.9• 10 This functional form was assumed for IRI of non-doweled 
JPCP. 

Because IRI is not zero when AGE is zero (immediately after construction due to 
construction) because of construction variation, it was not possible to use the change in 
IRI as the dependent variable since the initial IRI was not measured for any of the 
sections. Therefore, the measured IRI was selected as the dependent variable for the 
model to be developed. 

Based on expert judgment and previous data observations, several explanatory variables 
were selected for testing. Regression analyses were conducted with a variety of 
techniques to try to develop the most appropriate IRI prediction model. The following 
briefly describes the techniques used in the analyses: 
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• The explanatory variables were tested to determine their significance in the 
overall model. Those that were not found to be significant were not 
considered further, even in cases where the variables were expected to be 
significant to the occurrence of IRI. 
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Figure 8.40. "Ibree-Dimensional Plot (IKI, PKECIP, CESAL) for Non-Doweled JPCP 

• The variables were examined to determine if there were any significant 
interactions between them. None were found to be significant. 

• Tests for collinearity between the explanatory variables were conducted 
throughout the model development phase. When such collinearity was 
found, one of the variables was eliminated from the model. 

• Observations of the previous two- and three-dimensional plots indicated 
that, generally, all the variables were linearly related to IRI. 

Through the application of these techniques, the following model was developed for 
predicting IRI for non-doweled JPCP sections with data from the GPS-3 pavement 
sections: 

IRI = 38.85 + 12.89 * CESAL + 0.2217 * Ff + 1.498 * PRECIP 

- 10.96 *BASE - 13.69 * SUBGRADE (8.9) 
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where 

Statistics: 
N 
R2 
RMSE 

IRI 
CESAL 

PRECIP 
Ff 
BASE 

= 
= 

= 
= 
= 

International Roughness Index, in./mi. 
cumulative 18,000 lb. (80kN) ESALs in traffic lane, 
millions 
mean annual precipitation, in. 
mean annual air freeze-thaw cycles 
1 = treated granular material (with asphalt oement) 
or lean concrete; 0 = if untreated granular material 

SUBGRADE= 1 = AASHTO classification (A-1, A-2, A-3 coarse 
grained); 0 = if AASHTO classification (A-4, A-5, A-
6, A-7 fine grained) 

= 28 sections 
= 0.644 
= 31.29 (in./mi.) (50 cm/km) 

Figure 8.41 shows a plot of the predicted versus actual IRI, and Figure 8.42 shows a plot 
of the residuals versus predicted IRI for this model. The results of a sensitivity analysis 
of the model are presented in Figure 8.43. The results indicate that CESAL has the 
largest effect on IRI of non-doweled JPCP, followed closely by PRECIP, Ff, 
SUBGRADE, and BASE. The form of the model indicates a linear increase in IRI with 
cumulative ESALs. 

Specifically, IRI increases linearly as CESAL increases. This result is related to the 
various distress types such as faulting and cracking that develop with increased traffic 
loadings. As PRECIP and Ff increase, the IRI increases, which indicates the significant 
effects a severe climate has on the deterioration of non-doweled JPCP. 

Base type (BASE) affects IRI in that treated bases result in a decrease in IRI in 
comparison to untreated bases. Subgrade soil classification (SUBGRADE) also affects 
IRI; coarse-grained soils result in a lower IRI over time than do fine-grained soils. 
These results support the common belief that better subgrades and bases result in 
smoother pavements. 

A three-dimensional plot that shows the relationship between the predicted IRI, PRECIP 
and CESAL, is shown in Figure 8.44. 

Several variables, such as joint spacing, that are known from previous studies to affect 
IRI do not appear in the model. The small number of sections (28) that were available 
for the development of the model also limited its adequacy. The R2 of 0.64 and RMSE 
of 31 in./mi. (50 cm/km) indicate that there is considerable room for improvement of 
this model. 
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IRI of JRCP 

The IRI of JRCP is also calculated from the longitudinal profile and is reported in units 
of in./mi., mfkm, or cmfkm. It also correlates well with the subjective rating of highway 
users and therefore is a good indicator of highway users' response to the pavement and 
of rehabilitation needs based on roughness. The general procedure outlined in Chapter 
6 for model development was utilized to obtain an IRI model for JRCP. 

Database, Dependent Variables, and Explanatory Variables 

Data from the GPS-4 (JRCP) sections of the LTPP Database were used to form the 
initial database for the development of this IRI model. The IRis measured over these 
sections were used to represent the dependent variable. 

The explanatory variables identified by the experts to be significant to the IRI of JRCP 
were selected for consideration, provided they were available in the LTPP Database. 
The initial explanatory variables that were considered are as follows: 

THICK: 
PCCSTR: 
TYPAGG: 
PCCAGG: 

JTEFF: 
JTSPACE: 
JTSEAL: 

slab thickness, in. 
indirect tensile strength of PCC (cores), psi 
type of coarse aggregate in concrete 
gradation of coarse aggregate in PCC 

joint load transfer efficiency 
mean transverse joint spacing, ft 
joint seal type (several types are listed in the database) 

PSTEEL: percentage of longitudinal reinforcement, percentage of area 
EDGESUP: edge support ( 1 = tied PCC shoulder; 0 = other shoulder types) 
DRAIN: subgrade provisions (0 = no subdrainage; 1 = if subdrainage) 

BASETYP: base type (0 = untreated aggregate; 1 = treated aggregate) 

KSTATIC: static backcalculated k-value, psifin. 
SUBGRADE:subgrade soil classification (0 = fine grained; 1 = coarse grained) 
PM200: subgrade soil passing #200 sieve, % 

CESAL: 
AGE: 

PRECIP: 
Ff: 
FI: 

cumulative 18,000 lb. (80kN) ESALs in·traffic lane, millions 
time since construction, years 

average annual precipitation, in. 
mean number of annual air freeze-thaw cycles 
freeze index, degree-days (oF) below freezing 
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DAYS90: 
TRANGE: 

number of days temperature greater than 90 oF 
mean monthly temperature range (mean maximum daily 
temperature minus mean minimum daily temperature for each 
month averaged over the year), oF 

There were little or no data for several of these variables, such as PCCAGG and PM200; 
therefore, these could not be considered in the development of the model. The data for 
each section were also reviewed to determine if any data expected to be significant were 
missing. Examples of such missing data for some of the sections include IRI, JTSP ACE, 
CESAL, and TRANGE. Sections with such missing data could not be used in the 
analysis. 

Data Review and Evaluation 

Evaluation of the data consisted of examination of the mean, minimum, maximum, and 
standard deviation of each dependent and independent variable to determine its 
distribution. The data were then assembled into matrix form, sorted several ways, and 
studied to determine any abnormalities or obviously erroneous data. The bivariate 
relationships between all the variables were also studied with two-dimensional plots. A 
correlation matrix obtained to show the strengths of the correlations among all the 
dependent and independent variables is presented in Table 8.9. 

Three-dimensional plots were used to visualize the general trends of IRI with several of 
the explanatory variables. Figure 8.45, which shows the relationship between IRI, 
PRECIPS, and AGE, is one example of these plots. With such plots, unusual peaks and 
reverse slopes that correspond to atypical data were investigated. Thirty-two test sections 
remained for the model development after sections with missing and erroneous data had 
been deleted. 

Model Building 

The first step in building the model was to identify the general functional form of the 
IRI of JRCP over time and traffic. Similar to the other IRI models for the other 
pavement types, the known functional form for PSI was used as a basis. In two previous 
studies on in service pavements, PSI was shown to drop somewhat rapidly at first and 
then level out for a long period, which may then be followed by another rapid drop as 
severe pavement deterioration occurs.9• 

10 

It is also known that when AGE is zero at construction, the IRI is not zero due to 
construction variation. The initial IRI was not measured for any of the sections and, 
therefore, could not be used in the model development. Based on all these 
considerations, the measured IRI on the pavement sections was selected as the 
dependent variable to use in the model. 
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Table 8.9. Correlation Matrix for Selected Variables for IRI for JRCP 

THICK Fr BASEI'YP CESAL DAYS32 DRAIN EDGESUP ri'SPACE KSTA11C AGE PCCSTR SUBGRAD TRANGE PRECJP IRI 
E 

THICK 1.000 -0.200 0.230 0.078 -0.221 0.009 0.118 0.318 0.138 0.06() 0.182 -0.133 -0320 0.155 0.670 

Fr -0.241 1.000 -0.423 -0.099 0.935 0.128 -0.106 -0.247 0.230 -0.300 -0.538 0.214 0.827 -0.799 -0.400 

BASEI'YP 0.230 -0.400 1.000 -0.126 -0.450 -0.149 0.318 0.029 -0.013 -0.200 0.150 -0.115 -0.401 0.316 0.320 

CESAL 0.078 0.000 -0.126 1.000 -0.048 -0.119 -0.194 0.334 -0.182 0.530 0.084 -0.084 -0.105 0.066 0.090 

DAYS32 -0.221 0.940 -0.450 -0.048 1.000 0.173 -0.256 -0.334 0.215 -0.300 -0.376 0.216 0.900 -0.869 -0.400 

DRAIN 0.009 0.130 -0.149 -0.119 0.173 1.000 0.180 -0.085 -0.082 -0.300 -0.114 -0.139 0.354 -0.166 0.000 

EDGES UP 0.118 -0.100 0.318 -0.194 -0.256 0.180 1.000 -0.017 -0.057 -0.300 -0.071 -0.129 -0.179 0.195 0.430 

ri'SPACE 0.318 -0.200 0.029 0.334 -0.334 -0.085 -0.017 1.000 -0.230 0.450 0.164 -0.206 -0.397 0366 0340 

KSTA1lC 0.138 0.230 -0.013 -0.182 0.215 -0.082 -0.057 -0.230 1.000 -0.200 -0.142 0.123 -0.052 -0.190 -0.300 

AGE 0.055 -0.300 -0.229 0.529 -0.321 -0.276 -0.264 0.445 -0.222 1.000 0.291 0.041 -0377 0.410 0.300 

PCCSTR 0.182 -0.500 0.150 0.084 -0.376 -0.114 -0.071 0.164 -0.142 0.290 1.000 -0.288 -0.378 0.363 0.170 

SUBGRADE -0.133 0.210 -0.115 -0.084 0.216 -0.139 -0.129 -0.206 0.123 0.040 -0.288 1.000 0.130 -0.076 -0.100 

TRANGE -0.320 0.830 -0.401 -0.105 0.900 0.354 -0.179 -0.397 -0.052 -0.400 -0.378 0.130 1.000 -0.852 -0.500 

PRECJP 0.155 -0.800 0.316 0.066 -0.869 -0.166 0.195 0.366 -0.190 0.410 0.363 -0.076 -0.852 1.000 0.480 

IRI 0.666 -0.400 0.319 0.094 -0.440 -0.063 0.425 0.340 -0.256 0.300 0.172 -0.126 -0.453 0.480 1.000 
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Figure 8.45. Three-Dimensional Plot (IRI, PRECIP, AGE) for JRCP 
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Several explanatory variables were chosen for testing based on the results of expert 
judgment and previous data observations. Regression analyses were then conducted with 
a variety of techniques to relate the explanatory variables to the predicted IRI. The 
following briefly describe the techniques utilized in the analyses: 

• All the explanatory variables were tested to determine their significance in 
the overall model. Those that were not significant were deleted. 

• Several interactions between variables were evaluated, but none were 
found to be significant. 

• Tests for collinearity between the explanatory variables were conducted 
throughout the model development phase. When such collinearity was 
found, one of the variables was eliminated from the model. 

• Observations of the previous two- and three-dimensional plots indicated 
that KSTATIC was not linearly related to IRI. The relationship was 
linearized by using 1/KSTATIC as the independent variable. 

Based on using these techniques and the data from the GPS-4 sections, the following 
model was developed for predicting IRI for JRCP sections: 
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IRI = -141 + 0.849 * AGE + 0.347 * PRECIP + 1390 

where 

Statistics: 
N 
R2 
RMSE 

* [ 1 
] + 21.2 * THICK + 15.1 * EDGESUP 

KSTATIC 
(8.10) 

IRI 
AGE 
THICK 
KSTATIC 
PRECIP 
EDGES UP 

= 
= 
= 

= 
= 
= 
= 
= 
= 

International Roughness Index, in./mi 
age since construction, years 
concrete slab thickness, in. 
mean backcalculated static k-value, psi/in. 
mean annual precipitation, in. 
1 = tied concrete shoulder; 0 = any other shoulder 
type 

32 sections 
0.78 
9.86 (in./mi.) (15.6 cm/km) 

A plot of the predicted IRI based on this model versus actual IRI is shown in Figure 
8.46. Figure 8.47 shows a plot of the residuals versus predicted IRI. The results of a 
sensitivity analysis of the model are shown in Figure 8.48. THICK has the largest effect 
on IRI of JRCP, followed closely by KSTATIC, EDGESUP, AGE, and PRECIP. The 
form of the model shows a linear increase in IRI over time. 

The specific trends shown by the model include an increase in IRI when slab thickness 
increases. While this may seem illogical, one possible explanation may be that the 
thicker slabs in the GPS-4 database may have been constructed rougher originally. 
According to the model, the presence of a tied concrete shoulder increases the IRI 
slightly, which may also be related to initial construction. 

AGE probably represents a combination of factors, including traffic loadings and the 
effect on pavements of cycles of climatic changes such as joint opening/ closing, thermal 
curling cycles, and freeze-thaw cycles. IRI is shown to increase with time, or AGE. One 
climatic variable, PRECIP, also showed a sufficient effect to be included in the model. 
As PRECIP increases, IRI increases. 

The model indicated that the stiffer the subgrade, as measured by the backcalculated 
KSTATIC, the lower the IRI. This result correlates with models developed for several 
key distress types that showed that stiffer subgrades resulted in decreased faulting and 
cracking. A three-dimensional plot that shows the relationship between the predicted 
IRI, PRECIP, and AGE is presented in Figure 8.49. 
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Figure 8.48. Sensitivity Analysis for IRI Model for JRCP 
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Figure 8.49. '111ree-Dilnensional Plot of IRI Model for JRCP 
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The model developed for predicting the IRI of JRCP includes several variables that are 
known from previous studies, to affect roughness and the senses of these effects (increase 
in variables increases or decreases IRI) were consistent with results from previous 
studies. However, there are several other variables, including base type (untreated 
versus treated) and climatic variables, missing from the model that were expected to 
have an effect on IRI. 

IRI ofCRCP 

The IRI for CRCP is calculated from the longitudinal profile and is reported in units of 
in./mi., m/km, or cm/km. The IRI for CRCP has also been shown to correlate well with 
the subjective rating of highway users and is a good indicator of highway users' response 
to the pavement and, consequently, of rehabilitation needs based on roughness. The 
general procedure outlined in Chapter 6 for model development was used to obtain an 
IRI model for CRCP. 

Database, Dependent Variables, and Explanatory Variables 

Data for the GPS-5 (CRCP) sections in the LTPP Database were used to provide the 
initial database. The IRis measured over the sections were available to represent the 
dependent variable. 

The potential explanatory variables that were selected for consideration in the model 
were those identified by the experts to be significant, provided they were available in the 
LTPP Database. The initial explanatory variables that were considered are as follows: 
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THICK: 
PCCSTR: 
TYPAGG: 
PCCAGG: 

JTEFF: 
PSTEEL: 
EDGES UP: 
JTSEAL: 
DRAIN: 

slab thickness, in. 
indirect tensile strength of PCC (cores), psi 
type of coarse aggregate in concrete 
gradation of coarse aggregate in PCC 

joint load transfer efficiency 
percentage of longitudinal reinforcement, % area 
edge support (1 = tied PCC shoulder; 0 = other shoulder types) 
joint seal type (several types are listed in the database) 
subdrainage provisions (0 = no subdrainage; 1 = if subdrainage) 

BASETYP: base type (0 = untreated aggregate; 1 = treated aggregate) 

KSTATIC: static backcalculated k-value, psi/in. 
SUBGRADE:subgrade soil classification (0 = fine grained; 1 = coarse grained) 
PM200: subgrade soil passing #200 sieve, % 

AGE: time since construction, years 



CESAL: 

PRECIP: 
FI': 
FI: 

DAYS90: 
TRANGE: 

cumulative 18,000 lb. (80kN) ESALs in traffic lane, millions 

average annual precipitation, in. 
mean number of annual air freeze-thaw cycles 
freeze index, degree-days (oF) below freezing 

number of days temperature greater than 90 oF 
mean monthly temperature range (mean maximum daily 
temperature minus mean minimum daily temperature for each 
month averaged over the year), oF 

Among these variables, were several for which little or no data were available in the 
database, which made it impossible for them to be considered in the model development. 
These included PCCAGG and PM200. Data for test sections in the initial database were 
also reviewed to determine if any sections had data missing that were expected to be 
specific. Those test sections with such data missing could not be included in the model 
development. Examples of such missing data included IRI, PSTEEL, CESAL, and 
TRANG E. 

Data Review and Evaluation 

Evaluation of the data in the database included examination of the distribution of each 
dependent and independent variable. This included an examination of the values of 
various statistics for the variables, including the mean, minimum, maximum, and standard 
deviation. The data were also assembled into matrix form, sorted several ways, and 
studied to identify any abnormalities or obvious errors. Two-dimensional plots of all 
variables were also used to examine the bivariate relationships between them. A 
correlation matrix that shows the strength of the relationship between all the dependent 
and independent variables is presented in Table 8.10. 

Several three-dimensional plots were generated to help visualize the general trends 
between IRI and various combinations of the explanatory variables. An example of a 
three-dimensional plot that shows the relationship between IRI, PSTEEL, and AGE is 
presented in Figure 8.50. From such plots, the data causing unusual peaks and reverse 
slopes were identified for further examination. Forty-two sections remained for the 
model development after the sections identified to have missing and/ or erroneous data 
were deleted. 
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Table 8.10. Conelation Matrix for Selected Variables for IRI for CRCP 

TIIICK Ff BASI!TYP CESAL DAYS3Z DRAIN I!'DGI!SUP KSTATIC PSTEI!L AGE PCCSTR SUBGRADE TRANGE WEIDAYS WIDI!NED PRECIP IRI 

TIIICK 1.000 0.000 0.089 0.141 -0.068 0.393 -0.078 -0.133 -0.153 -0.700 0.620 0.122 -0.249 0.383 0.718 -0.052 -0.300 

Ff -0.020 1.000 -0.237 0.178 0.918 0.129 -0.216 -0.281 0.356 0.020 0.088 -0.166 0.695 -0.059 -0.085 -0.458 0.000 

BASETYP 0.089 -0.200 1.000 0.144 -0.249 0.274 0.105 0.238 -0.164 -0.200 0.060 -0.248 -0.136 -0.259 0.014 -0.185 0.380 

CESAL 0.141 0.180 0.144 1.000 0.145 -0.045 -0.171 -0.127 -0.117 0.190 -0.069 -0.063 -0.062 0.242 0.158 -0.001 0.230 

DAYS.U -0.070 0.920 -0.249 0.145 1.000 0.141 -0.276 -0.270 0.489 0.140 0.095 -0.127 0.859 -0.081 -0.189 -0.464 -0.100 

DRAIN 0.393 0.130 0.274 -0.045 0.141 1.000 -0.104 -0.143 0.096 -0.500 0.309 -0.074 -0.024 0.354 0.469 -0.010 -0.200 

I!DGI!SUP -0.080 -0.200 0.105 -0.171 -0.276 -0.104 1.000 0.107 0.008 0.000 -0.082 -0.303 -0.132 -0.197 -0.196 0.184 0.200 

KSTATIC -0.130 -0.300 0.238 -0.127 -0.270 -0.143 0.107 1.000 -0.007 -0.100 -0.289 -0.039 -0.076 -0.225 -0.072 -0.058 0.120 

PSTEI!L -0.150 0.360 -0.164 -0.117 0.489 0.096 0.008 -0.007 1.000 0.070 -0.052 -0.259 0.541 -0.141 -0.404 -0.148 -0.400 

AGE -0.650 0.020 -0.231 0.187 0.142 -0.463 0.001 -0.127 0.071 1.000 -0.481 -0.217 0.239 -0.141 -0.525 0.119 0.210 

PCCSTR 0.620 0.090 0.060 -0.069 0.095 0.309 -0.082 -0.289 -0.052 -0.500 1.000 0.025 -0.056 0.213 0.473 -0.004 -0.300 

SUBGRADE 0.122 -0.200 -0.248 -0.063 -0.127 -0.074 -0.303 -0.039 -0.259 -0.200 0.025 1.000 -0.257 0.161 0.277 0.055 -0.300 

TRANGE -0.250 0.700 -0.136 -0.062 0.859 -0.024 -0.132 -0.076 0.541 0.240 -0.056 -0.257 1.000 -0.393 -0.449 -0.575 0.000 

WEIDAYS 0.383 0.000 -0.259 0.242 -0.081 0.354 -0.197 -0.225 -0.141 -0.100 0.213 0.161 -0393 1.000 0.479 0.577 -0.200 

WIDENI!D 0.718 0.000 0.014 0.158 -0.189 0.469 -0.196 -0.072 -0.404 -0.500 0.473 0.277 -0.449 0.479 1.000 0.078 -0.200 

PRECIP -0.050 -0.500 -0.185 -0.001 -0.464 -0.010 0.184 -0.058 -0.148 0.120 -0.004 0.055 -0.575 0.577 0.078 1.000 0.000 

IRI -0.300 0.000 0.378 0.229 -0.134 -0.157 0.199 0.121 -0.418 0.210 -0.250 -0.311 0.006 -0.207 -0.238 -0.062 1.000 



Model Building 

As with the other models, the first step in model building was the identification of the 
general functional form of IRI with time and traffic. Since IRI and PSI are correlated 
and previous studies9

• 
10 on in-service pavements have shown the functional form of PSI 

with time and traffic, this equation form for PSI was used as the basis for this model.9
• 

10 

The previous studies indicated that IRI drops rapidly at first, then levels off for a long 
period, and may then drop rapidly again as severe deterioration occurs. 

That IRI is not zero when AGE is zero at construction is also true for CRCP. Since the 
initial IRI was not measured for any of the sections, it was not possible to utilize the 
change in IRI as the dependent variable. Based on these considerations, the measured 
IRI on the pavement sections was selected as the dependent variable to use in the model 
development. 

From the list of potential explanatory variables selected by the experts to be significant 
and the previous data observations, several explanatory variables were chosen for testing. 
Regression analyses were conducted, with a variety of techniques to attempt to develop 
the most suitable model for IRI prediction for CRCP. The following briefly describe the 
techniques utilized in the analyses: 

• The explanatory variables were tested to determine their significance in the 
overall models, and those that were determined not to be significant were 
eliminated from consideration. 

• The interactions between the variables were evaluated, but none were 
found that could be considered in the model to be developed. 

• Tests for collinearity between the explanatory variables were conducted 
throughout the development phase. When such collinearity was found 
between a pair of variables, one of the variables was eliminated from 
consideration. 

• The two- and three-dimensional plots were studied, and these studies 
indicated that all variables to be considered in the model were linearly 
related to IRI and did not need to be transformed. 

Based on these principles, the following model was developed for predicting the of 
CRCP with the data from the GPS-5 test sections in the LTPP Database: 
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where 

... -··········································· 

Figure 8.50 'lbree-Dimensional Plot (IRI, PSTEEL, AGE) for CRCP 

IRI = 262 + 1.47 *CESAL - 2.94 *THICK - 232.3 *PSTEEL 

- 29.8 *WIDENED - 16.8 * SUBGRADE (8.11) 

IRI = 
CESAL = 

PSTEEL = 
THICK = 
WIDENED = 

SUBGRADE= 

International Roughness Index, in.fmi. 
cumulative 18,000 lb. (80kN) ESALs in traffic lane, 
millions 
percentage of steel (longitudinal reinforcement), % 
concrete slab thickness, in. 
1 = widened traffic lane; 0 = normal width traffic 
lane 
1 = AASHTO classification is A-1, A-2, or A-3 (i.e., 
coarse grained); 0 = if AASHTO classification is A-4, 
A-5, A-6, or A-7 (i.e., fine grained) 

Statistics: 
N = 42 sections 
R2 = 0.546 
RMSE = 17.19 (in./mi) (27 cm/km) 
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Figure 8.51 shows a plot of the predicted versus actual IRI, and Figure 8.52 shows a plot 
of the residuals versus predicted IRI. The results of a sensitivity analysis of the model is 
shown in Figure 8.53. PSTEEL has by far the largest effect on IRI, followed by 
SUBGRADE, WIDENED, CESAL, and THICK The form of the model provides for a 
linear increase in IRI with time. No climatic variables were sufficiently significant to be 
included in the model. 

According to the model, as the percentage of reinforcement increases, the IRI decreases 
considerably. Increased reinforcement holds cracks tighter which reduces the number of 
punchouts. The number of punchouts has been strongly related to the percentage of 
reinforcement in other field studies.9• 

10 A coarse-grained subgrade soil type 
(SUBGRADE} results in a lower IRI in comparison to a fine-grained soil, and a 
widened lane reduces IRI. Increasing traffic ( CESAL} results in an increase in IRI, and 
thicker slabs decrease IRI. A three-dimensional plot that shows the relationship between 
predicted IRI, CESAL, and PSTEEL is presented in Figure 8.54. All of the effects and 
trends indicated by the model are correct in sense (increases in explanatory variable 
increases or decreases the dependent variable). 

The IRI model developed for CRCP includes several variables known to affect roughness 
from previous studies. However, there are additional variables that are known to affect 
IRI that are missing from the model. Examples include base type (untreated versus 
treated) and several climatic variables. With an R 2 of only 0.55 and a RMSE of 17 
in.fmi. (27 cm/km), the model has considerable room for improvement. 

Summary of Sensitivity Analysis Results for PCC 
Pavements 

Table 8.11lists the rankings for individual explanatory (independent) variables, in terms 
of relative sensitivities, for each of the ten separate models and sensitivity analyses. One 
column indicates the number of models for which a specific explanatory variable was 
found to be significant. The far right column gives average rankings, with a rank of 8 
arbitrarily assigned for cases when the variable was not found to be significant. The 
numbers of explanatory variables ranged from 2 to 6 per model, with a mean of 4.1, so 
the assigned priority had to be greater than 6. As there could be other relatively 
nonsignificant variables having stronger impacts on the occurrence of distress, the value 
of 8 appeared logical. 

The independent variables are listed below in order of combined rankings. One list is 
based on average rankings, and one is based on number of models in which the variable 
was included (in the case of a tie, the other ranking basis was used to order the two 
variables): 
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Figure 8.51. Predicted vs. Actual IRI for CRCP 
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Ranking 
by Avera~e 

Age 
CESALs 
Slab Thickness 
Static k-Value 
Precipitation 
Joint Spacing 
Percentage of Steel 
Edge Support (Tied Shoulders) 
Annual Freeze-Thaw Cycles 
Type of Subgrade 
PCC Flexural Strength 
Monthly Temperature Range 
Widened Traffic Lane 
Freeze Index 
Dowel Diameter 
Subdrainage 
Type of Base 

Ranking by Number 
of Models Found Si~ficant 

Age 
CESALs 
Slab Thickness 
Static k-Value 
Precipitation 
Edge Support (Tied Shoulders) 
Joint Spacing 
Percentage of Steel 
Annual Freeze-Thaw Cycles 
Type of Subgrade 
PCC Flexural Strength 
Monthly Temperature Range 
Widened Traffic Lane 
Freeze Index 
Dowel Diameter 
Subdrainage 
Type of Base 

As can be seen, the rankings are almost identical for both methods. However, this set of 
rankings does not tell the whole story, because the rankings are very dependent on type 
of pavement and type of distress. Conclusions drawn from the sensitivity analyses (and 
partially from past experience) are presented below: 

Related Comments and Observations for JPCP 
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• The use of sufficiently sized dowels for the traffic loadings (the larger the 
dowel diameter, the less faulting) will ensure that faulting will not become 
significant and cause severe roughness. Dowel use is particularly important 
for heavy traffic in cold and wet climates. Thicker slabs by themselves do 
not reduce faulting significantly. Longitudinal subdrainage will help reduce 
faulting of non-doweled joints. A tied concrete shoulder will reduce 
doweled joint faulting. 

• Increased slab thickness has a strong effect on reducing transverse slab 
cracking and providing a smoother JPCP (lower IRI) over time. 

• Provision of increased subgrade support, as indicated by the backcalculated 
k-value, results in a lower IRI and a smoother pavement. Increased 
support over an existing soft subgrade would likely require either treatment 
of the soil or a thick granular layer over the subgrade. 



Table 8.11. Significance Rankings for Explanatory Variables, by Distress Type and 
Pavement Type, for PCC Pavements 

Explanatory 
Variables 

CESALS 

Joint Spacing 

Age 

Static k-Value 

Dowel Diameter 

Edge Support 

Precipitation 

Freeze Index 

Longitudinal 
Subdrainage 

Slab Thickness 

PCC Flexural 
Strength 

Percent Steel 

Annual Freeze
Thaw Cycles 

Monthly Temp. 
Range 

Type of Subgrade 
(Granular or 
Clay) 

Type of Base 
(Treated or 
Untreated) 

Traffic Lane 
(Widened or Not) 

1 1 3 

2 

3 2 

4 1 

5 

6 

3 4 

4 

5 

1 

2 

2 

Note: Empty cells are considered as 8 for averaging 

bl) .a 
7a 
~ 
.s 
0 ..... 

2 

1 

1 

1 4 4 

5 2 

3 3 

2 5 

2 1 

3 

2 

4 

5 

4 

5 

1 

2 

3 

0 z 

5 5.0 

2 6.7 

6 4.8 

4 5.9 

1 7.7 

3 6.8 

4 6.2 

1 7.6 

1 7.7 

4 5.7 

1 7.4 

2 6.7 

2 6.8 

1 7.4 

2 7.0 

1 7.7 

1 7.5 
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• Use of shorter slabs for JPCP will reduce the amount of joint faulting and 
transverse cracking and will result in a smoother pavement (lower IRI) 
over time. 

• Specification of durable concrete in freeze climates is desirable, so that 
freezing and thawing and other climatic factors do not result in significant 
joint spalling. 

Related Comments and Observations for JRCP 

• The use of sufficiently sized dowels for the traffic loadings (the larger the 
dowel diameter the less faulting) will ensure that faulting will not become 
significant and cause severe roughness. A tied concrete shoulder and 
shorter joint spacing also help to reduce joint faulting. 

• The use of an increased percentage of longitudinal reinforcement will help 
control the deterioration of transverse cracks. 

• Increased subgrade support will result in fewer deteriorated transverse 
cracks and a smoother pavement (lower IRI). Increased support over an 
existing soft subgrade would likely require either treatment of the soil or a 
thick granular layer over the subgrade. 

• Shorter JRCP slabs will reduce the amount of joint faulting. 

Related Comments and Observations for CRCP 
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• Increases in the percentage of longitudinal reinforcement will provide a 
smoother CRCP (lower IRI) over time. The increased percentage of steel 
reduces the amount of punchouts and the deterioration of transverse 
cracks. 

• Increased subgrade support will result in fewer deteriorated transverse 
cracks and a lower IRI (smoother pavement). Increased support over an 
existing soft subgrade would likely require either treatment of the soil or a 
thick granular layer over the subgrade. 

• A widened traffic lane will provide a smoother CRCP (lower IRI) over 
time. 

• Increased slab thickness will result in somewhat smoother CRCP (lower 
IRI) over time. This is probably due to fewer_punchouts as a result of the 
thicker slab. 



9 

General Discussions of Results From Sensitivity Analyses 

The constraints imposed on the results that could be expected from these sensitivity 
analyses have been previously discussed in considerable detail in the Introduction and 
other locations throughout the previous chapters. While those planning for the 
sensitivity analyses knew that the timing of these first analyses critically reduced the 
utility of the database, it was hoped that the distribution of ages would partially offset 
the lack of adequate time sequence data and help to explain the curvatures in the 
relationships. This hope proved to be at least partially satisfied, even though few of the 
equations derived can be claimed to be highly reliable. 

A general discussion of the results in the sensitivity analyses is presented below. 

Limitations of Sensitivity Analyses Imposed by Database 
Limitations 

Because there is a substantial discussion in Chapter 1 under "Analytical limitations 
Resulting From Data Shortcomings," those limitations previously discussed are only listed 
below: 

• The values of cumulative equivalent single axle loads (ESALs) were simply 
estimates from State Highway Agencies (SHAs), and are not believed to be 
very reliable. 

• Initial roughness in terms of the International Roughness Index (IRI) had 
to be estimated for hot mix asphalt concrete (HMAC) pavements. This 
was done by using the estimated values of initial Pavement Serviceability 
Index (PSI) in an equation, developed by the World Bank.8 

213 



• There was generally only one measurement of each distress for each test 
section, plus an initial estimated or assumed value. For all distresses 
except roughness, it could be assumed that the distress was zero at the time 
the pavement was opened to traffic. Two values are generally not enough 
to explain the curvature in the relationships; however, as mentioned 
previously, we also had the advantage of the ages of the pavements at the 
times the distresses were observed being distributed reasonably over twenty 
years (see Figure 1.3 ). 

• At the time the data arrived, important inventory data were missing for a 
number of test sections. When reasonable values could not be inferred, 
these test sections had to be omitted from the analyses. 

• There were not enough test sections displaying some types of distress to 
support effective model development. In general, only data from test 
sections displaying a distress of interest were included in the analysis 
database for that distress type. 

• There were not enough overlaid pavements for which the condition prior to 
overlay was known to support model building and sensitivity analyses. 
Consequently, these data were only used to evaluate existing design 
procedures (see SHRP-P-394, Early Analyses of LTPP General Pavement 
Studies Data. Evaluation of the AASHTO Desicn Equations and 
Recommended Improvements). 

• It was intended that current knowledge be integrated into the process by 
use of mechanistic clusters of variables in the regression equations, but this 
plan was thwarted by a lack of layer stiffness data, which was required for 
the development of the mechanistic clusters. 

• Test sections had not been found for all the cells within the sampling 
templates, which tends to introduce biases. 

It is probable that any missing inventory data that can be obtained is now in the 
database, because Quality Assurance/Quality Control procedures have been developed 
and applied to identify such deficiencies, and the regional offices have been instructed to 
obtain and enter the data wherever possible. However, the test sections that could not 
be used because of missing data are identified in SHRP-P-684, Early Analyses of 
General Pavement Studies Data. Data Processin~ and Evaluation of this report; efforts 
may be made to obtain the missing data, or perhaps decisions can be made to eliminate 
the test sections if it is believed that this lack of data will unacceptably limit the sections 
use in future analyses. 

Some of the mising data are easily determined, such as joint spacing for jointed concrete 
pavement (JCP) and other data that can simply be measured in the field. For those test 
sections missing deflection data, these data are now available for all or virtually all the 
test sections. 
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The research staff was able to deal with some of the problems of missing inventory data. 
For instance, tables from the Asphalt Institute13 were used to approximate asphalt 
viscosity when the asphalt grade was known. In a few cases where data on base densities 
were not available, it was assumed that they were compacted at 95% of modified 
American Association of State Highway and Transportation Officials (AASHTO) 
compaction. 

It became obvious early in the development of the predictive equations that adequate 
equations could generally not be developed on the basis of the overall inference space 
(the U.S. plus part of Canada). For most of the distress types studied for HMAC 
pavements, there were sufficient test sections to allow development of limited regional 
models. These were typically more accurate than the models based on all the data. 
Unfortunately, there were really not enough portland cement concrete (PCC) pavement 
test sections that had both sufficient data and the distress types of interest to allow 
development of regional models. 

For HMAC pavements, only 14 to 27% of the test sections in the analysis databases 
rested on clay subgrade (see Table 9.1), so there is a bias toward pavements on granular 
sub grades. Studies should be initiated for the individual analysis databases to study 
distributions of test sections within the sampling templates that could be used for the 
separate analyses (pavement type and distress type combinations). Entries could be 
made on the sampling template factorial of interest to indicate for each cell whether its 
test section(s) were on clay or on granular subgrades. Such a study would display the 
degree of the bias and identify cells where test sections with clay subgrades should be 
sought. Such plots would display other biases as well. 

Table 9.1. HMAC Pavement Test Sections With Clay Subgrade 
Within Databases Used for the Analyses 

Distress Numbers of Test Sections %With 
Type of Pavement Type 

Total Clay Subgrade 
Clay Subgrade 

HMACOver Rutting 152 33 22 
Granular Base 

Change in IRI 108 26 24 

Full-Depth HMAC Rutting 44 8 18 

Change in IRI 33 6 18 

HMACOver Transverse 118 17 14 
Granular Base and Cracking 
Full-Depth HMAC 

HMACOver Rutting 49 10 20 
Portland Cement-
Treated Base Change in IRI 37 10 27 

Transverse Cracking 35 8 23 
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In summary, a number of the data limitations experienced during this early data analysis 
will not seriously constrain future analyses. As time passes, time sequence data on the 
occurrence and severity levels of distress will accumulate, substantial traffic monitoring 
will tend to improve the estimates for ESALs, and the availability of data for the Specific 
Pavement Studies (SPS) projects will enhance the databases. It is also hoped that some 
additional General Pavement Studies (GPS) test sections will be selected and brought 
into the studies to reduce biases in the databases. Unfortunately, some test sections may 
continue to be unusable when significant inventory data are missing. 

Reliability of Results 

Tables 9.2 through 9.6 have been prepared to provide the pertinent statistical values for 
the various predictive equations developed for use in the sensitivity analyses. For the 
data available, the development of these equations was limited to statistical linear 
regressions for the sensitivity analyses. It is almost certain that better models could have 
been developed if the research team was free to use nonlinear regression techniques. 

It can be seen by reviewing the several tables that the coefficient of determination (R 2) 

varied for flexible pavements from 0.33 to 0.75 for the entire data set. Those for rutting 
varied from 0.41 to 0.54. Those for AIRI range from 0.62 to 0.75, and the one for 
transverse cracking was the lowest at 0.33. As discussed previously, these equations were 
not considered sufficiently reliable, so data sets were developed for the four individual 
environmental zones and were regressed separately. 

The R2's for the regional models for rutting varied from 0.55 to 0.81. The R2's for AIRI 
varied from 0.81 to 0.93, and those for transverse cracking varied from 0.72 to 0.83. 
While a number of these models appear very promising, it must be remembered that the 
RMSE shown is for the common log of the distress. As explained early in Chapter 7, the 
confidence interval for these equations is quite broad. Consequently, the research team 
has not recommended that these early equations be used in design procedures or 
pavement management systems. However, it may be worthwhile to use them to check 
pavement structure designs obtained by other means and to use them in pavement 
management systems as placeholders when more reliable predictive equations are not 
available. 

The statistics for the PCC pavement predictive equations appear in Table 9.6. Because 
the number of test sections with usable data was considerably less for the PCC 
pavements than for the HMAC pavements, the research staff did not have the luxury of 
developing regional models, but instead had to try to explain the variations in distress 
caused by environmental variables, and their interactions with other variables, across the 
entire United States and part of Canada. Consequently, the R2's are somewhat lower for 
these models, varying from 0.34 to 0.78. Although these models cannot be claimed to be 
very reliable, they may also be useful for checking designs developed by other means and 
serve as placeholders in pavement management systems. 
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Distress Type 

Rutting 

t.IRI 

------

Table 9.2. Statistics for Predictive Equations for Rutting and AIRI, Developed 
for Sensitivity Analyses for HMAC Pavements Over Granular Base 

Entire Data Set Wet-No Freeze Wet-Freeze Dry-No Freeze 

N R2 RMSE N R2 RMSE N R2 RMSE N R2 RMSE 

152 0.41 0.18 41 0.66 0.18 41 0.68 0.19 36 0.70 0.16 

108 0.62 0.34 32 0.81 0.31 35 0.84 0.27 27 0.93 0.18 

Dry-Freeze 

N R2 

34 0.81 

14 0.92 

Notes: N = No. of test sections in data set; R2 (coefficient of determination) is the adjusted R2
; RMSE (root mean 

square error) is in log10 (Distress). 

Distress Type 

Rutting 

IIIRI 

Table 9.3. Statistics for Predictive Equations for Rutting and AIRI, Developed 
for Sensitivity Analyses for Full-Depth HMAC Pavements 

Entire Data Set Wet Dry No Freeze 

N R2 RMSE N R2 RMSE N R2 RMSE N R2 RMSE 

42 0.54 0.20 27 0.73 0.17 13 0.79 0.10 22 0.55 0.14 

33 0.71 0.39 

Freeze 

N R2 

18 0.78 

Notes: N = No. of test sections in data set, R2(coefficient of determination) is the adjusted R2
; RMSE (root mean 

square error) is in log10 (distress). 

RMSE 

0.11 

0.21 

RMSE 

0.15 



N 
~ 
00 

I Distress Types 

Table 9.4. Statistics for Predictive Equations for Rutting and AIRI, Developed 
for Sensitivity Analyses of HMAC Over Portland Cement-Treated Base 

I 
Entire Data Base 

N I R2 I RMSE 

l:iling I 
49 

I 
051 

I 
0.21 

37 0.75 0.33 

Notes: N = No. of test sections in data set; R2 (coefficient of determination) is the adjusted R2
; RMSE (root mean 

square error) is in log10 (distress). 

Table 9.5. Statistics for Predictive Equations for Transverse Cracking, Developed for Sensitivity Analyses 
of HMAC Over Granular Base and Full-Depth HMAC Pavements (Combined Data Set) 

Entire Data Set Wet-No Freeze Wet-Freeze Dry-No Freeze Dry-Freeze 
Distress Type 

N R2 RMSE N R2 RMSE N R2 RMSE N R2 RMSE N R2 

Transverse Cracking 118 0.33 0.53 17 0.75 0.52 44 0.83 0.30 23 0.83 0.35 34 0.72 

Notes: N = No. of test sections in data set; R2 (coefficient of determination) is the adjusted R2
; RMSE (root mean 

square error) is in Log10 (Distress). 

RMSE 

0.44 

I 

I 
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Table 9.6. Statistics for Predictive Equations for PCC Pavement 
Distress, Developed for Sensitivity Analyses 

Pavement Type 

JPCP &JRCP 
With Dowels 

JPCP &JRCP 
Without Dowels 

JPCP 

JRCP 

JPCP 

JRCP 

JPCP With Dowels 

JPCP Without 
Dowels 

JRCP Without 
Dowels 

CRCP 

Note: N = 

N/A = 

Distress Type N R2 RMSE 

Joint Faulting 59 0.53 0.028 

Joint Faulting 25 0.55 0.047 

Transverse Crack N/A N/A N/A 
Deterioration 

Transverse Crack 27 0.48 20.8 
Deterioration 

Joint Spalling 56 0.34 11.0 

Joint Spalling 25 0.64 16.7 

IRI 21 0.55 19.1 

IRI 28 0.64 31.3 

IRI 32 0.78 9.9 

IRI 42 0.55 17.2 

No. of test sections in data set, R2 is not the adjusted R2, and 
RMSE = root mean square error. 
Not Applicable 

Actions Recommended to Repair Limitations in the LTPP 
GPS Database 

Because of the late arrival of the data, not all the planned studies could be accomplished 
within the time available. In addition, hindsight has produced some ideas for improving 
the data for future analyses. The following recommendations propose subsequent work 
to improve the database: 

• Carefully review the data deficiencies for those test sections that could not 
be used for these analyses. H the data have since been obtained or can be 
obtained, eliminate the deficiency so that the data for these test sections 
can be used in future analyses. 
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• Evaluate those test sections for which apparently critical data cannot be 
obtained to see if the available data are sufficient for any anticipated 
research. If a test section does not have the critical data, consider 
eliminating it from the studies. 

• In recognition of the fact that the databases of primary interest are those 
that can be used for specific analyses, separate all available data into data 
sets by pavement types and environmental zones. These data sets can then 
be used for more detailed studies in terms of specific data required for 
specific analyses; e.g., those that exhibit specific distresses or those with 
mix designs with various characteristics. Observe the distributions of the 
significant data elements within these data sets to determine if the data 
sets are adequate for the desired analyses. SHRP-P-684, Early Analyses of 
General Pavement Studies Data. Data Processin~ and Evaluation of this 
report contains numerous plots that indicate distributions for specific GPS 
experiments and environmental zones. While these aren't the exact data 
sets that were used, they will be useful to a study such as that proposed 
here. 

• Use plots similar to the sampling template factorial plots for the various 
data sets so that the gaps in the factorials can be studied to decide where 
additional test sections are needed. 

• Consider the test sections that have been built, and to the extent possible 
those that will be built, for the SPS, and add them to the factorials for the 
GPS before seeking to fill gaps in the GPS. The data for the SPS should 
be much more complete, because they will not depend on old SHAs 
records, and a more detailed materials testing program will be applied. 

To summarize, it is recommended that the period between this data analysis and the next 
major data analysis be used to rectify deficiencies in the data and to conduct further 
limited analyses to improve the products from these early studies. Some examples of 
useful analyses follow: 
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• Based on the layer modulus data that were not available for these studies, 
apply the mechanistic variable clusters that the research team was unable 
to use for this analysis and nonlinear regression techniques to develop 
improved predictive equations. Monitoring data from an additional 3 or so 
years could be included to reap the benefits of time sequence data. 

• Utilize mechanistic responses from models such as MICHP A VE14 that was 
used by the Michigan SHA in its data analyses along with other data, to 
develop mechanistic-empirical models. Such regression models that include 
mechanistic responses can be used in combination with mechanistic 
response models, or regression models that have been developed from 
response models, to predict the occurrence of distress. 



• Utilize the data available in existing mechanistic-empirical distress models 
to identify deficiencies and to improve or calibrate these models to provide 
more reliable predictions. 

The implementation of the recommendations offered above will likely lead to other 
useful studies and applications. 
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Summary and Conclusions 

The steps leading to the sensitivity analyses, the process of developing suitable models 
for sensitivity analyses, the procedures for conducting the sensitivity analyses, and the 
results from the sensitivity analyses have been discussed in detail in the preceding 
chapters. The limitations for the results and their causes have also been identified and 
discussed. The Long-Term Pavement Performance (LTPP) studies are indeed long-term 
and improved analytical results can be expected in the future. The question at this time 
is; How can these results be used to benefit the highway community? The purpose of 
this chapter is primarily to identify potential benefits from these early analyses. 

Use of Sensitivity Analysis Results by the Highway 
Community 

It should be noted again that the results from the sensitivity analyses, like load 
equivalence factors, depend heavily on the predictive equations from which they are 
derived. Therefore, it is important to determine whether these predictive equations 
reasonably represent the performance of pavement structures while those structures are 
subjected to the traffic loadings and the environment in which they exist. Are the 
independent variables those that truly control the occurrence of distresses in pavements? 
H so, are the equation forms sufficiently realistic? H so, are the relative sensitivities of 
the independent variables themselves realistic? These questions probably cannot be 
answered precisely, but part of their answers can come from a review of the results in 
light of previous studies and experience. 

Review of Chapters 7 and 8 indicates that the relative rankings of significance for the 
various distresses and pavement types are generally logical in terms of past studies and 
experience. While there is no doubt that the relative magnitudes of the sensitivities have 
been affected by the inevitable biases in any database such as this, they are believed to 
be generally reasonable. 
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There have also been cases where independent variables were not found to be 
significant; however, other studies have indicated that they were significant. There were 
also some mild surprises, but some of them had logical explanations. An example of 
such a surprise, is that it became apparent during the analyses that increasing hot mix 
asphalt concrete (HMAC) air voids decreased predicted rutting. This finding was not 
expected and caused considerable consternation until it was understood that the 
inference space included few pavements with really high air voids. Thus, it did not mean 
that 10% air voids will minimize rutting, but that air voids in the order of 5 to 7% offer 
better access for air flow within the pavement, compared to lower air voids, which in 
tum stiffen the mix and reduce rutting. This result has been reported in other studies as 
well. 

If one can reach the conclusion that individual models are reasonably reliable for 
predicting the occurrence of the distress of interest, then the relative sensitivity rankings 
indicate where more or less emphasis should be placed in mix design, structural design, 
and construction control. For instance, the results for the portland cement concrete 
(PCC) studies indicate rather clearly that dowels should be used for jointed concrete 
pavements. Similarly, inspectors should strive to avoid overcompaction, as well as 
undercompaction, of HMAC mixes. 

The results from these sensitivity analyses can be compared to results from previous 
studies to either corroborate that in-service pavements respond as expected from 
previous studies or experience, or that the relative significance of specific independent 
variables differs from that of current experience and past studies. In the latter case, the 
differences may point to other fruitful research to explore the differences. 

Use of Linear Regression Distress Models for Design 
and/or Pavement Management 

As previously stated, the development of the distress models was constrained by both 
data limitations and the requirement that the models be statistically linear for use in the 
sensitivity analyses. Consequently, they are not recommended for general use in design 
or in pavement management systems. However, the design procedures used by many 
highway agencies deal only with composite indices, such as the Present Serviceability 
Index considered in the American Association of State Highway and Transportation 
Officials (AASHTO) design procedures. As maintenance, repair, and rehabilitation 
decisions are more often based on the distresses noted in the pavements, it appears that 
it would be useful to check such pavement structure designs against predictions of 
specific distresses. If a pavement thickness design and planned construction control 
appear to suitably limit the occurrence of distresses over the design life, then confidence 
in the design tends to increase. If the predictive equations indicate that the pavement 
structure will not limit specific distresses to an acceptable level over the life of the 
pavement, designers can look into this aspect in more detail until they are satisfied with 
the reliability of the design or make changes to limit the predicted distress. This 
approach also provides experience for future design procedures, which are expected to 
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include consideration of several distress types rather than just one composite index. 

It is recognized that the distress models for many pavement management systems do not 
include all these distresses or may be based on even less reliable predictive models. In 
these cases, it may be worthwhile to insert these distress models into the system as 
placeholders until better models are available. 
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Appendix A: Preliminary Identification of Data Elements to Be 
Included in P-020 Sensitivity Analyses of Pavements 
With Asphalt Concrete Surfaces (March 19, 1991) 

There are some 117 data elements that may be entered into the National Information 
Management System (National Pavement Data Base) for pavements with flexible surfaces. 
It is necessary to considerably reduce the number of variables (data elements) from the 117 
available in order to develop meaningful performance prediction equations and reasonable 
estimates of relative significance of the independent variables to occurrence of specific 
distresses (dependent variables). The approach adopted for preliminary elimination of 
insignificant variables was to obtain relative significance rankings from experts in pavement 
performance modeling. A table that lists the 117 data elements as rows and the six 
distresses for study as columns is attached. Space was provided to enter a significance 
ranking for each of the 117 data elements with respect to each of the six distresses. Space 
was also provided to enter the other data_ element numbers con~idered to be correlated with 
each specific data element. 

The voluminous forms (11 pages) were filled out by Dr. Witczak, Dr. Mahoney, Dr. Baladi, 
Dr. Rauhut and Mr. Von Quintus. Data elements that were considered to be of importance 

·to the occurrence of the distress in question, in the opinion of the rater, were marked with 
a "1". If considered to be moderately significant, a "2"was entered. If a data element was 
considered to have little or no significance to the occurrence of the distress, a "3" was 
entered. The five ratings were averaged for each box, and the average rating of significance 
entered on the attached set of forms, entitled "Significant Variables and Their Relative 
Importance to the Significant Distresses for Pavements with Asphalt Concrete Surfaces". 
Those boxes that are hatched are those that have been tentatively selected to be of sufficient 
significance that they should be included in the analysis, subject to the inclusion of one or 
more other data elements that are expected to provide sufficient correlation to allow 
"explanation" of essentially the same portion of the variation. Therefore, it is not expected 
that all of the data elements hatched will necessarily be included individually in the analysis 
if other data elements are included that are closely correlated. 

The general approach that was used for selecting the data elements to be hatched was as 
follows: 

1. All boxes with an average score of less than 2 were included. 

2. Data elements with a score of 2 were included in some cases but not in others 
on the basis of judgement. 

3. No data elements with a score greater than 2 were included. 

None of these decisions are final and different combinations of data elements may be tried 
to achieve the best results possible. The 11-page table attached provides the results of this 
study, and has been further marked up to provide additional information for GPS 
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Experiment 1, Asphalt Concrete Pavements Over Unbound Base. Note that: a number of 
boxes have been crossed out. This is to eliminate boxes involving overlays or bound base 
or subbase that are not included in GPS-1. The set of codes and some notes have been 
included on the right side of the forms to indicate relative importance (criticality) and 
source from which the data will be forthcoming. These codes are identified below: 

CL Critical - Available from Lab results 

CI Critical - Only available from Inventory Data 

CT Critical - Available from Traffic Data 

IC Important, but can be "explained" by other correlated variables indicated 
by No. 

NC Noncritical 

DU Sufficient data not available -have to obtain the data from SHA's or rely 
on correlations to other data elements. 

CM Critical - Available from Monitoring Data 

CE Critical - Available from Environmental Data 

The forms have been further marked up to indicate the following: 

1. Percentages have been provided in the left hand margin for a number of 
the data elements to indicate approximately the percent of test sections 
for which that data has been provided. This is very important because 
data elements cannot be included if it is missing for the majority of test 
sections in an experiment. 

2. A check mark in a box representing a data element and a significant 
distress indicates that the current expectation is that that data element 
will be included in the study for that distress. 

3. An "X" in the box indicates that we do not expect to have enough data for 
consideration of that data element for the distress indicated. 

4. A "C" in a box indicates that this variable is tentatively expected to be 
represented by one or more other correlated variables, even though it 
may be available. As an example, asphalt grade (data element 25) and 
penetration (data element 29) are expected to be represented by viscosity 
of the asphalt cement (data element 28). Although each could reasonably 
be used to represent either of the other two, it is believed that viscosity 
is the more meaningful variable, and it can be estimated from the other 
two. 

An analysis of these results has been summarized in another table entitled, "Evaluation of 
Numbers of Data Elements for GPS Experiment 1 that will be Available and will be Used 
for Contract P-020 Data Analysis". In this table, numbers of test sections in various 
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categories (availability, correlation, etc.) appear as rows and the six distresses to be studied 
appear as columns. The first row describes the number of significant data elements for each 
of the distresses. These are found by simply counting the hatched boxes for a particular 
distress in the relative significance forms. The second row indicates the number of 
significant data elements that will not be available in sufficient numbers. Specific data 
elements can be identified as they have an "X" in the box. The third row indicates a 
maximum number of significant data elements available for analyses, arrived at by 
subtracting the second row from the first. 

The fourth row includes the estimated number of variables with correlation to other 
variables that will not be included in the analyses. These can be identified as a "C"appears 
in these boxes. 

The fifth row indicates the number of deflection data elements not to be used for the P-020 
analyses (even though rated as significant). Deflection data is not being included because 
it would amount to duplication as major deflections are the consequence of the other 
characteristics of the pavement structure that are included. The sixth row provides a 
number of data elements expected to be used for the P-020 analyses, arrived at by 
subtracting the fourth and fifth rows from the third row. 

A separate row has been included at the bottom of the table to indicate the number of the 
missing data elements that are believed to be sufficiently correlated to other data elements 
that their absence would not have a significant effect on results. Fortunately, most of this 
missing data will be sufficiently correlated with other available data elements for four of the 
distresses, while other correlated data is not available for friction loss or ravel
ing/weathering. 

The information provided above can be usefully summarized for identification of specific 
data elements of inventory data that must be available for a test section to have value for 
the analyses (critical data elements). Data elements that are expected to be available in 
sufficient quantity for reasonable use are listed below to indicate the expected source of the 
data: 

1. Critical data elements available from material sampling and testing: 1-13,22, 
41, 42 (air voids after traffic), 68, 72, 73, and 79. 

2. Critical data elements available from inventory data: 14, 28, (or 25 or 29), 42 
(initial air voids), and 113. 

3. Critical data element available from National Traffic Data Base: 15. 

4. Critical data elements available from environmental data: 89, 90, 91, 102-107. 

This leaves a number of critical data elements that may be available for some test sections, 
but not in sufficient numbers to support the analyses. Some of these are expected to be 
represented to a reasonable level by correlations to other data elements. Those expected 
to be adequately "explained" are listed below, with the data elements that are expected to 
"explain" their effects: 
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Data Element 
Number 

161 18 
251 29 

32 
33 
34 
35 

36 
37 

43-45 
51 
52 

661 67 

691 70 

81-831 851 86 

Correlated With 

22-24 and 8 
28 
28 
28 
28 
28 
28 
28 

8 1 22, 41 and 42 
8, 22 1 25 1 41, and 42 

42 

91 101 57 

13 1 68 1 and 79 
68, 72 1 73 1 and 79 

Expected 
Degree of 

Correlation 

Adequate 
Adequate 
Reasonable 
Limited 
Adequate 
Reasonable 
Adequate 
Limited 
Adequate 
Adequate 
Adequate 
Adequate 
Adequate 
Adequate 

We have now accounted for most of the critical data elements, leaving a few that we could 
certainly use. The absence of some of these is not expected to greatly affect the 
development of performance equations (introduce error in equations), but those not 
included can not be evaluated directly as to sensitivity of predictions to their variations. The 
absence of a few will have serious impacts for some distresses. These remaining data 
elements are listed below, with indications as to the expected effects of their absence on the 
analyses for specific distresses: 

Data Element 
Number 

19 (Type of Mineral Filler) 

20 (Aggregate Durability) 

21 (Polish Value of Coarse 
Aggregate) 

30 (Type of Asphalt Modifiers) 

31 (Quantity of Asphalt 
Modifiers) 

49 (Moisture Susceptibility) 
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Level of 
Effect 

Nominal 

Serious 

Nominal 

Serious 
Nominal 

Nominal 
Moderate 

Nominal 
Moderate 

Nominal 
Moderate 

Distress Type(s} 

All 

Friction Loss and 
Raveling/Weathering 
Other 4 Distresses 

Friction Loss 
Other 5 Distresses 

Friction Loss 
Other 5 Distresses 

Friction Loss 
Other 5 Distresses 

Friction Loss 
Other 5 Distresses 



It can be seen from the discussions above that the expectation is that a reasonable array of 
data elements will be available for the sensitivity analyses for all of the distress types of 
interest, except for friction loss. Two of the most important variables, polish value and 
aggregate durability, will generally be missing, leaving only age of pavement, cumulative 18-
kip ESAL, geological classification of coarse aggregate, and type of environment to explain 
variations in skid measurements. 

Review of the data elements indicates a few data elements that should be available, if a test 
section is to prove very useful in the analyses. Those from inventory data believed to be 
necessary are listed below with the distress type for GPS-1 for which each is believe to be 
required: 

Data Element 
Number 

14 

17 

20 

21 

25,28, or 
29 (One of 
these) 

301 31 

Description 

Age of Pavement 

Geological Classification 
of Coarse Aggregate 

Aggregate Durability 

Polish Value of Coarse 
Aggregates 

Asphalt Grade, Viscosity, or 
Penetration 

Type and Amount of Asphalt 
Modifiers (if a modifier was 
used in sufficient quantity 
to seriously affect asphalt 
cement characteristics) 

Distress Types 
Necessary For 

All 

For Friction 
Loss (Unless 
Polish Value 
is Available) 

Raveling/ 
Weathering and 
Friction Loss 
(Unless Polish 
Value is Avail
able) 

Friction Loss 

Alligator Crack
ing, Transverse 
Cracking, and 
Rutting 

Alligator Crack
ing, Transverse 
Cracking, and 
Rutting 

For GPS-2, other data elements describing bound base and subbase layers may also be 
critical as follows: 

Data Element 
Number Description 

60, 61 Type and Percent of Stabil
izing Agent 

Distress Types 
Critical For 

Transverse 
Cracking 
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For GPS-6 and GPS-7, data elements characterizing asphalt concrete (described above) will 
also be necessary for the overlay layer. 

Considering the necessary data elements identified above in the previous three paragraphs, 
age of pavement will virtually always be available, although some may have used dates for 
original construction rather than for the overlay (GPS-6 and GPS-7). If geological 
classification of coarse aggregate is missing, this can likely be obtained from the State 
Highway Agency (SHA) or through observation of extracted aggregate in the laboratory. 

Data on aggregate durability or polish value of coarse aggregates may not be available in 
project files, but local SHA personnel may be able to approximately relate other data for 
other projects to the project of interest, based on their knowledge of local materials in use. 

Data on asphalt grade, viscosity, or penetration will generally be available. If it is not in 
project files, local SHA personnel may know what asphalt grade was specified or in common 
use at the time of construction. 

Data on type and amount of modifiers may be difficult, if not available in project files, but 
this data should be pursued if there is reason to think a modifier was used. 

Where a bound base is known to exist, the type of stabilizer at least should be identified. 
This can probably be ascertained by inspection in the laboratory. Amount of stabilizer 
would be good to have, but likely could be omitted without serious consequence, if the type 
is known. 

Similar evaluations can be made for Experiments GPS-3, GPS-4 and GPS-5. Drs Darter 
and Owusu-Antwi are conducting similar evaluations on these experiments to establish 
relative significance of data elements. 
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GP~- 1 
SIGNIFICANT VARIABLES AND THEIR RELATIVE IMPORTANCE TO 
THE SIGNIFICANT DISTRESSES FOR PAVEMENTS WITH ASPHALT 

CONCRETE SURFACES 

SIGNIFICANT VARIABLES I SIGNIFICANT DIS1RESSES 

I No.I I Alligator Transverse Friction Raveling/ 
DESCRIPTION Cracking Cracking Rutting Roughness Loss Weathering 

II 
LAYER THICKNESSES: 

1 I A.C. Overlay 3 I 2.8 

2 I A.C. Surface 3 I 2.8 

3 I Unbound Base 3 I 3 

4 I Unbound Subbase 3 I 3 

5 I Bound Base 3 I 3 

6 I Bound Subbase 3 I 3 

LAYER STIFFNESSES: 

7 I A.C. Overlay (w/temp.) 2 3 2.8 

8 I A.C. Surface (w/temp.) 2.2 3 2.8 

9 I Unbound Base 2.6 3 3 

10 I Unbound Subbase 2.8 I 3 I 3 

11 I Bound Base 2.6 3 3 

I 12 I Bound Subbase 2.8 3 3 

BELIEVED TO BE 
CORRELATED Wrni 
VARIABLE NUMBERS 

I II CL 

I IIC.. L... 

I IIGL-

I IIC-L 

I IIC...t-

I IICt... 

I IIC.L-

IGJ-
(!.i-

I IIC.i.. 

I IICJ.... 

I llci.... 
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SIGNIFICANT VARIABLES AND THEIR RELATIVE IMPORTANCE TO 
THE SIGNIFICANT DISTRESSES FOR PAVEMENTS WITH ASPHALT 

CONCRETE SURFACES CONT. 

I' ..,n_u.,u·.l~/"U.,.l Y~.n . .1.~.1.J.lJ'-' '! '-'.I.U1.,.1..1.'.1.\...-n..1.,.1. Ll.l.\,}.l...l'...lJ\,}\,}.I..J\,} I BELIEVEDTOBE 
• ... 1 _ 1 1 1 • • 1 - •• coRRELATED wrrn 

NO. DESCRIPTION VARIABLE NUMBERS 

II 13 1 Subgrade II ((0gg 1 2.8 I !~frl t;6§< I 3 I 3 I II CL. 

AGE AND ESAL'S: 

:: ~:::~.:::e:~::p ESAL lliilitl~'iiiliilllli i!~il;il11l'il~llir I ~; 
PLANT MIX AGGREGATE 
PROPERTIES: 

16 I Composition of Coarse II 2.2 I 2.8 I UH8 /I 2.6 I 2 
Aggregate 

17 I Geological Classification of II 2.8 I 2.8 
Coarse Aggregate 

18 I Composition of Fine Aggregate II 2.8 I 3 

19 I Type of Mineral Filler 

I 
2.6 

I 
2.8 

I I I I ~ l1w Aggregate Durability 2.6 2.6 20 2.8 2.8 <>{ Yt6 ·•• ~ 1:8 .. : 
21 Polish Value of Coarse II 3 I 3 I 2.8 I 3 11> ?·~\ /I L..~ I IIPV Aggregates 



SIGNIFICANT VARIABLES AND THEIR RELATIVE IMPORTANCE TO 
THE SIGNIFICANT DISTRESSES FOR PAVEMENTS WITH ASPHALT 

CONCRETE SURFACES CONT. 

I SIGNIFICANT vARIABLES I SIGNIFICANT DISTRESSES BELIEVED TO BE I I I Alligator l Transverse l l I Friction I Raveling/ CORRElATED wrrn 
NO.__ DESCRIPTION Cracking Cracking Rutting Rou!dlness Loss w .... ,h .. rincr VARIABLE NUMBERS 

22 Gradation of Combined 
Aggregates 

2.4 2.8 2 2.2 CL 

I 23 Bulk Spec. Gravities I 3 I 2.8 I 3 I 3 I 3 I 2.8 I ~ N '-' C.L 

24 Effective Spec. Gravity- 3 2.8 3 3 3 2.4 N'L .CL 
Aggregate Combination 

PLANT MIX ASPHALT CEMENT 
PROPERTIES 

q ~ 25 Asphalt Grade 

~~ 26 Source 

7 7 ~ 27 Specific Gravity 

ORIGINAL ASPHALT CEMENT 
PROPERTIES: 

2.2 

3 

2 

3 

2.2 

3 

2 

2.6 

3 

3 

2.8 

3 

2 

2.4 

3 

• 

IC-28-2'1 

NC. 

NC 

D~. {'() 
!YD ~,! 28 Viscosity 2.2 2.8 2.4 !C.. ... 2.~, -z.q 

1}.tJ~ 29 Penetration 2.2 2.8 2.4 'JC· z~, 2~ 

~ 
30 Type of Asphalt Modifiers 2.6 2.6 2.2 CI 

U\ 
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0\ SIGNIFICANT VARIABLES AND THEIR RELATIVE IMPORTANCE TO 

THE SIGNIFICANT DISTRESSES FOR PAVEMENTS WITH ASPHALT 
CONCRETE SURFACES CONT. 

I SIGNIFICANT v AR.iABLES SIGNIFICANT DISTRESSES I I Alligator Transverse Friction !'l0. DESCRIPTION Cracking Cracking Roughness Loss 
Raveling/ 
Weathering 

BELIEVED TO BE 
CORRElATED WITH 
VARIABLE NUMBERS 

31 Quantity of Asphalt Modifiers 2.8 2.6 2.2 C. I 

1111r~ 32 Ductility 2.8 2.8 2.4 GI 

L/f 33 Ring and Ball Softening Point 2 2 3 2.8 2.6 C.l 

LAB-AGED ASPHALT CEMENT 
PROPERTIES: 

34 Viscosity 2.2 2.8 2.2 w· U 
35 Ductility 2.8 2.8 2.4 (.,~ 2~1 

t~'3Z.. 
36 Penetration 2.2 2.8 2.2 

l~--+---------------------~~~~++++4+~~~~-----4------~----~----------~l 

37 Ring and Ball Softening Point 2.8 2.8 2.4 

38 I Weight Loss 

ORIGINAL MIXTURE 
PROPERTIES: 

3 3 3 3 3 3 Nv 

51'/, 39 Max. Spec. Grav.ity I 3 I 3 I 3 I 3 I 3 I 2.8 I I N (. 
5~!, 40 Bulk Spec. Gravtty 3 3 3 3 3 2.8 N C... 
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SIGNIFICANT VARIABLES AND THEIR RELATIVE IMPORTANCE TO 
THE SIGNIFICANT DISTRESSES FOR PAVEMENTS WITH ASPHALT 

CONCRETE SURFACES CONT. 

1- SIGNIFICANT vARIABLES I SIGNIFICANT DISTRESSES BELIEVED TO BE ll I I Alligator Raveling/ CORRElATED wrrn 
NO. DESCRIPTION Cracking Weathering VARIABLE NUMBERS 

41 Asphalt Content 2.6 2.4 II C L 

42 Percent Air Voids 
:Jn•'liQ/ {rtftk- >~o'lHfbrj, 

2.2 2.4 An-i'•"- ~ )a....pt,\.5 f..-cMtll f..t.fo. 

'12'}:, 43 Marshall Stability - Blows 2.8 3 3 

27 44 Marshall Stability- Flow 2.6 3 3 IC- ~ 8> 1"-·,q, k 2.-~ 
2CJ% 45 Hveem Cohesiometer ValUe 2.8 3 3 

J ~,X 46 Type of Asphalt Plant 3 3 3 3 3 3 IV C 

1~1; 47 Type of Antistripping Agent 2.8 3 2.8 3 2.8 2.3 f'IC-

Il/:~ 48 Amount of Antistripping Agent 2.8 3 2.3 3 2.5 2 N C 

I I~ 49 Moisture Susceptibility 2 2.8 2 3 2.2 DU 
t/3 ° 50 Mean Mixing Temp. 2.4 2.4 2.2 2.8 3 2.8 tV C. 

37J 51 Lay down Temp. 2.6 3 2.4 DU 

52 Percent Compaction 2.2 2.4 2 D Ll_,'.Ct'llt; 
I ~$ 

13ASE/SUBBASE MATL. DATA: 

,6'f_J;'II 53 I AASHTO Soil Class. 
/ 

2.2 3 2.2 2.4 3 3 NG 
~ 
.......:J 
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00 SIGNIFICANT VARIABLES AND THEIR RELATIVE IMPORTANCE TO 

THE SIGNIFICANT DISTRESSES FOR PAVEMENTS WITH ASPHALT 
CONCRETE SURFACES CONT. 

I SIGNIFICANT VARIABLES .. I BELIEVED TO BE 
11 1 j coRRELATED wrrn 

NO. DESCRIPT!()t'j_ - - - ---- VARIABLE NUMBERS 

) 27'<' 54 Plasticity Index I 2.6 I 2.8 I 2.2 I 2.2 I 3 I 3 I 1/V C 
\,) \) !./?) 55 Max. Lab Dry Density 2.8 3 2.8 2.6 3 3 N 0 

~~'J~ 1 ~1~~~ 56 Optimum Lab Moisture Content 2.8 3 3 N L 
,, . ~~6~uc-«--

J ~/ 57 Percent CompactiOn 2.2 3 3 , /7 tiS! pt 

58 Gradation of Coarse Aggregate 2.4 3 3 A/ C. 
lr---;-----------------~~----;~------+------+------r-----~----~------~-----------41 

59 Gradation of Fine Aggregate 2.6 3 3 N C... 
lr---~--------------~~------;~------4=~==~------~----~----~------4-----------~l 

I 

60 Type of Stabilizing Agent 2.6 3 3 
(Bound) 

61 Percent Stabilizing Agent II 2 1~1 2 I 2.6 I 3 I 3 

cr 
Cl 

62 Type of Admixture 2.4 2.2 2.4 2.8 3 3 {'/{,. 

63 Quantity of Admixture 2.4 2.4 2.4 2.8 3 3 N~ 

I .•·:·i:~~~~·•·- .. · 1 Co~p~essive Strength (with 2 2.6 I 2.2 3 3 1e s t c" "';)uc.h ~ 1> I) • 

confmmg press.). ) 8"' \1 f .:::1 r Tr t a '-J ffctJt ~ ! 
64 

/ %) 65 Calcium Carbonate Content 3 3 2.8 2.8 2.8 3 N (.., - ~l 
/ f)!~ 66 CBR J:. 1_·-_··_·-_s __ ·············--···-····· 2.8 · 'l'fh > 2.6 3 3 t f.C.- ~-!!_;, /'' . ....... .-.... ·-'-'~:'::'- •. ~ r s~ 
5% 67 R-Value .)c. i.s 2.8 ~t§. ) 2.6 3 3 SJ-
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SIGNIFICANT VARIABLES AND THEIR RELATIVE IMPORTANCE TO 
THE SIGNIFICANT DISTRESSES FOR PAVEMENTS WITH ASPHALT 

CONCRETE SURFACES CONT. 

SIGNIFICANT VARIABLES I SIGNIFICANT DISTRESSES 

I No.I 
I Alligator Transverse Friction Raveling/ 

DESCRIPTION Cracking Rutting Roughness Loss Weathering Cracking 

SUBGRADE DATA: 
/ 

68 AASHTO Soil Classification 2 3 It~!:~: ~···~········1.·.~················· 3 3 

····••4'••1.4••················ 1•···~·······•!:?•················ 69 CBR 3 3 3 

70 R-Value ····~······1·.6·················· 3 I )<! 1.2 [i~ 1.8< •• 3 3 

71 % Passing #40 Sieve 2.8 3 2.6 3 3 3 

72 % Passing #200 Sieve 2.8 3 2.2 !••••••••••••••••••••••?••••~•· 3 3 

73 Plasticity Index 2.4 3 2 l••••··················g·····~··· 3 3 

74 Liquid Limit 2.4 3 2 2 3 3 

75 Max. Lab Dry Density 3 3 3 3 3 3 

76 Optimum Lab Moisture Content 3 3 3 3 3 3 

77 Percent Compaction 2.2 2.8 2 2.4 3 3 

78 In Situ Dry Density 2.6 3 2.4 2.4 3 3 

79 In Situ Moisture Content 2.2 3 .•••• {§~ 2.2 3 3 

BELIEVED TO BE 
CORRElATED Wrni 
VARIABLE NUMBERS 

CL 

&():t b~ ..JY{); il/J 4J-'!' f'Jh .. :- ~ ... 

l f1 J.;.,h{IJ ~ffft- j -Tr> n ,_, 
l'Sfs !Vaf A c:..v,. 1 vc.l-e~r 

J.- .... 17&.---

N '- , .:..i.-

CL 
C!L 

NL . . :L.-

t.JC.)CJ

!IL) CL 
I.. , 

vC.. ---
; >Ci-

Q.L 
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SIGNIFICANT VARIABLES AND THEIR RELATIVE IMPORTANCE TO 
THE SIGNIFICANT DISTRESSES FOR PAVEMENTS WITH ASPHALT 

CONCRETE SURFACES CONT. 

SIGNIFICANT VARIABLES I SIGNIFICANT DISTRESSES 

I No.I 
I Alligator Transverse Friction Raveling/ 

DESCRIPTION Cracking Cracking Rutting Roughness Loss Weathering 

80 Relative Density (Cohesionless 2.4 3 2 2.2 3 3 
Soil) 

81 Soil Suction 2.4 2.8 2 1.~\t.s 
·-··· 

3 3 

82 Expansion Test 2.8 3 2.8 sA 
-·············· 

3 3 

83 Swell Pressure 3 3 3 ~)1.$ 

·······-······ 

3 3 

84 % by Wt. Finer Than 0.02 min. 2.4 3 2 •• >.1.8Rr 3 3 

,~~-~;1 85 Av. Rate of Heave (Lab. Freeze 2.4 3 2.2 3 3 
Test) 

86 Frost Susceptibility 2.4 3 2.2 ·~~·i' .. r.:i 3 3 
Classification .·> 

DEFLECTION DATA: 

87 Measured Deflections .. ~;~,; 3 ) J.6 / 2.2 3 3 
(normalized to stnd. temp.) .... . .... _ -···· < > · .. ·. 

· ....... -........ .< .·.: .· ... 

88 Depth to "Rigid" Layer -.-..... 1.8···--·-_. 3 <L8 __ .• --. 2.4 3 3 

BELIEVED TO BE 
CORRElATED WITH 
VARIABLE NUMBERS 

I (. - I ' I IIi ·; 
,. .. 1'~ • }AJtJ • ·Ji'/" 

> 7 I -~. . 7 - -~ -· - 1:r , I-t! 

) 

"· 
}JC.-7(-?.:.;·' 
> 

!~~~~vh 

"'-
DU 

btJ 
Dt.J 

I• .,__ 

DJ 

Of 
-:f J p c -h'ot-
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SIGNIFICANT VARIABLES AND THEIR RELATIVE IMPORTANCE TO 
THE SIGNIFICANT DISTRESSES FOR PAVEMENTS WITH ASPHALT 

CONCRETE SURFACES CONT. 

SIGNIFICANT VARIABLES I SIGNIFICANT DISTRESSES 

I No.I 
I Alligator Transverse Friction Raveling/ 

DESCRIPTION Cracking Cracking Rutting Roughness Loss Weathering 

ENVIRONMENTAL DATA: 

89 Type of Environment 
, .... 7····~····················· I s 1 ! < J \ !~4 ~ ···················~·-8·····~ [1112 •..•••••.•.•..•• 1.6~ 

90 Freeze Index 2.4 1~}4··········· 2.4 ··••••••··•••J.sr 
2.8 2.4 

91 Thorthwaite Index 2.4 2.4 2.6 <g>§ 3 2.6 

92 Annual Precipitation 2.2 3 2.2 2.2 3 2.2 

93 Precipitation Days by Month 2.4 3 2.4 2.4 3 2.6 

94 Precipitation Days by Year 2.4 3 2.4 2.4 3 2.6 

95 No. of Days with High Solar 2.5 2.3 2.3 2.8 2.8 2.8 
Radiation 

96 Highest Annual Solar Radiation 2.8 2.6 2.6 3 2.8 2.8 

97 Lowest Annual Solar Radiation 3 2.6 2.6 3 3 3 

98 Elevation Above Sea Level 2.8 2.6 2.6 3 2.8 2.8 

99 %Sunshine (of Possible Time) 2.6 2.6 2.8 3 3 2.8 

100 Average Wind Speed by Month 2.8 2.8 2.8 3 3 3 

101 Average Dew Point by Month 3 3 3 3 3 3 
- --- - . ·-

BELIEVED TO BE 
CORRElATED Wrni 
VARIABLE NUMBERS 

~t 
C£ 

t. 

j-,JC.., 

p.J(_, 

f\)G 

rJC,· 

rJL 
tJC 
rJC,; 

('}C-

JL.. 
rJC,., 
NL 
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N SIGNIFICANT VARIABLES AND THEIR RELATIVE IMPORTANCE TO 

THE SIGNIFICANT DISTRESSES FOR PAVEMENTS WITH ASPHALT 
CONCRETE SURFACES CONT. 

I' "'''-'J.'fJ.l.l'-'rli".l vru.~LrUJLL-.J 'I -.J.lUJ.'f.l.l'.lvrli'f.l .JJ.l-.J.l.l~L-.J-.JL-.J I BELIEVEDTOBE 
Alligator I T-~--·--- I I I v..:~.:-- I n~ .. -"--' CORRElATED WITI-1 
Cracking 

TEMPERATURE: 

102 I Monthly Average 2.4 I ~ ... ' 

103 I Average Max. Daily by Month 

104 I Average Min. Daily by Month 

105 I No. of Days with Max. Temp. 
Greater Than 90F 

106 I No. of Days with Min. Temp. 
Less Than 32F 

-
107 I No. of Freeze-Thaw 

Cycles/Year 

SHOULDER DATA: 

108 I Shoulder Width II 2.2 I 3 I 2.4 I 2.6 I 3 I 3 I 
109 I Shoulder Surface Type 

I 
2.4 

I 
3 

I 
2.6 

I 
2.6 

I 
3 

I 
3 

I 110 I Shoulder Surface Thickness 3 3 3 3 3 3 

111 I Shoulder Base Type II 2.6 I 3 I 2.8 I 2.8 I 3 I 3 I 

II Ce 
C..ti 

C€ 

t..~ 

M 

(.£ 

II Nc 

INC, 
t/C 

liN(; 



SIGNIFICANT VARIABLES AND THEIR RELATIVE IMPORTANCE TO 
THE SIGNIFICANT DISTRESSES FOR PAVEMENTS WITH ASPHALT 

CONCRETE SURFACES CONT. 

r- SIGNIFICANT vARIABLES 1 SIGNIFICANT DISTRESSES BELIEVED TO BE I I I Alligator CORRElATED wrm 
_NO. DESCRIPTION Cracking VARIABLE NUMBERS 

1
1 112 1 Shoulder Base Thickness II 2.6 1 3 1 2.8 1 2.8 I 3 I 3 I II N (_ 

SUBSURFACE DRAINAGE DATA: 

~S0hl 113 Type 2 

2 

2.6 

2.4 

il·9 K • ~~9 f1 3 3 I ... j'\(/1 ,, .. ,,. ,~ I I I cr 

~ w 

114 Location 

115 I Diameter of Long. Drain Pipes 

116 I Spacing of Laterals 

117 I No. of Lanes in Travel 
Direction 

3 

2.6 

2.8 

2 • 1.~~ 3 3 t r 
3 3 I 3 3 3 NL. 

3 2.6 I 2.2 I 3 I 3 I II rJL. 

3 2.8 3 3 3 rJ[., 



~ EVALUATION OF NOS. OF DATA ELEMENTS FOR GPS EXPERIMENT 1 
~ THAT WILL BE AVAILABLE AND WILL BE USED FOR CONTRACT P-020 DATA ANALYSIS 

Maximum No. Of Significant Data 
Ele-ments I 38 I 25 I 44 I 27 I 6 I 11 

No. Of Significant Data Elements 
That Will Not Be Available In 
Sufficient Nos. I 13 I 9 I 17 I 8 I 2 I 3 

Max. No. Of Significant Data 
Elements Available For Analyses I 25 I 16 I 27 I 19 I 4 I 8 

Est. No. Of Variables With 
Correlations To Other Variables, 
Not To Be Included In Analyses I 6 I 6 I 5 I 4 I 0 I 0 

No. Of Deflection Data Elements 
Not To Be Used For P-020 
Analyses (Rated As Significant) I 2 I * I 2 I * I * I * 

No. Of Data Elements Expected To 
Be Used For P-020 Analyses I 17 I 10 I 20 I 15 I 4 I 8 

No. Of Missing Data Elements 
Correlated To Other Available 
Data Elements I 11 I 7 I 14 I 8 I 0 

* Deflections Were Not Rated As Significant For These Distress Types. 



EVALUATION OF NOS. OF DATA ELEMENTS FOR GPS EXPERIMENT 1 
THAT WILL BE AVAILABLE AND WILL BE USED FOR CONTRACT P-020 DATA ANALYSIS 

1. Maximum No. Of Significant 
Data Elements I 38 I 25 I 44 I 27 I 6 I 11 

2. No. Of Significant Data Ele-
ments That Will Not Be Avail-
able In Sufficient Nos. I 13 I 9 I 17 I 8 I 2 I 3 

3. Max. No. Of Significant Data 
Elements Available For Analy-
ses (Row 1 - Row 2) I 25 I 16 I 27 I 19 I 4 I 8 

4. Est. No. Of Variables In Row 3 
With Correlations To Other 
Variables, Not To Be Included 
In Analyses I 6 I 6 I 5 I 4 I 0 I 0 

5. No. Of Deflection Data Ele-
ments Not To Be Used For P-
020 Analyses (Rated As Signifi-
cant) I 2 I * I 2 I * I * I * 

6. No. Of Data Elements From 
Row 3 Expected To Be Used 
For P-020 Analyses (Row 3-
Row 4- Row 5) I 17 I 10 I 20 I 15 I 4 I 8 

7. No. Of Missing Data Elements 
From Row 2 Correlated To 
Other Data Elements That Are 
Available I 11 I 7 I 14 I 8 I 0 

N * Deflections Were Not Rated As Significant For These Distress Types. 
~ 
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Appendix B 

Technical Memorandum by Dr. Robert L. Lytton, March 
31, 1992, "Clusters of Terms Relevant to Pavement 
Performance Prediction" 
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TECHNICAL MEMORANDUM 

PROJECI': Contract SHRP 89-P-020 
Data Analysis 

DATE: March 31, 1992 

DISTRIBUTION: Dr. Robert Raab, Dr. Brent Rauhut, Dr. Michael I. Darter, Dr. 
Emmanuel Owusu-Antwi, Dr. Olga Pendleton, Dr. Bill Hadley, Dr. Gil 
Baladi, and Dr. Peter Jordahl 

AUTIIOR: Robert L Lytton 

SUBJECT: Clusters of Terms Relevant to Pavement Performance Prediction 

The prediction of pavement performance has been found empirically to be related to the 
"primary responses" of the pavement such as deflection and strains at specific points in the 
pavement. This is information that is known from previous studies and experience that 
should be carried forward into all future studies. Knowledge such as this can be used to 
make the task of developing future models of pavement performance much more efficient 
In this memorandum, the use of relations taken from mechanics to make up terms that 
predict deflections and strains will be illustrated and the clusters of terms that result can be 
used as super, single variables in further regression analysis studies. This reduces the 
number of pavement sections on which data needs to be collected, reduces the number of 
independent variables in the regression equations, and best of all it makes use of what we 
already know. 

Approximate Layered Elastic Theoa 

Odemark's assumption can be used to good advantage in this endeavor. Odemark found 
that in predicting pavement deflections of a multilayered pavement, a simplification could 
be used which transformed the layers of different materials into one layer of the same 
material. The thickness of the equivalent layer is h5 given by: 

~~-~-==:.--------...0-- - -·-
Es. h5 

-_.;;...--r--------------~- - -
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where: c 
n 
~ 
~ 
Es 

hs 

• 
• 
= 
= 
= 

= 

0.9 
1/3 
the thickness of layer i 
the Young's modulus of layer i. 
the reference modulus. It can be selected to be the modulus of 
any layer. 
the equivalent thickness of the reference material. 

If layers on top of a subgrade with modulus, Es , are all converted into equivalent 
thicknesses of subgrade material, then the Boussinesq equations may be used to calculate 
the deflections, strains, or stresses at any point in a pavement. 

The Boussinesq equation for the deflection, b., of the surface of a half-space with a Poisson's 
ratio of 05 is: 

where p 
r 

= 
= 

4 = 

the load 
the distance A is from the load 

The vertical strain beneath the load in the center of each layer may be estimated using a 
combination of the Odemark assumption and the Boussinesq equations. The equation is 
of the form: 

where 
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a 
q 

= 

= 
= 

the Odemark - transformed distance to the center of each layer 
from the surface. 
the diameter of the loaded area. 
the uniform pressure on the loaded area (typical units: lbs/in. ~ 



The equation for the strain may be rewritten as: 

e, = 

An estimate of the shearing strain at a radius, r, and depth, z, below the surface is: 

where, in this case, ~ is defined differently as: 

= the Odemark transformed distance to the bottom of layer i 
from the surface. 

and = r + ~2 
= the radius from the center of the tire load 

This shearing strain is zero on the surface where r = z = 0 and is useful in estimating the 
fatigue life of the pavement surface. The number of load cycles to reach failure due to the 
propagation of a crack by shearing strains should be inversely proportional to the maximum 
value of the shearing strain that occurs at the bottom of the surface layer, that is, for a 
specific ~' where: 

ay, 
= 0 ar 

This occurs where: 

ay = -18P Zt" [Zt2 - 4r2] 0 = ar 4 1tE R' 

That is where: 

z, = ±2r 
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Before running a regression analysis on fatigue it will be necessary at first to determine the 
value of r for which 

ay'=O 
CJr ' 

and then to determine the value of the shearing strain, 1i, corresponding to it. 

The equation for the deflection of a one-layered pavement resting on a rigid base is: 

where c 
H 

= 
= 

4. = 

a constant of proportionality. 
the thickness of the layers above the rigid base. 

The equation for the deflection of a multilayered pavement above a rigid base is: 

where l = the number of layers 

These simple equations give the form of the equation and the proper relationship among 
the variables, and because of this they are very valuable in determining the correct clusters 
of terms that relate a primazy response of a pavement to the load, layer thicknesses and 
moduli on which it depends. Regression analysis can supply the value of the constant, C. 

H it is assumed that rutting is due to: 

1. Vertical compression and, 

2. Horizontal displacement 

in each layer, then more mechanistic terms may be added to the previous work. The forms 
of equation for vertical compression have already been worked out above. 
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Forms of equations for horizontal displacement are worked out below. Let us advance the 
hypothesis that the permanent horizontal displacement in each layer is proportional to the 
maximum shearing strain at the center of each layer. The shearing strain is given by 

Displacements in a half-space 

u = 
p 

2x 

w = 

(1 +u)(1-2u) 

E 

aw 
+-ar 

p 

2x 
(1+u) [.£ + 2 (1-u)l 

E R3 R 

If u = 1/2, then (1-2u) = 0 and 

u = 3P rz 
4xE R3 

w = 

= 

3P 
4xE 

3P 
4xE 

[.!. + z2] 
R R3 

[
..!_ - 3n;2] 
R3 R5 
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1 = au+aw 
& Or 

= 

3P [ r 3n:
2 

r 3rz
2

] = ---------
41tE R3 R5 R3 R5 

Another useful set of relations comes from beam-on-elastic foundation theory. For example, 
the maximum moment in a beam beneath a uniform load of length, a, is: 

where 
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q 
a 

= 
= 

• 

r ... 

M = J_ e 2 sin pa • .!! ( ) 
maz 2~2 2 

the uniform. load (example units: lbs/ft) 
length 

a 
_ .. 

" 
I q 

h1 

p - 8 ~ E 
- 4a (El)~ 

E1 



EI 

I 

d 

= 

= 

= 

= 

= 

= 

the flexural stiffness of the pavement per unit width. 

the centroidal distance of each layer from the neutral axis of 
the layers above the subgrade. 

number of pavement layers above the subgrade. 

the distance to the neutral axis of the pavement from the 
surface. 

l h H 

L E1 h1 ...! + L h1 
f•l 2 J•l 

l 

L E1 h1 
f•l 

- h1 
Thus, d1 = d - -

2 
- ~ 

~ = d-h --
1 2 

- ~ 
~ = d - h1 - h,. - 2 etc. 

The bending strain at the bottom of the top layer is: 

E! = 1 

6Mmu 
1 

E1 h1 

All of these equations provide relations among the load, tire pressure, diameter of the 
loaded area, layer thicknesses and moduli which are dictated by mechanics to predict the 
primary responses of deflection, strain and stress of a pavement. Regression analysis will 
provide the .. scale factors .. which link these primary responses to the different types of 
distress and deterioration in pavements. 
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Material Property Relations 

Several useful material property relations have been found from previous studies in 
pavements and other materials. The studies have been in the areas of creep, fracture, and 
permanent deformation of materials. The relations will be presented here without the 
derivations. 

In a creep test, a stress is applied to a material and held constant at a 0 while the strain 
changes with time, e(t). The quotient of the two is D(t), the creep compliance. This 
response of practically all materials of which pavements are built has been found to obey 
a power law: 

where = 
= 

m = 

e(t) = D(t) = D + D t • 
a o 1 

Q 

the "elastic" or glassy part of the compliance. 
the constant related to the time-dependent part of the 
compliance. 
the creep compliance exponent 

It has been found from fracture mechanics that the fatigue exponent, normally called ~ is 
proportional to 2/m. 

Furthermore, it has been found that the permanent deformation exponent, a, is given by 
1-m. Other useful relations have been found which include m, the creep compliance 
exponent Thus, it is useful to have a way of estimating it 

In asphaltic concrete, the greater the amount of asphalt that fills the voids in the mineral 
aggregate, the higher is the creep compliance exponent, m, which ranges between 0 and 1. 
It is never larger than 1.0. These facts may be used to estimate m. The block diagram of 
asphalt concrete is used for this purpose. 

Volumetric 
Quantities 

Volume of Air 

Volume of Asphalt 

Volume of Solids 

Total Volume 
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vu 
v. 

v 

Air 

Asphalt 

Solid 
(Aggregate) 

w. 
w. 

Weight 
Quantities 

Weight of Asphalt 

Weight of Solids 

-
W Total Weight 



VMA = V air + V u = Voids in the Mineral Aggregate 

An estimate of m is the ratio of the volume of asphalt to the volume of voids in the mineral 
aggregate, given by: 

where: Wa 

1a 

1t 
vm 

= 
= 
= 
= 

m = = 

asphalt content by weight 
unit weight of asphalt 
density of asphaltic concrete 
air voids, decimal, (V.fVMA) 

All of these data are recorded in the SHRP L TPP data base for each pavement section. 

For base course and subgrade materials, the exponent of the creep compliance, m, has been 
found to depend upon the volumetric contents of the solids and water, according to the 
relation drawn from the rule of mixtures. 

m = 0.02 e.r + 0.60 ew 

e" 
~ the volumetric solids content = v' 

ew 
vw 

the volumetric water content = v' 

These cannot be determined uniquely without knowing the water content, w, and the specific 
gravity of the solids, G5• 

e.,., = 
G.r w 

1 + G w .r 

e" 
1 

= 
1 + G w .r 

and thus, 

m 
0.02 + 0.60 G

3 
w 

= 
1 + G w .r 
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The fatigue coefficient, K1, has been found from fracture mechanics to be proportional to: 

1-~ 
h 2 

K1 oc _1-

E1~; A 

and the fracture coefficient, ~ has been found proportional to: 

where = 
= 

A oc 
1 

the tensile strength of the fatiguing material 
the speed of travel 

Thus, the fatigue coefficient, K1, is found to be proportional to: 

Kl • 

I; 
1--

h 2 2 
1 a, s 

E2 
1 

The fatigue exponent, ~ as stated previously, is proportional to 2/m , and this allows the 
use of approximation of "m" that was developed previously: 

where 

2 2[wa Y, + (l+w) Ya VGi,] c - = c _ _;;_.....;_ __ __;;;,._.;;;...._~ 
m waY, 

K2 = 

c = a regression coefficient to be determined. 
w ., 1" 1 ., V air = asphaltic concrete quantities that have been defined 

previously. 

The permanent deformation exponent, a, for the asphalt layer is: 

(1 +w) y 
4 

V llir ex = 1-m = c ____ __,;;;..._;;;.;......_ 
w a y, + (1 +w) y 4 V car 

where c = a regression coefficient to be determined. 
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The permanent deformation exponent, a, for base courses and subgrades is: 

0.98+0.40 G:. w 
«=1-m= c ------

where c = 
G"w = 

l+G:. w 

a regression coefficient to be determined. 
soil quantities previously defined 

The permanent deformation coefficient, p., has been found to be proportional to: 

11 oc (l-ex) (At)1-• 

where At = the loading time, ie., the time duration during which a point on 
the pavement is stressed by a moving load 

The loading time may be estimated by: 

where d = 

s = 

d At = 
s 

the length of a deflection basin (approx. 10-20 feet). 

d-----~~ 

the speed of traveL 

Thus, the permanent deformation coefficient, p., is given by: 

where c = 
a, d, s = 

(d)l-• 11 = c (l-ex) -; 

a regression coefficient to be determined. 
quantities that have been defined previously. 
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Pavement Performance Prediction Models 

The kinds of pavement performance that need to be predicted include: 

Alliaator Crackina 

Alligator Cracking 
Rutting 
Damage due to the loss of serviceability index 

The number of load cycles to failure by alligator cracking is generally considered to be 
inversely dependent on the bending strain at the bottom of the asphalt layers, although 
recent results from fracture mechanics indicate that the maximum shearing strain may be 
more responsible. In either case, the number of load cycles to failure, Nft is considered to 
be given by: 

N, = K,(:J 
or 

Nl (1 r = Kt-
Yt 

Ruttina 

The rate of increase of permanent strain in each layer of a pavement due to repeated wheel 
loads is considered to be proportioned to the resilient strain according to the rule: 

where = 
= 
= 
= 
= 
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ae 
-

4 = (J.L N-") · e aN ' 

the permanent strain 
the number of load cycles 
the resilient vertical strain 
the permanent strain coefficient 
the permanent strain exponent 



The vertical compression of each pavement layer is: 

where Pi 

Eri 

~ 

= 

= 
= 

Nt-«, 
P' = Jl, e" - h, l-ex1 

the contribution of layer i to the total vertical compression of 
a pavement. 
the resilient vertical strain in each layer. 
the thickness of each layer. 

The total vertical compression is: 

p = 

The rate of increase of the permanent lateral displacement in each layer is assumed to be 
of the same form. 

where: 1a = 
-y(r) = 

the permanent shear strain 
the resilient shearing strain at a horizontal distance, r, from the 
center point of load application. 

The lateral shear flow in layer i is given by: 

,,.,.. h ay II dr = h ("a+G (ON y(r) p.N-· aN dr 
Jo I aN I Jo Jc 

= h, IJ)/1-fl ror,+G y(r) dr 
l-ex J, 
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where: a = the radius of the loaded tire footprint area 

h aya dr = 
' aN 

The rut depth due to this lateral shear flow is proportional to it so that 

c3w 
Y • _a 

a ar 

where: = the accumulated vertical displacement due to lateral shear flow. 

Ya dr • c3wa 

For each layer, the increment of rut depth is proportional to 

... RD 3P h J1Nl-« z, 
[ 

2 

~ 1allnrJl jiiTw oc -- l 
2xE 1-cz [(r, + a2) + zi'J3fl 

and the total rut depth due to lateral flow is proportional to 

3P II 

RDllztDvljiiTw oc 2- L 
·- 1•1 

E1 (1 - cz1) 

z, 

I 
2 

If P = 1t q a 2 then 
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Because the permanent strain coefficient, P.i, is approximated by 

(
d)l-Cl 

Jl, = c (l-ex) ; 

another expression for the rut depth due to lateral flow is 

_ 3qa 2 ~ hi ( dN)l-a:, 
RD-C-L..J--

2 i•l E1 S 

1 - -
z, 

Damaae 

In general, damage is normalized distress, beginning at 0.0 and reaching an unacceptable 
value when it reaches 1.0. The loss of serviceability index is usually treated in this way. 

where g(N) = 
Pi = 
Pt = 
p(N) = 

g(N) = 
p, - p(N) 

p,- P, 

damage ratio 
the initial serviceability index 
the terminal serviceability index 
the current level of serviceability index 

The damage ratio is considered to increase with the number of load cycles, N, and the 
deflection of the pavement under load: 

(
Nil. )JS g(N) = p 

where p, p = regression coefficients 

Clusters of Terms for Pavement Performance Prediction 

Assembling all of the information that has been presented thus far permits the development 
of equations descnoing pavement performance and including clusters of terms that are 
dictated by what we have learned in mechanics. 
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Alli2ator Crackin2 Clusters 

The number of load cycles to failure, N r' is given by: 

where Ct, ~ ~ and c4 are regression coefficients 

The regression equation by which these coefficients are determined is: 

log N1 = log c1 + c2 log (x1) + c3 ~log (~ + c4 ; log (_xJ 

where 

.%1 = 2 h1 a, s 

h 1/l 1/l 

.%2 = 
1 Et E$ 

qalfl 

1 
~ = 

The terms x1, x21 and x3 are the clusters of terms which are appropriate to use in predicting 
the -umber of load cycles, Nr, to reach a specific level of alligator cracking. 

If the maximum shearing strain criterion is used to relate to the number of load cycles to 
reach failure, the equation to be used is: 

N = ct ("-- a2 s)t; ( 16 Es )GK:z . [ (~ J5 r:..ti 
I t 3 E111l n.lfl q a2 (r•+z.l' r•z.t_r•+z.J 
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where c1, ez, C:3, and c4 are regression coefficients to be determined. The regression equation 
to be used for this purpose is: 

log N1 = log c1 + c2 log x1 + c3 Kz log~ + c4 Kz log~ 

where the cluster variables x1, X:z, and x3 are: 

~ = 
16 
3 E lf'l h lf1. q a2 

1 1 

• r = the radius at which the shearing strain, -y, is maximum at the 
transformed depth, zi. 
(r)2 + (zJ2 

The value of K2 to be used in either of these expressions is: 

2[w
11 

y, + (l+w)y
11 

V aJ 
Kz = 

where Wa 

Vm: 
"Ya 

1t 

= 
= 
= 
= 

WG "ft 

the asphalt content, by weight (decimal) 
the air voids (decimal) 
the unit weight of asphalt cement 
the density of asphalt concrete 
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Ruttin2 Clusters 

The regression equation for predicting rutting due to vertical compression is of the form: 

RD = c
2 

[q t p,]c, 
l•l 

or 

RD = C1 + C2 [q t P;l 
1•1 

In either form of equation, the term ql:pi represents the sum of the contributions to the total 
rut depth of each of the layers. When it is written out to show the cluster terms, it is as 
follows, in the preferred logarithmic form: 

The Zi used in this equation is different from the ~ used in the fatigue equations. Here, the 
~ is the transformed depth to the center of layer i. 

The regression equation that is used to determine the coefficients ~ and C:3 is: 

log RD = log c2 + c3 log ..r1 

In this case, the single variable, x1, is composed of the sum of clusters of terms, each cluster 
being related to one layer in the pavement. In other words, 

.%1 = q [yl + y2 + y3 + •••• + y.J 
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where q = the tire pressure 

Yt = !2 ( dNrl [ ( z, 2 
+ a

2
)
312 - z, '] 

E1 s ( z-
1 

2 + a2)3f2 

y2 = "' ( dNrt z, 2 + a"J'f2 - z, '] 
E2 s ( z; 2 + a2)3f2 

The terms d, N, s, a, hi, and Ei have been defined previously, except for the term, h 51 the 
depth of the subgrade. Technically speaking this depth should be infinite and would imply 
an infinite depth of rutting. Since the rut depth is limited to the observed value, hs (one 
value for all sections) must be selected to be a finite value which represents the depth within 
which significant rutting occurs in the subgrade. 

However, it can also be used as a trial-and-error non-linear regression coefficient, altering 
hs between regression runs to find the value that maximizes the R2 and minimizes the sum 
of squared errors between the observed and predicted values. 

The form of the equation for rut depth due to lateral flow, when written out in the preferred 
logarithmic form is 

-2 z, 1 

z, 

c, 

The regression equations that is used to determine the coefficients C4 and C5 is 

log RD = log C4 + C5 log X;z 
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In this case, the single variable, x2, is composed of the sum of clusters of terms, each cluster 
being related to one layer in the pavement. In other words, 

where 

x2 = qa 2 [t1 + t2 + t3 + ..•...••• + t.J 

q = tire pressure 

a = radius of tire footprint 

-2 
Zt 

-2 
~ 

1 

1 

Zz 

1 

Combinations of the two models can be made by simply adding together the Yi - terms and 
the a2 ~ - terms. An example of this would be 

xl = q [Yt + Y2 + Y3 + a2 
(tl + t2 + t:J] 

Different combinations of the Yi - terms and the a2 ~ - terms may be tried to determine 
which provides the best fit to the data. 
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Serviceability Loss Dama&e Clusters 

The amount of damage to pavements represented by a loss of serviceability index from its 
initial value, pi, to its present value, p, is: 

Pt- P 
g = 

Pt- P, 

The damage ratio, g, is considered to be proportional to the product of N, the number of 
load cycles, and the deflection under the load, A. The equation for serviceability index 
damage may be of the power law form or the exponential form. 

g = (~A)' (Power Law) 

(Exponential) 

In the exponential form, the coefficient, c, is [pJpi - pJ and the coefficients p and p are to 
be found by regression analysis in both forms of equation. In the power law form, the 
regression equation is: 

In g = p In %1 - p In p 

In the exponential form of equation, the regression equation is: 

-tn(!) = Plnp-p1nz1 

The single variable is x1 which, when written to show the clusters of terms is: 

~ N q a1 

%
1 

= 4 I ( E )1/3 
E.r L - 1 

h1 
t•l E.r 
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Here, as with the case of rutting, a depth of subgrade must be assigned, or may be found 
by a trial-and-error, non-linear regression analysis method. It is also possible, by having 
values of g corresponding to several values of N for a single pavement, that unique values 
of p and {j may be determined for that single pavement. By determining values of p and 
{j for a collection of pavements, regression equations for p and {j which incorporate the 
layer thicknesses and moduli of the pavement may be developed. 
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where 

Appendix A 
Clusters due to Environmental Effects 

Effect of Temperature 

The moduli or the strength of materials Eo, E1, ••• .Ej ..... all depend upon temperature 
as follows: 

Edi = the datum modulus or strength 

If the temperature varies, the modulus varies, and the average modulus is: 

q = number of time periods 

1 

define the mean temperature by the relation: 

Ed/ = Ed/ ~ 1 

1" q {:{ T~:" 

271 



Thus, the mean temperature is: 

This form of mean temperature equation needs to use a temperature datum that is below 
the lowest temperature that the pavement will experience. 

T = 
1 

]

1/n 
1 q 1 -1:-
q i-1 T: 

This value of T can be used in any regression equation where temperature affects the 
stiffness or strength of the material. 

Another mean temperature relevant to rutting centers around the freezing point of water 
where the strength of soil material goes nearly to zero when thawing occurs. 

or 

T in oc 

The rutting or permanent strain or deflection that occurs is inversely proportional to the 
strength. 

RD= J 
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1 

oc 

SJ 

q q 

1: ARD1 = cE 
k•1 i-1 

c 
q 

RD.= 
J 1: sdj i-1 

1 

S dJ (Tt-32)" 
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The average temperature factor, ex, is given by 

1 ex = 

1 :E 1 
[ 

q ]1/11 

q J:·i (T1 - 32)" 

Effect of Rainfall and Climatic Moisture 

As the rainfall increases. the strength and stiffness of a moisture susceptible material 
decreases. Thus, 

where 
Rk = the amount of rainfall in_ time period, k 

Edj = the datum modulus (or strength) for layer j 

Ejk = the modulus (or strength) for layer j and time period k 

The mean modulus (or strength) is 

= Ed/ ~ 
EJ LJ 

q k-1 

The mean rainfall is 

R = 1 

1 

R" f: 

H monthly moisture balance is used to represent the climatic moisture and includes both 
rainfall and evapo - transpiration such as in the computation of the Thomthwaite Index, the 
calculations follow the same pattern as before. 

~.t = Ed/ (T1 - T)-" 
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where 
= 

= 

the monthly moisture balance 

the datum moisture balance which is lower than any other 
moisture balance amount It will usually be negative. 

The mean moisture balance is 

1f = 1 

H what is to be represented has the strength or stiffness in the denominator, the average 
temperature, rainfall, or Thomthwaite Index moisture balance term to be used will be 
somewhat different. 

where = 
= 

1 q 

I: 
q k•l 

1 

E T.-" 
d k 

the number of time periods 
the datum modulus or strength 

The mean value of the temperature in this case is obtained from 

1 
q 

T" = E T: 
q k•l 

and 

(~ 
f r T = I: T: 

i-1 
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Appendix C 

Technical Memorandum by Dr. Michael I. Darter and Dr. 
Emmanuel Owusu-Antwi, July 10, 1992, "Identification of 
Mechanistic Variables and Clusters for Concrete 
Pavement Distress Models" 
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-~CS.Nc. Education • Research 

TECHNICAL MEMORANDUM 

TO: Robert Raab, Brent Rauhut, Robert L. Lytton 

FROM: Michael Darter, Emmanuel Owusu-Antwi ~ 
P020 Contract, ERES Consultants, Inc. 

DATE: July 10, 1992 

• Engineering Services 

SUBJECT: Identification of mechanistic variables and clusters for concrete 
pavement distress prediction models 

INTRODUCTION 

This memorandum identifies the mechanistic variables and clusters of variables 
that are believed to be related to three concrete pavement distress types including 
transverse cracking, faulting of doweled joints and faulting of non-doweled joints. The 
mechanisms of other distress types are not as well known and, thus, prediction must be 
approached in a more empirical manner through conventional regression techniques, 
although some potential explanatory mechanistic variables may be included in these 
models to the extent possible. 

Some Definitions As Used In This Memorandum 

Dependent variable- pavement distress, such as transverse cracking and joint 
faulting. 

Independent variable- any individual item such as slab thickness, concrete 
strength, mean annual temperature and number of single axle loadings of a 
certain weight. 

Primary response variable- a mechanistic type variable such as slab stress, strain, 
or deflection; and horizontal opening and closing of joints/ cracks. 

ERES Consultants, Inc. 8 Dunlap Court Savoy, Illinois 6187 4-9501 

Telephone (217) 356-4500 FAX (217) 356-3088 
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Ouster- a mathematical combination of two or more independent variables such 
as slab bending stress (a mathematical combination of slab thickness, k-value, 
wheel load, modulus of elasticity, etc. Note that stress is also a primary response 
variable.), the ratio of modulus values of successive layers (El/E2), joint load 
transfer, concrete bending stress/strength, or joint opening/dosing from 
temperature changes. 

Mechanistic-Empirical (M-E) distress prediction model- a mathematical model 
relating a particular distress to one or more primary response variables, clusters 
and/ or other variables. The functional form and boundary conditions are based 
upon past knowledge of theoretical studies and field observations of the distress, 
and the variables and clusters included in the model are based on knowledge of 
the engineering mechanics behind the distress phenomena. The unknowns (or 
constants) are derived from regression techniques using in-service highway 
pavement performance data. 

Goals For The Predictive Models And Background Information 

Main goal: to maximize the possibility that a predictive model will accurately 
predict the development of distress over a wide range of conditions in as much of a 
cause-and-effect relationship as possible. To achieve this, the following model 
characteristics are desired:(3) 

• Correct overall functional form with time (age) and traffic applications. 

• Proper boundary conditions at minimum and maximum points (e.g., at 
minimum point, 0 traffic gives 0 faulting). 

• Proper direction of all variables (must not contradict the principles of 
engineering mechanics). 

• Ideally, the independent variables included should be related to the 
distress in a cause-and-effect sense so that the models have as much of a 
rational scientific foundation as possible (this is the subject of this memo). 

The independent variables included in the models are extremely important. 
Ideally, these variables should include one or more primary response variables (stress, 
strain, deformation) in a cause-and-effect relationship. 

For example, transverse cracking in a concrete slab is believed to be related to the 
magnitude of tensile stresses caused by traffic load, thermal curling and other causes. 
However, slab cracking is also known to be related to other factors such as concrete 
strength and the number and magnitude of stresses applied. The exact relationship 
between the stress magnitudes, number of stress applications, the concrete strength and 
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the occurrence of cracking is obviously a very complicated mechanism and theory has 
not yet completely explained all of the mechanisms involved. 

This is where field data becomes very valuable in bridging the gap between the 
limitations of theory and actual cracking as observed in the field. After the functional 
form and boundary conditions have been determined and the individual variables and 
clusters of variables have been identified, regression techniques are used to "calibrate" 
a prediction model (or solve for one or more constants using the field data). This M-E 
type model will have then some "built-in" scientific basis and may well provide better 
predictions outside of the relatively narrow inference space that the database provides. 

PAVEMENT TYPES AND DISTRESSES 

The SHRP LTPP P020 contract includes the development of predictive models for 
key distress types for three types of conventional concrete pavements: 

Jointed plain concrete pavement (JPCP) 

Transverse cracking, all severities 
Longitudinal cracking, all severities 
Pumping/ erosion 
Roughness, IRI 
Friction loss 
Joint faulting (doweled and non-doweled joints) 
Joint spalling 

Jointed reinforced concrete pavement (JRCP) 

Transverse cracking, mediwn/high severities 
Longitudinal cracking, all severities 
Pumping/ erosion 
Roughness, IRI 
Friction loss 
Joint faulting (doweled joints) 
Joint spalling 

Continuously reinforced concrete pavement (CRCP) 

Localized failures (punchouts, deteriorated transverse cracks) 
Longitudinal cracking, all severities 
Pumping/ erosion 
Roughness, IRI 
Friction loss 
Spalling of cracks 
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Previous research studies have determined that some of these distress types are 
related to "primary response variables" such as stresses, strains and deflections at specific 
points in the concrete slab (e.g., edges, comers, dowel/ concrete interface). In addition, 
past research studies have also identified some of the mechanisms involved in their 
development. For these distress types, this knowledge will be very helpful in identifying 
the variables and mechanisms involved in formulating the M-E predictive models. 

Distress Types Amenable To Mechanistic-Empirical Model Development 

The following distress types are related to one or more primary response variables 
and are believed to be amenable to mechanistic-empirical analysis for jointed concrete 
pavements: 

Transverse slab cracking: caused primarily by tensile and bending stresses from 
traffic loadings and climatic variables (note that this does not include the 
deterioration of cracks in JPCP or JRCP pavements which are caused by some 
different variables and mechanisms). 

Transverse non-doweled joint faulting: caused primarily by large transverse 
joint differential deflections (under load) across the transverse joint under certain 
climatic conditions that leads to pumping action and erosion of the underlying 
layers. 

Transverse doweled joint faulting: caused primarily by high dowel/ concrete 
bearing stresses at the face of the joint when wheel load is directly above dowel 
which wears away the concrete creating a gap at the top and bottom of the 
dowel. Then, the same mechanism described for non-doweled joints develops to 
cause faulting. 

Some of the other distress types such as joint spalling, the deterioration of transverse 
cracks in JRCP pavements, erosion/pumping and CRCP punchouts are also related to 
primary responses, but the mechanistic phenomena has not yet been adequately 
researched to consider them directly at this time. 

USE OF DIMENSIONAL ANALYSIS TO IDENTIFY VARIABLES AND CLUSTERS 

A useful concept that can assist in the identification of mechanistic type clusters 
that relate to primary response variables and thus to distress is that of dimensional 
analysis. Several publications have demonstrated that the principles of dimensional 
analysis can be utilized effectively in the interpretation of numerical data pertaining to 
pavement primary responses, such as stresses.(l, 2, 4, 5, 6, 9) 

Dimensional analysis is encountered in the works of pavement researchers such 
as Westergaard, Bradbury, Burmister, Odemark, Pickett, and Losberg. Previous research 
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has also provided considerable knowledge in the identification of governing 
dimensionless parameters for a variety of mechanistic variables. Table 1 summarizes 
these findings. 

The use of dimensionless variables to directly predict distresses may be useful 
when there does not exist a clear primary response variable, such as the case of faUlting 
or joint spalling. It is not particularly useful for transverse cracking for example, because 
tensile stress can be calculated directly and used in the prediction model, rather than 
dimensional ratios such as a/1. 

TRANSVERSE CRACKING VARIABLES AND CLUSTERS 

Past research has shown that the development of transverse cracking distress in 
concrete slabs is the result of several external and internal tensile or bending stresses 
acting on the pavement slab. The major causes of these critical slab stresses are as 
follows: 

• Traffic load repeated stresses with differing magnitudes and rates of 
loading. 

• Thermal and moisture gradients through the slab causing tensile stresses 
at both top and bottom of the slab depending upon the gradient. 

• Friction tensile stresses (maximum at mid-slab) that result when the slab 
contracts but is resisted by friction along the base to slab interface. The 
main causes of slab contraction include (1) drying shrinkage of the concrete 
and (2) temperature changes in the slab. 

• Changes in slab support, either loss of support from pumping/ erosion, 
foundation settlement or foundation heaving. 

In addition to tensile stresses, concrete tensile or flexural strength is another 
variable that is closely related to transverse cracking of slabs. Variables and clusters 
relating to both of these are presented. 

In conceptual form, transverse cracking is considered to be related to the 
following major variables: 

TRCRACK = 

Where: 

TRCRACK = 

f ( STRESS, STRENGTH, NO. LOAD APPLS.) 

Measure of transverse cracking (percent slabs, no. cracks/mi, 
ft./mi) 
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f = 

STRESS = 

STRENGTH= 

NO. APPLS = 

Functional relationship between cracking and independent 
variables, could be of several different forms (two different 
approaches will be considered: non-linear regression with 
proper functional form and incremental fatigue damage) 

Tensile stress in slab as function of traffic load, thermal curl 
and other variables 

Flexural strength of concrete slab at a given time after 
construction, psi 

Number of applications applied at a given load level and 
axle type 

Variables And Ousters For Tensile/Bending Stresses 

Slab Stresses From Traffic Loads 

There are two critical stress locations for transverse cracking: the longitudinal 
slab edge and the corner. The longitudinal slab edge (at the bottom of the slab) position 
is the conventional location of the critical stress that is used in design procedures for 
controlling transverse cracking. The corner load position can become critical under the 
following conditions: dowel bars are not used at the transverse joint or no tied concrete 
shoulder exists. In addition to this, any severe upward warping from moisture gradients 
or nighttime thermal gradients, or erosion of support beneath the slab will cause a very 
high tensile stress at the top of the slab that could result in a transverse or diagonal or 
corner crack. 

The edge stress at the bottom of the slab that will be considered herein can be 
calculated from Westergaard's 1948 model.(lO) 
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Se = [ 3(1 +u)P) I (fl(3+u)h2
) ] * [ln(Eh3 /100ka4

) + 1.84 

- (4/3)u + (1-u)/2 + 1.18(1+2u)(a/l)] 

Where: 

Se= Edge stress for circular wheel load tangent to edge, psi 
P = Applied wheel load (9 ,000 lbs., or 18-kip axle load) 
k = Effective k-value beneath slab (from backcalculation) 
a = Load radius (calculated using 9,000 lb. load and 100 psi pressure) 
h = Slab thickness (database) 
E = Slab modulus of elasticity (backcalculation) 
u = Poisson's ratio (0.15 assumed) 



----------------------------------------- --- -------

This equation was extended by Salsilli using regression analysis techniques to 
establish relations between dimensionless parameters and the edge (bottom of slab) 
bending stress (Se) occurring in a slab-on-grade subjected to multiple-wheel loading 
along one of its edges, distance from edge to outside of tire, slab length and load transfer 
efficiency as summarized in Table 2. Most of the models in Table 2 can be considered 
as multiplicative "correction factors" which are applied sequentially to Westergaard's 
edge stress equation. The purpose of each factor is to eliminate one of Westergaard's 
restrictive assumptions. 

Temperature Curling And Moisture Warping Stresses 

A thermal gradient or a moisture gradient through a slab results in the movement 
of the slab corners and edges either upward or downward, depending upon the 
direction of the gradient. This movement is resisted by the weight of the slab and the 
bond to the base which results in tensile and compressive stresses in the slab. The 
tensile stresses can by themselves, or in combination with load stresses .Jcause slab 
cracking. The following model can be used to compute thermal curl stresses at the slab 
edge.(13) 

scurl = 

Where: 

Scurl = 

B 
E 
c 
DT 

= 
= 
= 
= 

[ B * E * C * DT ] I 2 

curl stress, psi 
coefficient that depends upon L/1 ratio reproduced in Figure 1 
modulus of elasticity of concrete, psi 
coefficient of thermal contraction of concrete, degree F 
temperature differential through slab, degrees F 

Moisture gradients through slabs begin at the time of construction due to the top 
becoming dryer than the bottom which is almost continually damp. In addition, if poor 
curing occurs resulting in a very dry slab surface, permanent severe warping of the slab 
will occur with the corners warped upward. If the base is relatively soft, the slab may 
settle somewhat into the base and relieve the effects of this warping, but this may not 
occur for stabilized bases. Very little work has been done in determining moisture 
gradients in slabs in different areas of the country. Mathematically, moisture warping 
can be considered similar to a negative thermal gradient in a slab, and thus the same 
cluster variables are involved. Moisture warping cannot be directly considered in this 
analysis due to a lack of data on moisture gradients. 

Traffic Load And Temperature Curling Stresses 

The stresses from load and temperature curling cannot be directly added together. 
In fact, the combining of these stresses is a highly non-linear problem due to the 
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changing support conditions beneath the slab as the slab curls upward or downward. 
The latest model for predicting the combined stress is that developed by Salsilli (9) 
under NCHRP Project 1-26. Models for stress caused by load and by thermal gradient 
were developed separately, and then they were combined using using the finite element 
program ILLISLAB. 

Scomb = ~oad + R * Scurl 

Where: 

scomb 
sload 
scud 

B 
E 
c 
DT 
R 

= 
= 
= 
= 
= 
= 
= 
= 
= 

combined edge stress, psi 
Westergaard soluti~n for edge stress, psi 
curl stress given by following expression 
[ B * E * C * DT ] I 2 
coefficient that depends upon Lll ratio reproduced in Figurel 
modulus of elasticity of concrete, psi 
coefficient of thermal contraction of concrete I degree F 
temperature differential through slab, degrees F 
an adjustment factor 

The combined edge stress was computed from the ILLISLAB finite element 
program. Then regression techniques were used to develop the R factor which depends 
on many pavement parameters, including L (joint spacing), DT, k, h, B, E and 1 (radius 
of relative stiffness.(9) Therefore, the Scomb can be calculated in a closed form solution 
over a wide range of pavement and load variables with good accuracy. 

Stresses Caused By Slab Contraction (resisted bv base friction) 

Tensile stresses occur in a slab whenever the slab tries to contract because the 
movement is resisted by friction between the slab and base course. Slabs placed on a 
fine grained subgrade develop very little friction. Slabs placed on a stabilized stiff base 
develop a large amount of friction. Contraction of the slab can be caused by drying 
shrinkage during the early concrete curing time period, and also from decreasing 
tern per a tures. 

The classical model used to predict the maximum friction stress at the center of 
the slab is given as follows: 
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Sfrict = W L f I 24 h 

Where: 

= 
= 

tensile stress at slab center, psi 
weight of slab, lbslsf 



L 
f 
h 

= 
= 
= 

----------------

slab length, ft 
average coefficient of friction between slab and base 
slab thickness, in 

This stress is almost negligible for short slab JPCP type of pavement, thus it is not 
included in this analysis. 

Variables And Ousters Related To Concrete Strength 

In addition to stress, concrete strength is the other primary variable related to slab 
cracking. Slab cracking can occur in two ways: (1) a high tensile stress due to some 
combination of critical loading, climate or material (contraction) situation occurs which 
exceed the slab strength, or (2) fatigue damage accumulates as a result of multiple 
applications of different levels of stress to the point that a crack develops. 

One way in which to bring strength into the model is through the dimensionless 
stress/strength ratio. Flexural testing of concrete beams shows that the ratio of stress 
to strength produces a cluster term that relates linearly to the logarithm of applications 
to cracking as shown in Figure 2. 

Variables And Clusters Related To Fatigue Damage 

The stress to strength ratio provides a good dimensionless cluster to predict 
cracking when one level of stress is involved as previously shown. When multiple levels 
of stress exist, as in a concrete highway pavement, additional clusters must be included. 
Flexural testing of concrete beams has shown that Miner's (12) incremental damage ratio 
(Miners) provides a reasonable cluster that relates to cracking. 

DAMAGESUM = 

Number of ap~lied load applications having ith axle type, r 
axle weight, kt thermal gradient and lth concrete strength. 

Number of allowable load applications to initial cracking for 
ith axle type, jth axle weight, kth thermal gradient and lth 
concrete strength. 

This incremental damage ratio is actually a dimensionless "super cluster" of 
variables including all of those involved in slab stress and strength. The accumulated 
damage value is correlated with transverse slab cracking to provide for a prediction of 
cracking. This approach has been successfully applied since 1977 (7,9,11) for the 
prediction of transverse cracking caused by repeated load fatigue damage. Figure 3 
shows an example of the damage ratio versus transverse cracking for a large number of 
field slabs. 
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This approach provides a predictive model that sums "damage" ratios over 
specific increments of time, where materials and soil properties, thermal and moisture 
characteristics and traffic are constant within the increments but can vary between 
increments (e.g., time increments could be as small as a few hours). 

Example Model For Fatigue Cracking Of JPCP (S-Shaped Curve) (this curve form is 
based on the observation of cracking vs load repetitions or accumulated damage on 
actual pavements)(ll) 

CRACKING (percent slabs) = 1 I { 0.01 + a (b-Log DAMAGE)} 

Where: a and b are determined from non-linear regression techniques. 

• Possible Increments Over Which Damage Is Accumulated (due to 
database limitations, not all of these will be included) 

Thermal gradients (hourly thermal gradients over year) 
Moisture gradients (seasonal) 
Slab support (seasonal) 
Concrete strength (monthly) 
Traffic axle load distribution (single, tandem, tridem) 
Lateral truck traffic loadings (with regard to slab edge) 

• Data Required To Compute Damage (not all are required for this initial 
analysis) 

Slab hourly thermal gradients over a year time period 
Slab seasonal moisture gradients over a year time period 
Slab support k-value and base layer modulus over a year 
Concrete slab thickness 
Concrete slab thermal coefficient of contraction 
Concrete slab strength increase over design life 
Concrete slab E and Poisson's ratio over design life 
Axle load distribution over design life 
Lateral truck loading distribution in traffic lane 
Load transfer of longitudinal joint (if tied PCC shoulder) 

TRANSVERSE CRACK SUMMARY 

Variables 

The following variables are needed to develop the M-E models for transverse 
cracking. Where each will be obtained is given in parentheses. 
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P= 
k= 

a= 
h= 
E= 
U= 

C= 

L= 
N= 
FS = 

Applied wheel load (9,000 lbs., or 18-kip axle load) 
Effective k-value beneath slab (from backcalculation, estimate seasonal 
variation) 
Load radius (calculated using 9,000 lb. load and 100 psi pressure) 
Slab thickness (database) 
Slab modulus of elasticity (backcalculation, backcast over time) 
Poisson's ratio (0.15 assumed) 
Thermal coefficient of contraction of PCC slab (assumed based upon coarse 
aggregate type) 
Joint spacing (database) 
Number of 18-kip ESALs accumulated in traffic lane (database) 
Flexural strength at 28 days, third point loading, psi (backcasted from data 
obtained from coring results, or backcasted from backcalculation of slab E) 

G = Slab hourly thermal gradients over a year time period (computed using 
CMS program and data from climatic database) 

D = Lateral truck loading distribution in traffic lane, distance from slab edge 
(assume from existing data) 

LTs= Load transfer of longitudinal joint if tied PCC shoulder (measured by 
FWD, in database) 

W = Slab width, ft.(database) 

Clusters 

Stress = Tensile stress from load and thermal curling obtained from Salsilli 
(modification of Westergaard) 

Stress I Flexural Strength of concrete slab 

Miner's fatigue damage summation ratio 

JOINT FAULTING VARIABLES AND CLUSTERS 

Past research has shown that the development of joint faulting distress is in 
essence caused by repeated deflections from wheel loads at the transverse joint, 
particularly differential deflections across the joint. The differential deflection is defined 
as the deflection of the loaded side minus that of the unloaded side of a joint. The 
differential deflection is considered to be more closely related to faulting than load 
transfer since it represents an absolute difference in deflections as a wheel rolls across 
the joint, and thus, should correlate well with pumping and erosion beneath the joint. 
This differential deflection causes water to flow forward and backward beneath the joint 
at a high velocity which ultimately leads to erosion and a buildup of material under the 
approach joint causing faulting. 
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The major causes of high differential deflections (and high deflections in general) 
are as follows: 

• 

• 

• 

Repeated moving heavy traffic loads across the joint (particularly near the 
corner). 

Greater than perfect (zero) differential deflection that results from several 
causes, including joint opening when slab contracts, no mechanical load 
transfer device, enlargement of dowel socket from high bearing stresses. 
The main causes of slab contraction include (1) drying shrinkage of the 
concrete and (2) temperature and moisture changes in the slab. 

Negative thermal and moisture gradients through the slab causing corners 
and edges to curl/warp upward creating voids between the slab and 
stabilized base where moisture can accumulate and then pump under 
deflection. 

In addition to differential deflection, the erosion resistance of the base layer and 
also its permeability are other variables that are closely related to faulting. Also, the 
availability of free moisture beneath the slab and or treated base layer (sometimes 
erosion occurs beneath the treated base layer) is an important factor. Variables and 
clusters relating to these variables are presented. 

In conceptual form, joint faulting is considered to be related to the following 
major variables: 
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FAULT = f ( DIFFERENTIAL DEFLECTION, BASE ERODABILITY, 
MOISTURE AVAILABILITY, SLAB CURL/WARP, NO. LOAD 
APPLS.) 

Where: 

FAULT = Mean joint faulting, in 

f = Functional relationship between faulting and independent variables, 
could be of several different forms (two different approaches will be 
considered: non-linear regression with proper functional form and 
incremental faulting damage) 

DIF. DEF. = Differential deflection, difference between loaded side and 
unloaded side deflections as measured by the FWD, in 

BASE EROD = An index of the erodability of the base course 



NO. APPLS = 

SLAB CURL= 

Number of applications applied at a given load level and 
axle type 

Upward curling of corner under mean nighttime temperature 
gradient. 

Variables And Ousters For Deflections 

Corner Deflections From Traffic Loads 

The corner deflection is the largest deflection anywhere in the slab, and thus is 
the point at which the faulting mechanism is likely to be the strongest. to develop. The 
deflection of a free corner is given by Westergaard's equation: 

DEF = P { 1.1 - 0.88 (1.141 all) } I k 12 

Where: 

DEF= 

P= 
k= 
a= 

1 = 
= 

h= 
E= 
U= 

Free corner deflection under circular load tangent to the 
comer, in 
Applied wheel load, lbs. 
Effective k-value beneath slab, psi/in 
Load radius (calculated using 9,000 lb. load and 100 psi 
pressure), in 
Radius of relative stiffness, in 
[ E h3 I 12 k (1 - u2

) ]
0
·
25 

Slab thickness, in 
Slab modulus of elasticity, psi 
Poisson's ratio 

Rearranging this equation gives a dimensionless cluster: 

Def * k * F I P = f( a I 1 ) 

The major factors include the wheel load P and the k support modulus. In 
addition to these factors, the comer deflection depends greatly on the following: 

• load transfer of the transverse joint and longitudinal joint (100 percent load 
transfer decreases deflection by 50 percent and decreases differential 
deflection to 0) 
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• the amount of curl/warp of the slab at the corner 

• loss of support at the corner increases the deflection greatly 

The differential deflection across the joint is dependent on the transverse joint 
load transfer. A finite element program such as ILLISLAB or JSLAB can be used to 
show the effect of load transfer, curling and loss of support on corner deflection and 
differential deflection. A search is underway for a closed form solution that considers 
these factors directly. 

Faulting Of Non-Doweled Joints 

The differential deflection of non-doweled joints begins to increase with traffic 
loadings soon after opening to traffic (as load transfer decreases). It is highly dependent 
on the aggregate interlock of the joint, which in turn depends on maximum aggregate 
size (to produce large unevenness through the joint), the hardness of the aggregate to 
resist breakdown under repeated shearing from loads, and the width of the joint. 

Differential deflection also depends greatly upon the opening of the joint. Joint 
opening results in a loss of joint load transfer and an increase in the dowel bearing 
stress. The mean joint opening is a function of the thermal coefficient of contraction of 
the concrete, the friction between the slab and base, the slab length and the temperature 
change or shrinkage of the slab. The mean expected joint opening is given as follows: 

w=F*L(C*DT+e) 

Where: w = Joint opening, in 
L = Joint spacing, in 
F = Friction factor between base and slab (empirical data gives 

0.80 for granular base and 0.65 for treated base) 
DT = Temperature range (maximum July - minimum January), 

Degrees F 
C = Thermal coefficient of contraction of concrete (5 - 6*10-6 I 

degree F) 
e = Drying shrinkage coefficient of concrete over time (0.5 - 2.5 

* 104 strain) 

Dimensionless cluster= C * DT + e 

The amount of faulting of a non-doweled joint also depends upon the amount of 
moisture that is available beneath the slab. The number of days having precipitation 
greater than 0.1 in a year is one index for this variable. The amount of joint sealing is 
not believed to have much effect on the amount of moisture beneath a slab. 
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Faulting Of Doweled Joints 

Faulting of doweled joints can occur if the bearing stresses between the dowel and 
the concrete becomes too large and the concrete is worn away causing a gap at the top 
and bottom of the dowel. After the dowel loosens, the faulting mechanism would be 
identical to non-dowelled joints and described above. · 

Dowel bearing stress is calculated by the following model (8): 

BSTRESS = A(pavement) * B(load) 

Where: 

BSTRESS = Dowel/ concrete bearing stress, psi 
A = K (2 + B w) I (4 B3 Es I) 
B = P * %TL * fd 

K =modulus of dowel support 
B = K d I ( 4 ~ 1)0

·
25 

d = dowel diameter 
Es =modulus of elasticity of dowel 
I = Moment of inertia of dowel bar 
w =Width of joint opening (C*DT*L) 
C = Thermal coefficient of contraction of PCC 
DT = Temperature range 
TL =Joint load transfer 
L =Joint spacing 
fd =Distribution factor indicating how much of the transferred load 
acts on critical dowel bar 
P = Applied wheel load 

Rearranging this equation gives a dimensionless cluster: 

BSTRESS * (liB2
) I P = f { (2 + B w) I B d} 

The major factor that affects the bearing stress is dowel diameter and spacing. 
The larger the diameter and closer the spacing, the lower the bearing stress. Under 
heavy repeated loadings, small diameter dowels will loosen very rapidly to the point 
that the joint behaves like a non-doweled joint and faults significantly. 

Variables And Ousters For Faulting Model 

There are two different approaches to the development of faulting models. One 
approach is to use non-linear regression techniques to fit a model that fits the functional 
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form and boundary conditions. The other one is to develop an incremental faulting 
damage model, similar to that for cracking, that considers various increments of time 
and sums faulting over each increment. Either approach requires the identification of 
key variables and clusters. 

An example of the clusters that should be included in a non-linear mechanistic
empirical faulting model is illustrated below. This will be a non-linear model with each 
term likely having coefficients and exponents. 

FAULT = Net { a/1, LT, (2+B w)/(B d), C*DT+e, L/1, 

BASEet PRECIP, SUBDRAIN } 

Based on this expression, joint faulting is a function of traffic loadings (N), (cl is 
a regression constant that will be less than 1.0 to provide for the proper functional form 
of faulting with load applications), comer deflection (a/1), load transfer (LT) which 
controls differential deflection), dowel/ concrete bearing stress for doweled joints ((2+B 
w)/(B d)), joint opening (C*DT+e), base erosion (BASEe to be derived), precipitation 
(PRECIP) and subdrainage (SUB DRAIN). Further conceptual work is needed to develop 
a more fundamental approach to combining particularly base erosion, precipitation and 
subdrainage into cluster variables. 

JOINT FAULTING SUMMARY 

Variables 

The following variables are needed to develop the M-E models for joint faulting. 
Where each will be obtained is given in parentheses. 

292 

P = Applied wheel load (9,000 lbs., or 18-kip axle load) 
k = Effective k-value beneath slab (from backcalculation, estimate seasonal 

variation) 
a = Load radius (calculated using 9,000 lb. load and 100 psi pressure) 
h = Slab thickness (database) 
E = Slab modulus of elasticity (backcalculation, backcast over time) 
u = Poisson's ratio (0.15 assumed) 
L = Joint spacing (database) 
N = Number of 18-kip ESALs accumulated in traffic lane (database) 
G = Slab hourly thermal gradients over a year time period (computed using 

CMS program and data from climatic database) 
Lts= Load transfer of longitudinal joint if tied PCC shoulder (measured by 

FWD, in database) 
K = modulus of dowel support (assume 1,500,000 psi/in) 
d = dowel diameter (database) 



Es = modulus of elasticity of dowel (assumed 29 million psi) 
I= moment of inertia of dowel bar (calculated) 
w = width of joint opening (calculated) 
TL = joint load transfer 
fd = distribution factor indicating how much of the transferred load acts on 

critical dowel bar 
F = friction factor between base and slab (empirical data gives 0.85 for granular 

base and 0.8 for treated base) 
DT =temperature range (maximum July- minimum January), Degrees F 
C = thermal coefficient of contraction of concrete (5 - 6*10-6 I degree 

F)(assumed based upon coarse aggregate type) 
e = drying shrinkage coefficient of concrete over time (0.5- 2.5 * 104 strain) 

Ousters 

Corner Deflection = 

Differential 
deflection 

Joint deflection 
load transfer 

Dowel/ concrete 
bearing stress 

= 

= 

= 

Slab corner curling = 

SUMMARY 

Westergaard comer model, modified to consider joint 
load transfer 

Difference between loaded and unloaded side of joint, 
determined from above modified model 

Unloaded side deflection divided by loaded side 
deflection 

Calculated from modified Westergaard's equation with 
various assumptions 

Equation for uplift of corner from negative curling 
gradient (from German research) 

The variables and their arrangement in a predictive model is very important. This 
memorandum identifies the mechanistic variables and clusters of variables that are 
believed to be related to selected concrete pavement distress types. This approach builds 
upon past work with regard to the development of theoretical mechanisms that cause 
distress in concrete pavements and in the development of M-E prediction models. The 
concepts included in this memo will be useful in the development of the M-E models 
during the initial analysis of the L TPP P020 data. · 
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Figure 1. Variation in the differential temperature stress coefficient C with B/l (60). 
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Table 1. Governing Dimensionless Parameters for Concrete Pavements. 

BRIEF 
DESCRIPTION 

Load Size Ratio 

Slab Size Ratio 

Normalized Load 
Placement Distance 

N ondimensional Deflection 

Nondimensional Subgrade Stress 

N ondimensional Bending Stress 

Tire-print Spacing Ratio 

Linear Thermal Differential 
Product 

Nondim. Joint Stiffness 
(undoweled joint) 

Non dim. Joint Stiffness 
(doweled joint) 

Modular Ratio for 
Base Layer Evaluation 

SY).1BOLS USED: 

DIMENSIONLESS REFERENCES 
VARIABLE 

(a/f) [20] 

(L/l) [28; 24] 

(D/l) [41] 

( okl2/P)or 
(oD*/PZ2) [22; 20] 

(ql2/P) [54; 20] 

( ah 2/P) [28; 20] 

(S/a) [25] 

aJ.T [7] 

(AGG/kl) [55] 

(D'/skl) [56] 

(Ec/Eb) [43] 

a:, ,load radius; l: radius of relative stiffness; L: slab length; D: load placement distance from 
slab edge; o: deflection; k: sub grade modulus; P: total applied load; D *:slab flexural stiffness; 
q: subgrade stress; a: slab bending stress; S: tire spacing; a: coefficient of thermal expansion; 
.1 T: linear temperature differential;A GG: aggregate interlock factor;D': spring-in-series joint 
stiffness; s: dowel spacing; Ec:slab modulus; Eb:base layer modulus. 
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Table 2. Proposed Formulae (After Salsilli [45]). 

Westergaard (1948) Edge Stress Equation: 

aw = 3(1+JJ)P [ln~+l.84- 4.U + 1-JJ +1.18(1+2,u)(a/l)) 
esc 1r (3 +,u )h 2 lOOka • 3 2 

Alternate Formula for (a/!)> 0.5: 
a 
~ =1-0.0621(a//)2+0.131(a/l)l 
awcsr 

Equivalent Radius for Duals, SpacingS (Perpendicular to Edge): 
N=20; R 2=1; COV=1.2%. Limits: O<(S/a)~O; 0.05::S(ajl)::S0.5 

a 
....5.=0.909+0.339485(S /a) +0.103946(a/l) -0.017881(S ja)2 

a 
-0.045229(S /a )2(a /I) +0.000436(S I a )3 

-0.301805(S ja)(a/1)3 +0.034664(5 / a)!(a /1)2 +0.001(5 fa) 3(afl) 

Equivalent Radius for Tandems, Spacing t (Parallel to Edge): 
N=16; R 2=0.997; COV=2.1%. Limits: 4::S(t/a)Sl6; 0.05s(a/l)s0.3 

a 
_!!!.=2.199479+0.74761 ln(t/a) ln(a/1)+0.548071 Jn!(tfa) 
a 

-0.486597 ln2(t/a) •ln(a/l) -0.:9507 ln3(t/a) -0.028116 ln3(a/l) 

Effect of .A:de Wuith D (Perpendicular to Edge): 
N=28; R2 =0.995; COV=6.9%. Limits: 0.13::S(D/l):53: 0.05::S(ajl)::S0.3 

a 
_o_ = -0.15743211 +0.:6935303(a/l) +0.3576-+4(1/D) 
awesc 

-0.0589073(l/D) 2+0.003486(!/D)3 

Effect of Slab Size, Length L (Parallel to Edge): 
N=U; R2 =0.996; COV=O.:Z9%. Limits: 3::S(L/l)::S5; 0.05::S(a/l)::S0.3 

a 
_L_ =0.582282-0.533078( a /I) +0.181706(L /!) -0.019824(L /!)2 

awesc 
+0.10905l(a /I) (L //) 

Effect of Load Transfer Efficiency, Aggregate Interlock Factor AGG: 
N=16; R2 =0.988; COV=2.45%. Limits: S:::;fAGGjkl); 0.05:::;(ajl):::;0.3 

a 
~ =0.99864-0.5123/(a/l) -0.0762 ln(AGG /kl) 
aw_ 

+0.00315 ln:(AGG /kl) +0.015936(a//) 2 ln2(AGG /kl) 

Alternate Formula Csed for (a/1)>5: 
(1 

~=1.04284-0.84692(a/l) -0.09299 ln(AGG/kl) 
awcsr 

+0.06837(a/l) ln(AGG jkl) +0.63417(a /1) 2 

+0.0042 ln2(AGG /kl) -0.000629(ajl) ln(AGG /kl)3 



Appendix D 

Technical Memorandum by Dr. Olga J. Pendleton, April 
27, 1992, "Statistical Methodology for LTPP Data 
Analysis" 
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TECHNICAL MEMORANDUM 

DATE: April 27,1992 

AUTHOR: Olga J. Pendleton 

SUBJECT: Statistical Methodology for LTPP Data Analysis 

The statistical methodology recommended for developing pavement 
distress models for the LTPP data analysis encompasses a wide variety of 
statistical tools and software. The discussion which follows are the 
methods presented in a tutorial given at Texas A&M University in November, 
1991 to prospective LTPP data analysts. 

The data analysis procedures will follow a systematic sequence of 
steps, as depicted in the flow chart of Figure 1. These steps will further 
be explained in the sections which follow. 

The first essential step is the identification of potential explanatory 
variables to be used in the predictive equations for pavement distress. 
Statistically, these explanatory variables are referred to as "independent" 
variables, although, in reality, there is a great deal of dependency known 
to exist both between these variables and the pavement distress variables 
(dependent variables) and among the explanatory variables, themselves. The 
explanatory or independent variables are generically referred to as "x's" 
and the dependent variables, "y's". Some of the explanatory variables may 
actually be clusters representing a numbers of individual pavement 
characteristics or properties. 

After i dent i fyi ng both the dependent and independent vari ab 1 es and 
their relationships, the second step is to examine the observed variables 
(the data) for potential distributional problems. That is, statistically, 
certain assumptions are required in order that the statist i ca 1 method 
produce valid and reliable results (conclusions). Sometimes these 
assumptions are valid for the bulk of the data but appear to be invalid 
because of a few "unusual" data elements. Often these unusual data elements 
can be tracked down and found to be erroneous, in which case they can be 
deleted or corrected (transcription or measurement errors). Other times 
they may lead to the identification of another explanatory variable that was 
inadvertently omitted from the model definition. In any case, it is 
essential that statistical procedures be used to identify such data 
anomalies. 

The second flow chart procedure of Figure 1 refers to procedures which 
will identify these 'unusual' data points or other problems for each 
variable separately (univariately). However, a data point may be within 
acceptable limits for two variables separately yet, the pair of values, be 
"unusual". To detect these types of "paired" anomalies, bivariate 
procedures are required (box 3 of the flow chart of Figure 1). 
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The final step in the analysis which includes the development of 
distress models and sensitivity analyses, is termed, collectively, 
multivariate analyses. There are several analyses involved under this 
umbrella with the ultimate objective being the development of pavement 
distress models along with ranges of sensitivity of the parameters to 
provide the initial step for long range pavement distress modeling and 
prediction. 

1. Identification of pavement distress model variables and their 
interrelationships 

Both dependent (pavement distress) and independent (explanatory) 
variables must be considered in this step. In order to apply the 
statistical methodology of least squares regression analysis, certain 
assumptions must be met. 

Regarding the prediction variables, the assumption of independent, 
normally distributed random variables is essential. For example, distress 
variables such as rutting, transverse and alligator cracking, etc. must 
follow a normal probability distribution. That is, the degree of distress 
among pavements must evenly distribute itself about some mean value. This 
assumption is obviously questionable when combining pavements with some 
distress with a large number of pavements with no distress. The assumption 
is more tenable for degree of distress given some distress has been 
measured. Measured is a key word here as some pavements with no distress 
recorded or "measured" may, in fact, be distressed only not to the extent 
that it can be measured. This issue will be further addressed in the 
analysis procedures to be presented. 

In order to satisfy the normal distribution assumptions for pavement 
distress, a two-stage model building process is proposed. The first step 
is to identify those explanatory variables which best predict whether or no 
a pavement will have measurable distress by finding the best model that 
discriminates between distressed and non-distressed pavements. The second 
step is to use only the data from those pavements that have distress and 
determine which explanatory variables best predict the degree of distress. 
For this stage, transformations of the distress are recommended as follows: 

alligator and transverse cracking - transform to % area cracked by 
severity levels and take natural logs 

rutting - convert to a ratio of rut depth relative to a threshold value 
of .5 and take natural logs 

. 
Initially, the second stage models may not be too informative as for 

some types of distress, there is very little data, i.e. very few pavements 
that have any measurable distress. As more time elapses and more of the 
non-distressed pavements show distress, these models may be more meaningful. 
Also, as more data is collected, more sophisticated statistical methods may 
be used such as modeling the time to distress and using censored procedures 
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for pavements for which we do not know time of distress. 

Independent variables pose a real challenge. Although these variables 
are not required to follow any particular probability distribution, There 
are many known and hidden interrelationships among these variables which can 
cause serious problems (collinearity) in least squares model building. The 
extent to which these interrelationships or correlations can be avoided will 
enhance the degree of reliability and predictability of the models. Hence, 
if known relationships exist based on sound engineering principals, these 
should be incorporated in the basic model structure. These known 
relationships will be referred to as "clusters". 

An example of a potential "cluster" is the deflection related variable 
DELTA: 

ll.= 9000N 

E lHl E'2 lH2 
ES ( ( _l) 3 + (-) 3 

ES ES 

If this relationship among asphalt stiffness and thickness and cumulative 
KESALs is , in fact, sound, then it makes far more sense to use the single 
explanatory variable DELTA as a candidate independent variable than the six 
separate measurements of stiffness, thickness, and KESALs. That is not to 
say that only Delta should be used in the model, it is just a single 
candidate representing six candidates. Other independent variables and 
other clusters will also be candidate independent variables to form a 
selection pool. The variable selection process will enable us to determine 
which of these variables and clusters are most significant in predicting 
pavement distress. An added feature of using the cluster approach, in 
addition to simplification of the model, is that it reduces the correlation 
(collinearity) among the independent variables. That is, the variables that 
go into the definition of DELTA are likely to be correlated among 
themselves. Hence, using the six measurements separately would introduce 
a degree of collinearity that could be avoided if only DELTA were used. We 
will see later that this collinearity can greatly distort a model's outcome 
or predictive abilities. 
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Another consideration in identifying potential explanatory variables 
is how to code them. For example, it is important that qualitative 
variables (descriptive variables such as region, wet/dry, etc.) be coded as 
indicator variables as opposed to quantitative variables (variables that 
have some magnitude such as % asphalt) whose values can be entered directly 
into the model. An example of this is region code. It would be incorrect 
to enter region code as a single explanatory variable with values 1,2,3 or 
4, because this implies some ordering and magnitude to the region code 
number, i.e. region 4 is "4 times greater" than region 1. The proper coding 
of such a variable would be to define three explanatory variables to define 
region (always one less than the number of categories of the qualitative 
variable). For region this could be done by defining Xl, X2, and X3 as: 

Xl=1 if region=l;else Xl=O 

X2=1 if region=2;else X2=0 

X3=1 if region=3:else X3=0 

Region 4 is implicitly defined as Xl=X2=X3=0. Now, by putting these 
variables into the model separately the following kinds of questions can be 
addressed: 

1. Is there a significant amount of cracking in region 4? (This will be 
the significance test associated with the intercept term.) 

2. Is the degree of cracking in region 1 equal to the degree of cracking 
in region 4? 

3. Is the degree of cracking in region 2 equal to the degree of cracking 
in region 4? 

4. Is the degree of cracking in region 3 equal to the degree of cracking 
in region 4? 

Other considerations in defining explanatory variables are 
transformations or the additions of quadratic terms and interactions. 
Sometimes, the omission of these terms or need for transformation becomes 
apparent in the model building process from the examination of residual 
plots. In general, interaction terms should always be included initially, 
especially interaction terms involving a quantitative variable and a 
qualitative one, unless there is strong reason to believe that such an 
interaction cannot occur. For example, if region code and % asphalt were 
both in a model, the interaction terms (i.e. the product of the x's) are 
measuring the slope between the degree of distress and % asphalt for each 
region. Omitting the interaction terms would be equivalent to forcing a 
constraint on the model which says that this slope must be equal for all 
regions and equal to the slope for region 4. This may, indeed, be the fact. 
However, by including the interaction terms first, one can address the 
question of equality of slopes and if they are in fact equal, then delete 
them from the model. 
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2. Examining both distress variables and explanatory variables 
independently 

The statistical term for examining variables one at a time is called 
univariate analyses. The objective of these analyses are: 

1. To examine the distributions of each variable 

2. To identify gaps in the data 

3. To identify unusual observations or measurements 

4. To identify potential functional forms 

The SAS procedures for doing these analyses are Proc Univariate and 
Proc Freq. Proc Univariate is for continuous variables, i.e. KESALs/yr, 
degree of rutting, etc. This procedure will produce descriptive statistics 
about the distribution of the variable such as means, variances, quantiles, 
max and mins, mode, median, skewness, kurtosis, etc. In addition, with the 
proper options, this procedure will produce plots of the distributions and 
box plots. Box plots are graphical means of identifying observations that 
are not within the bulk of the data. Proc Freq can produce two-dimensional 
frequency tables. This procedure is generally used with categorical-type 
data such as region, wet/dry, etc. These tables can assist in the 
identification of data gaps. 

All candidate variables and clusters should be screened using this 
procedure. In addition, the new distress variables should be created to 
identify pavements with and without distress. Then, the univariate 
procedure can be used with the BY statement to examine the distribution of 
a continuous variable or cluster, like DELTA, for pavements with and without 
a particular distress. 

3. Analysis of paired relationships among variables. 

The analysis of relationships between two variables is termed bivariate 
analyses. The purpose of bivariate analyses are: 

1. To identify correlation between two variables 

2. To identify observations that are unusual in both factors 
simultaneously 

3. To identify data gaps in both variables simultaneously 

4. To identify potential functional forms 

5. To spot data "clusters" 

The SAS procedures for doing these analyses are Proc Plot, Proc Carr, and 
Proc Freq. Proc Plot will provide scatter plots and a visual way of 
identifying data gaps, clusters, and relationships. Proc Carr will provide 
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statistical verification of any visual linear relationships in the form of 
the correlation coefficient. Proc Plot is primarily for continuous 
variables while Proc Freq attempts to do the same thing for categorized 
variables. The Chi-Square statistic and other measures of association can 
be used to statistically verify relationships among categorized variables. 

Again, these relationships should be examined not only on the 
collective data but for distressed pavements separate from non-distressed 
ones. 

4. Identifying relationships among many variables -modeling 

The statistical analyses of more than two variables is termed 
multivariate analyses. The purpose of these analyses are to: 

1. Identify relationships among groups of variables 

2. Build pavement deformation models 

The SAS procedures for conducting these analyses are Proc Reg and an 
in-house SAS routine for conducting a Principal Component analysis. The 
Proc Reg procedure will be used for two purposes: 

1. To identify those explanatory variables and clusters which best 
differentiate between pavements that do and do not have distress 

2. To identify those explanatory variables and clusters which best 
predict the degree of distress 

The Principal component analysis will provide a method for identifying 
unusual observations and collinearities (associations) in a multivariate 
way. In so doing, it may be possible to identify observations that are 
masking a problem, i.e. there may be a serious collinearity that is being 
hidden by a few unusual observations or these unusual observations may be 
causing an artificial collinearity that really isn't a problem. 
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BASIC STRATEGY 

The basic steps in performing the analyses and building the statistical 
models for describing pavement distress will be outlined here. There are 
five basic steps which will enable us to address the following questions: 

1. How do we •describe• distressed and non-distressed pavements 
in terms of potential physical and environmental factors that 
might relate to distress? 

EXAMPLE: What is the average age of pavements that do not have 
any measurable degree of alligator cracking and what is the 
average age for pavements that do have some alligator cracking? 

2. What is the relationship among potential explanatory variables 
that might relate to distress? 

EXAMPLE: Are AADT and asphalt thickness correlated or is asphalt 
thickness correlated to some function of other explanatory 
variables? Will this relationship cause problems in the modeling 
of distress or determining the sensitivity of the variables in the 
model? 

3. What variables determine the degree or extent of distress? 

EXAMPLE: What explanatory variables and/or what functional form 
of these variables significantly predict the amount of rutting in 
a pavement? 

4. How do distressed and non-distressed pavements compare? 

EXAMPLE: Do pavements with transverse cracking have the same 
traffic load as pavements with no measurable transverse cracking? 

5. Which variables significantly determine non-distressed 
pavements from distressed pavements? 

EXAMPLE: Is the percent of voids a significant factor in 
identifying pavements with some alligator cracking? 

The statistical steps for answering each of these questions, 
respectively, are presented below along with the statistical name for the 
methods to be used. 

1. Examine descriptive statistics of potential explanatory 
variables and clusters for each type of distress for: 
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All pavement sections 
Distressed sections only 
Non-distressed sections only 

Statistical method: Univariate analyses 

2. For any potential explanatory variables and clusters that are 
candidates for predictive models, examine their inter
relationships. These relationships can occur in three basic ways: 

1. Among pairs of variables (Pearson's correlation) 
2. One variable may be correlated with all other variables 

(Multiple correlation coefficient) 
3. Some subgroup of variables may be correlated (eigenvector 

analysis) 

These relationships should be examined for each type of distress for 

All pavement sections 
Distressed sections only 
Non-distressed sections only 

Statistical methods: Bivariate analyses 
Multiple regression modeling 
Principal component (eigen) analyses 

3. Build models (select important variables, build prediction 
equations,test sensitivity of the final equations) 

These analyses should be performed for each type of distress for 

All pavement sections 
Distressed sections only 
Non-distressed sections only 

Statistical methods: Regression analysis 
Diagnostic methods 
Sensitivity analysis 



4. Compare descriptive statistics -and distributions of 
explanatory variables and clusters for: 

All pavement sections 
Distressed sections only 
Non-distressed sections only 

5. Determine which variables best discriminate between 
distressed and non-distressed pavements. 

Statistical method: Discriminant analysis 

A very important question that ultimately needs to be addressed is: 

Which variables best predict time to distress or time 
to failure? 

In order to an-swer this question, pavements sections need to be 
monitored over time. At this point in our study, we will only have, at 
most, three points in time and for many sections, only one point in time 
(i.e. observed distresses from distress surveys over a period of two years). 
This is not sufficient data to a 11 ow us to address the above question. 
Eventua 11 y there wi 11 be sufficient data as determined by the number of 
pavements that show distress. That is, if within five years we can expect 
to observe that 50% of the pavements which currently have no distress as 
exhibiting some distress, then a five year period should be sufficient to 
allow for modeling the time to distress. Time to failure will be much more 
difficult to model. This will require a clear definition of what 
constitutes failure and will probably require a much longer observation 
period to observe enough failed pavements. 

At any rate, when sufficient data has been obtained, other problems 
will need to be addressed, namely censoring. Censored data is defined as 
data for which only partial information is available. In this application, 
our censored data will be those pavements which have already shown some 
degree of distress. The reason for this is that the key variable being 
modeled, namely time of distress, is not known for the pavements we have 
already found distress on. We know that at the time the study began, some 
degree of distress was observed. These sections still provide valuable 
information for the model but must be handled differently from those 
pavements for which we know the time of distress. Had we been able to 
observe that time, it would have been to the left (less than) of the time 
we observed the distress. This is known as left censoring. A second type 
of censoring is known as right-censoring. This occurs if the time to 
distress could not be observed because the pavement section had to be 
dropped from the study, for example, had to be resurfaced. The observed 
time to distress can never be realized and all we know is that at the time 
the section went off-study, it had not failed. The true time to failure is 
somewhere to the right (greater than the observed time) and hence the 
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observed time must be right censored. The statistical method to build these 
models of time to distress are Cox regression and survival analysis. 

Since we do have some pavements for which we have multiple points in 
time, these will be handled by our analyses as follows. Preliminary models 
will be built based on the initial distress surveys. These models will then 
be re-run or updated for all sections after the second distress surveys. 
That is, the model that discriminates between pavements that do and do not 
show distress will now have a shift of data from the group that did not 
show distress to the group that did. The effect of these sections, i.e., 
their explanatory variables, on the resulting discrimination model can then 
be assessed. When a third survey is made, another model update will be 
performed. Now even more sections will shift from the non-distressed group 
to the distressed groups. This type of sequential modeling should be 
performed throughout the time period that pavement sections will be 
monitored. The models will be revised as more information on distress is 
made available. 
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DETAIL ON STATISTICAL PROCEDURES 

1. Univariate analyses 

Univariate analyses consist of statistical methods for describing the 
distribution of continuous random variables. Examples of continuous 
variables for this study are cumulative KESALs, age, AADT, % trucks, etc. 
These distributions should be examined for all sections as well as for 
distressed and non-distressed sections, separately. A sample of the Proc 
Univariate output from SAS for one of the potential cluster variables, 
DELTA, is shown in Table 1. Figure 2 shows continued output from Proc 
Univariate depicting the frequency distribution, box plot, and Normal 
Probability plot. From Table 1, descriptive statistics such as number of 
sections (I90), mean delta (67I.5),standard deviation (I99.5053), etc. can 
be found. Figure 2 shows the distribution, which is somewhat skewed to the 
left. The box plot can be useful -in identifying outliers, the *and 0 1 s and 
the mean and standard deviation of the distribution (dashed lines). The SAS 
statements for generating this output are: 

PROC UNIVARIATE NORMAL PLOT; 
VAR XI X2 X3 X4 ETC.; 

To do this for each level of another variable, say YI where Y1 is 0 for 
pavements with no distress and Yl=I for pavements with distress, the BY 
option can be used if the data is sorted first, e.g. 

2. Bivariate analyses 

Correlation 

PROC SORT;BY YI; 
PROC UNIVARIATE NORMAL PLOT;BY Yl; 
VAR XI X2 X3 X4 ETC. 

The simple linear relationship between pairs of variables can be 
measured and statistically tested for significance using the Pearson 1 s 
Correlation Coefficient. This is a value between -I and 1 where -I denotes 
a strong negative relationship, +1 denotes a strong positive relationship, 
and 0 denotes no relationship. 

Tab 1 e 2 gives an ex amp 1 e of the output from SAS 1 s Proc Corr which 
estimates the correlation coefficient. The first number in the set is the 
estimate of the correlation coefficient, i.e., the correlation between DELTA 
and the log of alligator cracking (LDI) is .I9577. The second number is the 
p-value or the level of significance at which you would reject the 
hypothesis of no significant correlation. For the DELTA and LDI correlation, 
this value is .3088. If this value is less than .05, it would be concluded 
that the correlation is significant. In this example, the correlation 
between DELTA and LDI is not significant. The third number is the number 
of pairs on which this correlation was based, namely, 29 pavement section 
DELTAs and LOis. 
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Frequency Tables 

Classification variables such as wet/dry, region, etc. should be 
examined in pairs as to the distribution of sites by these variables. The 
statistic for measuring the association among these classification variables 
is Pearson's Chi-square. The SAS procedure to do this analysis is Proc 
Freq, and the required statements are: 

PROC FREQ; 
TABLES X1 X2 X3/cellchi2 all; 

Table 3 gives a sample output from this procedure for exam1n1ng the 
distribution of sites that did and did not have alligator cracking by wet 
or dry region. There· are four numbers in the table. The first is the 
number of sites in that cell, e.g. 94 sections in wet regions did not have 
alligator cracking. The second number is the proportion of sections in that 
cell relative to the total number of sections, e.g. 49.74% of the sections 
(94/189) had no alligator cracking and were in the wet region. The third 
number is the row percent, e.g. 59.49 % of the sites with no alligator 
cracking were in the wet region (94/158). The last number is the column 
percent, e.g., 82.46% (94/114) of the sections in the wet region had no 
alligator cracks. The marginal proportions (i.e. under headings of Total) 
tell how the data is distributed for one variable ignoring the other, e.g., 
83.60% (158/189) in this data set had no measurable amount of alligator 
cracking. These numbers can be useful in getting a feel for data gaps which 
ultimately will dictate the limitations of the statistical modeling 
procedures. 

Scatter Plots 

Scatter plots of variable pairs can be very informative and essential 
to identifying data gaps, model distributional requirements, etc. These 
plots should be examined for relevant explanatory variables and clusters. 
The SAS procedure for doing this is Proc Plot, and the required statements 
are: 

PROC PLOT: 
PLOT (X1 X2 X3)*(DELTA X4); 

This SAS statement will produce 6 plots, namely, Xl vs DELTA, X2 vs DELTA, 
X3 vs DELTA, X1 vs X4, X2 vs X4, and X3 vs X4. There are obviously many 
superior graphic programs other than SAS and any of these could be used in 
place of Proc Plot if desired. Figure 3 is an example of a scatter plot of 
percent trucks vs KESAL/year for all sections that had some alligator 
cracking. From this plot we see a potential outlier section that has an 
unusually high value for KESALjyear. 
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3. Multivariate analyses 

Regression analysis 

Ordinary 1 east squares regression models attempt to explain some 
dependent variable, y, in terms of many independent (explanatory variables), 
x's. The SAS procedure for doing this is called Proc Reg. 

PROC REG; 
MODEL Y=Xl X2 X3 X4 X5/P R INFLUENCE COLLINOINT VIF; 
OUTPUT OUT=NEW PRED=PRED RESID=RESID; 

These SAS statements will find the estimates for the model coefficients 
that will provide the best (least squares) fit to the data. The model 
corresponding to the above SAS statements is: 

Y=fJo +IJ,x, i +/J-zX21 +IJ3x3, +fl4x4i +llsXsi 

The statements following the I in the model statement request diagnostics 
for influent i a 1 observations and co 11 i neari ty. The output statement creates 
a file called "NEW" which will contain predicted values and residuals. This 
file can then be used in plot statements to plot the data: 

PROC PLOT DATA=NEW;PLOT (Y PRED)/OVERLAY; 
PROC PLOT DATA=NEW;PLOT RESID * (XI X2 X3 X4 XS); 

In the first plot statement, one plot will result with both the observed and 
predicted values on the same plot (OVERLAY option). In the second plot 
statement, 5 plots of the residuals vs each x value will result. These 
plots are very useful in identifying unusual points or in identifying 
possible necessary transformations and relationships (logs, quadratic terms, 
etc.) 

Table 4 presents the SAS Proc Reg output for modeling the degree of 
alligator cracking (i.e. no sections with zero cracking are included) as a 
function of 12 explanatory variables. The analysis of variance table 
provides information on the model's overall fit. In this example, this 
model does not provide a significant explanation for the degree of alligator 
distress (Prob>F=.3271, this value would have to be less than .05 for the 
model to be significant). There were 20 observations in this data set, OF 
for C Total + 1). The Root MSE can be used to compute the 95% prediction 
interval at the point where it is narrowest (at the mean of each x) as 
follows: 

315 



y:+l. 96~ MSE(l+ ~) 

Upper 95% Prediction interval: 

803.4 + 1.96{808.3943)(1.0246) = 2426.83 

Lower 95% prediction interval: 

803.4 - 1623.43 = -820.03 

This interval is interpreted as follows: We could expect, with 95% accuracy 
that the predicted total amount of alligator cracking would be between -
820.03 and 2426.83. Obviously, these are ridiculous numbers. This is 
because this model did not provide a significant fit to the data in the 
first place and the amount of error in this model (MSE) is extremely large. 
In practice, one would not even compute this prediction interval and would 
abandon this model in.search of another. The computation is presented here 
for purely illustrative purposes. 

Both R2 and adjusted R2 are provided on this output. These both measure 
the percent of the total variation in alligator cracking that is explained 
by the model. The adjusted R2 adjusts for the degrees of freedom in the 
model and is a more accurate estimate. For example, the unadjusted R2 of 
.7102 looks deceptively good in view of the fact that we know this is not 
a good model. However, the unadjusted R2 is only large because of the 
larger number of variables in the model (12) relative to the few 
observations (20). The adjusted R2 of .2133 is more realistic and adjusts 
for this fact. 

The model equation can be obtained from the column Parameter Estimate. 
The test of si~nificance for each model variable is shown along with its p
value (Prob > ITI). Any values less than .05 correspond to model variables 
which are statistically significant. No model variables are significant in 
this example. · 

The column labeled Variance Inflation measures the amount of 
collinearity in the model. If any of these numbers exceed 10, it means that 
there is collinearity. Model variables with a variance inflation factor 
greater than 10 are variables which, when regressed on all the other X
variables would have an R2 greater than .9. For example, XI has a variance 
inflation factor of I9.724. This means that XI is highly correlated with 
all other X variables. 
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Table 5 is the second page of output from PROC REG and contains 
additional information on the collinearity among the explanatory variables. 
The variance inflation factor merely identifies relationships between a 
given X-variable and all other X-variables. The collinearity diagnostics 
can find relationships among subgroups of explanatory variables. The SAS 
Proc option COLLINOINT produces this output. It is important to adjust for 
the intercept, hence the option COLLINOINT rather than COLLIN. 

To identify the source of the co 11 i neari ty, find va 1 ues under the 
column heading Eigenvalue that are close to zero. These are ordered largest 
to smallest. For this example there are two such eigenvalues, the 11th and 
12th with values of .05756 and .02086, respectively. The next step is to 
check the numbers in the columns labeled Var Prop XI, Var Prop X2, etc. Any 
large numbers in these columns reflect the weight of each X-variable in the 
association. Basically, these relationships can be defined as: 

where the ki's are the Var Prop values and the zero is the assumed value of 
the small e1genvalue. For this example, then, the relationship for the 12th 
(smallest} eigenvalue is: 

0.9363x1+0.5786x2+0.133x3 +0.007x4 +0.8152x5+0.189lx6 

+0.4884x7+0.7187x8+0.6318x9 +0.6327x10 + 

o .1743x11 +0 .oooax12=0 

This means that the major contributors to this relationship are x1 , x2 , x5 , 
x8 , x~, x10 , and x12 • Note that the second smallest eigenvalue identifies 
variables x,_L and x12 as being correlated. These variables happen to be % 
trucks and KESAls/yr, a logical relationship. 

If these relationships can be identified, they may lead to the 
formation of additional clusters or, as in the case of % trucks and 
KESALs/yr, the exclusion of one variable in favor of another. In other 
words, if single variables or variables in clusters are contributing the 
same amount of information to the model, it is not necessary to include both 
or to include the cluster variables independently. 
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Table 6 yields the diagnostics for identifying outliers or influential 
observations. The model used to generate this table was based on only on 
x- variable, the log of DELTA, and they-variable was the log of the% area 
with alligator cracking for those 20 pavement sections that had some 
measurable amount of alligator cracks. Only 19 pavements had all the values 
necessary to compute DELTA, hence the total number of observations for this 
model is 19. 

Many of the diagnostics listed in Table 6 yield the same information. 
Four basic diagnostics and their criteria for identifying an unusual 
observation will be described here. 
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1. RSTUDENT > 1.96 - This diagnostic indicates a large 
deviation from the fitted model with respect to the 
dependent or y- variable. 

2. HAT DIAG > 2p/n - where p is the number of 
independent variables in the model plus 1 and n is the 
number of observations. This diagnostic identifies 
observations that are having a significant influence on 
the prediction of the dependent variable. 

3. Coo~'s D > F.~.P.<~ > - where F is the F-statistic at 
the 5% level of s1gn1f1cance for p and (n-p) degrees of 
freedom (n is the total number of observations in the 
model. This diagnostic identifies observations that 
significantly changes one or more of the model 
coefficient, i.e., it measures the sensitivity of the 
coefficients to the observation or that site's 
distress. 

4. DFBETAS > 2/}n - This measures the influence of each 
observation on each independents variable (see Table 
7). That is, whereas Cook's D measures the influence 
on all model coefficients collectively, the DFBETA for 
each x-variable measures the sensitivity of the 
coefficient for that variable to the observed distress 
for each pavement section. 



From Table 6 for this example we see that the RSTUDENT diagnostic 
identifies observation # 2 (2.0944) and # 7 (-2.4613) as outliers on the 
distress variable. The Hat Diag would have to exceed .2105, (2(2/19)) and 
hence identifies observation# 9 (.2089). Cook's D would have to exceed the 
F value at the 5% level of significance for 2 and 17 degrees of freedom 
which is 3. 68. No observations are flagged by this criteria. The 1 ast 
criteria, DFBETAS, appear in Table 7. The DFBETAS are 1 i sted for the 
intercept and the single x-variable, LDELTA. These values would have to 
exceed .4588 (2//19) in order for an observation to significantly influence 
the sensitivity of these coefficients. Observations # 7 and 20 exceed this 
value for both the intercept (.6786,-.9517), and LDELTA (.7537,.6841). 
These diagnostics seem to indicate that three observations are influential, 
in some sense, namely, 2, 7, and 20. A plot of the dependent variable vs 
LDELTA is shown in Figure 4 with the three suspect observations identified. 

Variable Selection 

In order to obtain the model that best describes the data with the 
fewest parameters, variable selection is of interest. In fact, it is 
possible to actually obtain a worse model by including ·tao many variables. 
Whereas R2 will always increase as the number of variables increase, the 
predictive error of the model may be optimal (minimal) at some subset of the 
variables and then increase as variables are added. Hence, a 5-variable 
model may actually yield a better prediction (as reflected in the mean 
squared error, MSE) than a 20 variable model even though the 20-variable 
model will have a superficially larger R2

• Figure 5 depicts this. 

The RSQUARE option of Proc Reg will examine all possible subsets and 
present the results to be used in selecting the best subset. This procedure 
is superior to any other stepwise selection methods because the stepwise 
methods are sensitive to collinearities in the model variables and might not 
produce the best model in the presence of this collinearity. These methods 
are outdated and should never be used. Their computational advantage (i.e. 
not having to examine all possible subsets) is no longer a factor in this 
day of high-speed computing. The criteria for choosing the best model is 
minimum C~. CP is a function of the model mean squared error (MSE) which 
adjusts tor tne number of model parameters relative to the number of 
observations similar to adjusted R2• 

A sample output from Proc Reg with the RSQUARE option are given in 
Table 8. The SAS statements used to generate this output are: 

PROC REG; 
MODEL Y = Xl X2 X3 ... X12/P R CP SELECT=RSQUARE; 
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In Table 8 all !-variable, 2-variable, 3- variable, etc. models are 
listed in descending order of CP. That is, for the !-variable models, the 
one with X4 had the smallest CP of all other !-variable models, 4.75999. 
Examining the first entries in any variable size category shows that the 
minimum CP for any given subset size group decreases as the number of 
variables increase up to the 6-variable case, i.e. 4.75999 > 3.48571 > 
3.2744 > 2.24925 < 3.2489. That is, the best 5-variable model has a 
smaller prediction error than the best 6-variable model. 

The variables that form the best 5-variable model are X2, X4, X6, XIOLOG, 
and Xl2. In order to obtain these model coefficients and diagnostics, Proc 
Reg would need to be re-run specifying only these variables in the model 
statement. 

Eigenanalysis 

Eigenanalysis (Principal Component Analysis) is a multivariate 
procedure which enables examining the data for both influential observations 
and collinearity simultaneously. It is possible for the collinearity 
diagnostics from Proc. Reg to indicate a significant calli nearity problem 
which is really onlx being caused by a few observations. Conversely, the 
diagnostics may show no problem when a serious collinearity exists but is 
being masked by a few observations. This is known as the masking problem. 

There is no SAS procedure for doing this analysis. However, several 
SAS procedures can be combined to produce this analysis. Proc Factor of 
SAS, with the no rotation option, produces principal component factors. If 
these factors are multiplied by (&1/n) 112

, where &i is the eigenvalue, the 
resulting pri nci pa 1 component factor becomes the eigenvector for that 
ei genva 1 ue. Plots of pairs of eigenvectors that correspond to sma 11 
eigenvalues provide a visual means of identifying potential masking 
problems. 
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The SAS statements to do this are: 

PROC FACTOR SIMPLE CORR MINEIGEN=O EV 
NFACTORS=l2 OUT=SCORESI; 

VAR Xl-Xl2; 

DATA NEW;SET SCORES!; KlO•SQRT(.l55415/19); 
Kll•SQRT(.057561/19);Kl2•SQRT(.020860/19); 
FACTIO=KlO*FACTORIO;FACTll=Kll*FACTORll; 
FACT12=Kl2*FACTOR12; 

PROC PLOT DATA=NEW; 
PLOT FACTIO*FACTll FACTIO*FACT12 FACTll*FACT12; 



These statements were written for a 12-variable model with 19 observations. 
The eigenvalues were obtained from the previous Proc Reg run of this model 
with the VIF option or from the output of Proc Factor. The three factors 
corresponding to the three smallest eigenvalues were chosen. In other 
situations, more factors may be necessary depending on the number of small 
eigenvalues that occur. Table 9 is a sample output from the Proc Factor 
procedure which contains the eigenvectors and eigenvalues as defined in the 
Proc Reg output earlier. Figure 6 shows a sample plot revealing a single 
observation that appears to be masking a collinearity. Collinearity is 
present when the shape of the ellipse drawn around the data is e 1 ongated. 
The more the ellipse resembles a circle, the less the degree of 
collinearity. The major axes of the ellipse drawn around the data are the 
reciprocals of the square root of the eigenvalues. Hence the smaller the 
eigenvalue, the greater the length of the major axis and the more elongated 
the ellipse. In Figure 6, if we were to draw an ellipse about the data 
excluding the observation in the lower left corner, that ellipse would be 
elongated, signifying a call inearity. By including the observation, the 
ellipse is more circular, indicating no collinearity. 

Discriminant analysis 

The purpose of discriminant analysis is to identify which variables are 
significant in classifying data into groups. For this application, we want 
to use discriminant analysis to address the question: 

Which explanatory variables and clusters discriminate between 
those pavements with no measurable distress and those with 
measurable distress? 

A discriminant analysis with only two categories to choose from, e.g. 
distress and no distress, can be performed using a multiple regression 
procedure, if the y-variable is defined in a certain way. The advantage of 
doing this as opposed to using a standard discriminant analysis program is 
the availability of the diagnostics for collinearity, influential 
observations, etc. which are generally not available with discriminant 
analysis programs. 

The key is to code the y-variable as follows: 

y=-n2/n for pavements without distress 

y=n1/n for pavements with distress 

where n1 = the number of pavements without distress, n2 is the number of 
pavements with distress and n is the total number of pavements. Note: these 
numbers are not backwards; i.e., for pavements without distress y is the 
negative proportion of distressed pavements and for pavements with distress 
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y is the proportion of non-distressed pavements. 

As an example, this procedure was done for data with 31 pavement 
sections with alligator cracking and 158 pavements without, using 13 
explanatory variables and clusters. They-variable was coded as: 

y•-31/189=-.164 for pavements with no distress 

y-158/189•.836 for pavements with distress 

Table 10 is the output from running the Proc Reg procedure using this coded 
y-variable as the dependent variable in the model. The significant model 
F-value {Prob>F=.0114) indicates that this model significantly discriminates 
between pavements with and without alligator cracking. The R statistics 
for this model are meanin!lless. The variables which were significant 
according to the Prob > ITI statistics are H2 E5, and X6. The Variance 
Inflation factor for LDELTA indicates that LDELTA is highly correlated with 
the other model variables. This is not surprising since DELTA is a cluster 
of many of the other variables in the model. 

In order to determine how well the model classifies pavements, the Proc 
Freq procedure can be used to classify pavements according to predicted 
distress, yes or no, and actual distress, yes or no. 
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Table 1. Univariate Output for Variable E1 

Moments 

N 190 Sum Wgts 

Mean 671.5053 Sum 

Std Dev 199.2837 Variance 

Skewness 0.755811 Kurtosis 

uss 93180614 css 
cv 29.67716 Std. Mean 

T:Mean = 0 46.44666 Prob > ITI 

Sgn Rank 9072.5 Prob > lSI 

Num = 0 190 

W:Normal 0.959326 Prob < W 

Quantiles (Def = 5) 

100% Max 1490 99% 

75% Q3 774 95% 

50% Med 638 90% 

25% Q1 546 10% 

0% Min 292 5% 

Range 1198 1% 

Q3- Q1 228 

Mode 851 

Extremes 

Lowest Obs Highest 

292( 148) 1048( 

310( 130) 1168( 

314( 142) 1187( 

330( 134) 1310( 

336( 78) 1490( 

Variable = E1 
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Obs 

42) 

41) 

18) 

43) 

83) 

190 

127586 

39713.99 

1.073465 

7505943 

14.45756 

0.0001 

0.0001 

0.0003 

1310 

1007 

960 

448.5 

370 
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Table 2. Correlation Analysis for Alligator Cracking Less than 0 

LFZ LFF LDl LD2 LD3 

DELTA 0.13607 -0.61042 0.19577 -0.11679 0.41401 
0.4815 0.0004 0.3088 0.5463 0.0256 

29 29 29 29 29 

LDELTA -0.17308 -0.55805 0.23408 0.12977 0.45891 
0.3693 0.0017 0.2216 0.5023 0.0123 

29 29 29 29 29 

F1 0.56055 0.36576 -0.16305 -0.17999 -0.13817 
0.0010 0.0430 0.3808 0.3326 0.4585 

31 31 31 31 31 

F2 0.88019 -0.54211 0.04023 -0.20509 0.29773 
0.0001 0.0016 0.3299 0.2684 0.1038 

31 31 31 31 31 

LF1 0.59661 0.34642 -0.19208 -0.16658 -0.11545 
0.0004 0.0563 0.3006 0.3704 0.5363 

31 31 31 31 31 

LF2 1.00000 -054617 -0.04162 -0.34030 0.31880 
0.0 0.0015 0.8241 0.0610 0.0805 
31 31 31 31 31 

LFF -0.54617 1.00000 -0.15184 0.22390 -0.49315 
0.0015 0.0 0.4148 0.2260 0.0048 

31 31 31 31 31 

LD1 -0.04162 -0.15184 1.00000 0.20490 0.48697 
0.8241 0.4148 0.0 0.2588 0.0055 

31 31 31 31 31 

LD2 -0.34030 0.22390 0.20490 1.00000 -0.08048 
0.0610 0.2260 0.2688 0.0 0.6669 

31 31 31 31 31 

LD3 0.31880 -0.49315 0.48697 -0.08048 1.00000 
0.0805 0.0048 0.0055 0.6669 0.0 

31 31 31 31 31 

Pearson Correlation Coefficients/Frob > I R I under Ho: Rho = 0 /number of observations 
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Table 3. Frequency Table of Alligator Cracking versus Rainfall 

Table of Yll by Z2 

Yll Z2 

Frequency Percent Wet 1 Dry 3 Total 
Row Pet 
Col Pet 

0 94 64 158 
49.74 33.86 83.60 
59.49 40.51 
82.46 85.33 

1 20 11 31 
Alligator 10.58 5.82 16.40 

64.52 35.48 
17.54 14.67 

Total 114 75 189 
60.32 39.68 100.00 

Frequency Missing = 1 
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Table 4. Analysis of Variance from Regression for Alligator Cracking 

Model: MODELl Dependent variable: Yl 

Source DF Sum of Squares Mean Square F Value Prob > F 

Model 12 11208369.228 934030.76897 1.429 ev 
Error 7 4574509.5723 653501.36747 

C Total 19 15782878.800 

Root MSE 808.39431 R-square 0.7102 

Dep Mean 803.40000 Adj R-sq 0.2133 

c.v. 100.62165 

Variable DF Parameter Estimate Standard Error T for HO: Prob > ITI 
Parameter = 0 

INTERCEP 1 3155.782427 10833.738236 0.291 0.7793 

X1 1 23.799726 150.99011294 0.158 0.8792 

X2 1 156.811760 118.57122389 1.323 0.2276 

X3 1 -16.959703 21.59474780 -0.785 0.4580 

X4 1 -594.106341 302.91171376 -1.961 0.0906 

X5 1 -44.095722 225.20587319 -0.196 0.8503 

X6 1 -1035.284160 545.5885509 -1.898 0.0996 

X7 1 -239.820747 241.25263131 -0.994 0.3533 

X8LOG 1 -56.769891 952.37371728 -0.060 0.9541 

X9 1 -56.978781 97.30548221 -0.586 0.5765 

X10LOG 1 667.512166 641.79166028 1.040 0.3329 

Xll 1 -14.995743 58.52547572 -0.256 0.8051 

X12 1 -1.315447 2.09458646 -0.628 0.5499 

Variable DF Variance Inflation 

INTERCEP 1 0.00000000 
X1 1 ~ Base + Subbase Thickness 
X2 1 6.96501220 
X3 1 1.84106651 
X4 1 2.3(i9543 
X5 1 ([f.1021JO %Asphalt 
X6 1 2.79560614 
X7 1 6.47751189 
X8LOG 1 4.63584514 
X9 1 5.08479402 
X10LOG 1 7.38128762 
X11 1 7.01716524 
X12 1 9.13532406 
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Table 5. Eigenanalysis for Parameters Used in the Model of Alligator Cracking 

No. Eigenvalue Cond. no. 

1 3.49531 1.00000 

2 2.57099 1.16598 

3 1.47762 1.53802 

4 1.35073 1.60864 

5 1.02277 1.84865 

6 0.64804 2.32242 

7 0.55466 2.51032 

8 0.37784 3.04150 

9 0.26820 3.61007 

10 0.15541 4.74239 

11 0.05756 7.79256 

12 0.02086 12.94449 

Variety Properties 
X1 = Base + Subbase Thickness 
X2 = Stiffness 
X5, X6 = Asphalt Thickness 
X7 =Voids 
X8LOG = Viscosity 
X9 =Age 
X10LOG = AADT 
X11 = %Truck 
X12 = kESALs/year 

X1 X2 X3 X4 X5 X6 

0.0006 0.0004 0.0196 0.000 0.0030 0.0002 

0.0056 0.0118 0.0029 0.0134 0.0038 0.0143 

0.0004 0.0153 0.0137 0.0470 0.0073 0.0050 

0.0000 0.0010 0.0027 0.0329 0.0010 0.0287 

0.0009 0.0135 0.0320 0.1232 0.0000 0.1505 

0.0001 0.0019 0.0483 0.0005 0.0009 0.0624 

0.0026 0.0049 0.5574 0.0395 0.0000 0.0018 

0.0120 0.0003 0.1700 0.0147 0.0013 0.0002 

0.0128 0.0095 0.0082 0.3546 0.1216 0.0898 

0.0203 0.3543 0.0040 0.0336 0.0446 0.2481 

0.0083 0.0085 0.0082 0.3400 0.0012 0.2099 

0.9363 ~ 0.1330 0.0007 0.8152 0.1891 

X7 X8LOG X9 X10LOG X11 X12 

0.0042 0.005 0.0031 0.0059 0.0074 0.0066 

0.0069 0.004 0.0019 0.0007 0.0000 0.0018 

0.0112 0.0106 0.0399 0.0002 0.0007 0.0000 

0.0029 0.0840 0.0082 0.0102 0.0025 0.0018 

0.0014 0.0010 0.0001 0.0041 0.0047 0.0019 

0.0077 0.0262 0.0275 0.0412 0.0825 0.0066 

0.0194 0.0025 0.0744 0.0048 0.0006 0.0040 

0.0507 0.1171 0.0411 0.1083 0.0192 0.0032 

0.0443 0.0122 0.0013 0.0007 0.0031 0.0629 

0.2254 0.0048 0.1317 0.0011 0.0114 0.0054 

0.1374 0.0220 0.0391 0.1901 0.6935 0.9051 

0.4884 0.7187 0.6318 0.6327 0.1743 0.0008 



Obs 

1 
2 
:3 
4 
5 
6 
7 
a 
9 

10 
11 
12 
1:3 
14 
l.5 
16 
17 
18 
19 
20 

Obs 

l. 
2 
:3 
4 
5 
6 
7 
a 
9 

l.O 
l.l. 
l.2 
l.3 
l.4 
l.5 
l.6 
l.7 
18 
19 
20 

Table 6. Analysis of Influential Observations 

Dep Var 
LD1 

2.a651 
6.2097 
4.:3239 
2.:3l.28 
3.5294 
5.1l..5l. 
2.5326 
5.5185 
6.0572 
6.0076 
0.9765 
2.a651 
5.8052 
3.7466 
2.8651 
2.8651 
2.07:3:3 
2.8556 
5.8052 
0.5080 

Predic-t 
Va~ue 

2.9904 
3 • .5775 
3.278a 
3.a542 
3 .l9a7 
5.26aa 
5.3147 
4.667:3 
S.494a 
5.0304 

4.1017 
4.2990 
:3.3909 
:3.54Ql 
3.l756 
2.a:343 
4.3090 
3.6208 
l.9140 

-2-1-0 1 2 

** 

**** 

* 

* 
** 
** 

*** 
* 

* 

** 

*** 

Std Er= 
P::-edic-t 

0.45l. 
0.343 
0.389 
0.326 
0.404 
0.581 
0.595 
0.424 
0.648 
0.515 

0.3:34 
0.356 
0.369 
0.347 
0.409 
0.491 
0.357 
0.338 
0.761 

Residual 

-O.l253 
2.6322 
1.0451 

-1.5414 
0.3306 

-O.l537 
-2.782l 

0. 8512. 
0 • .5624 
0.9772 

-1.2366 
1.5062 
0.:3557 

-0.6750 
-0.3105 
-0.7610 
-1.45:34 
2.l844 

-1.4059 

Stci E::-= 
Residua~ 

1.345 
l.. 376 
1.:364 
1.380 
l..359 
1.294 
1.288 
1.353 
1.261 
1.322 

l..378 
1.373 
l..370 
1.375 
1.358 
l..3:3l. 
1.373 
1.377 
1.197 

St:!cient 
Residua~ 

-0.093 
1. 9l.3 
0.766 

-1.ll7 
0.243 

-a .l.l.9 
-2.161 
0.629 
0.446 
0. 739 

-0.897 
1.097 
0.260 

-a. 491 
-0.229 
-0.572 
-1.059 
1.586 
-1.~75 

Cook's Eat Diaq Cov 
Ratio D Rs~dent H 

0.000 
0.1l4 
0.024 
0.035 
0.003 
O.OOl. 
0.498 
O.Ol9 
0.026 
0.04l. 

0.024 
0.040 
0.002 
0.008 
0.002 
0.022 
0.038 

. 0.'076 
0.279 

-0.0904 
2.0944 
0.7565 

-l.l.253 
0.2364 

-O.l.l.53 
-2.46l.3 

0.6l.74 
0.4350 
0.7291 

-0.89l.6 
1.l.04l. 
0.2525 

-0.4796 
-0.2222 
-0.5602 
-1.0629 

l..6668 
-!..l.892 

O.l.Ol.3 
0.0584 
0.0750 
0.0527 
0. 08l.3 
O.l.68l. 
O.l.759 
0.0894 
0.20a9 
0 .l.3l.7 

0.0554 
a. o-629 
0.0675 
0.0599 
0.0833 
O.l.l97 
0.0634 
0.0569 
0.2882 

1.2549 
0.7385 
1.1377 
1.0233 
1.2203 
1.3547 

./ o. 7207 
l..1828 
1. 3939 

./ 1.2l78 

1.0847 
1. 040l. 
1.20ll 
1.l67l 
l.2239 

./ L2336 
1. 0516 
0.8690 
l.3389 

-0.0304 
0.5218 
0.2l55 

-0.2654 
0.070::! 

-a. 051S 
-1.1.369 

a .l935 
0.2236 
0.28:39 

-0.2160 
0.2860 
0.0679 

-0.12ll 
-0.0670 
-0.2066 
-0.2765 

0.4095 
-0.7567 

F2, 17 ::: 3.65 ~ = l.ill = • 1053 
n 19 
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Table 7. Analysis of Influential Observations using DFBETAS 

Obs INTERCEP Dlbetas 

1 -0.0273 

2 0.3253 

3 0.1728 

4 -0.1004 

5 0.0587 

6 0.0303 

7 0.6786 

8 -0.0652 

9 -0.1428 

10 -0.1445 

11 

12 -0.0273 

13 -0.0180 

14 0.0507 

15 -0.0788 

16 -0.0565 

17 -0.1924 

18 0.0199 

19 0.2415 

20 -0.7537 

Sum of Residuals: -2.08722E -14 
Sum of Squared Residuals: 34.1970 
Predicted Residual SS. (Press): 43.4585 
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LDELTA Dtbetas 

0.0210 

-0.1645 

-0.1177 

0.0094 

-0.0418 

-0.430 

-0.9517 

0.1241 

0.1934 

0.2199 

-0.0483 

0.1154 

-0.0319 

0.0423 

0.0406 

0.1546 

-0.1139 

-0.1126 

0.6841 



Table 8. Model Selection Using R2 and Mean Square Error. 

Number in Model Rz C(p) Variables in Model 

1 0.14041767 4.75999 X4 
0.10471620 5.62223 X6 
0.05915383 6.72262 X10LOG 
0.03164997 7.38687 X2 
0.02912569 7.44783 X11 
0.02615253 7.51964 X8LOG 
0.02039141 7.65878 X1 
0.01154603 7.87240 X3 
0.00632104 7.99859 X7 
0.00475496 8.03642 X5 
0.00359339 8.06447 X12 
0.00108421 8.12507 X9 

2 0.27599174 3.48571 X4X6 
0.21300391 5.00694 X2X4 
0.20452211 5.21179 X1 X4 
0.20420051 5.21956 X4 X11 
0.19622190 5.41225 X4 X10LOG 
0.16616485 6.13817 X6 X10LOG 
0.15696922 6.36025 X10LOGX12 
0.15622501 6.37823 X4 X8LOG 
0.15020104 6.52371 X5X6 
0.14835465 6.56830 X4X5 
0.14827520 6.57022 X3 X4 
0.14760360 6.58644 X10LOG Xll 

3 0.36755082 3.27444 X6 X10LOG X12 
0.34862110 3.73162 X2 X4 X6 
0.34553724 3.80610 X4 X10LOG X11 
0.34049162 3.92796 X4 X6 X11 
0.33396977 4.08547 X4 X6 X10LOG 
0.32860169 4.21511 X5 X6 X10LOG 
0.30323452 4.82776 X4 X6 X8LOG 
0.29352491 5.06226 X4 X6 X12 
0.29116969 5.11914 X4 X5 X11 
0.28816534 5.19170 X4 X11 X12 
0.28783026 5.19979 X3 X4 X6 
0.28692347 5.22169 X1 X4 X6 

4 0.52049374 1.58068 X4 X6 X10LOG X12 
0.48614949 2.41014 X4 X6 X10LOG X11 
0.42566819 3.87083 X5 X6 X10LOG X12 
0.40708906 4.31954 X2 X4 X6 X11 
0.40245724 4.43141 X1 X4 X10LOG X11 
0.39998337 4.49116 X3 X6 X10LOG X12 
0.39995091 4.49194 X3 X4 X6 X10LOG 
0.39593012 4.58905 X2 X4 X6 X7 
0.39320081 4.65496 X2 X4 X6 X10LOG 
0.39083765 4.71204 X4 X5 X6 XlOLOG 
0.38777065 4.78611 X6 XlOLOG Xll X12 
0.38740672 4.79490 X2 X4 XlOLOG Xll 
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5 0.57562240 2.24925 X2 X4 X6 X10LOG X12 
0.54616070 2.96079 X3 X4 X6 XlOLOG X12 
0.53684093 3.18587 X2 X4 X6 X7 Xll 
0.53609602 3.20386 X1 X4 X6 X10LOG X12 
0.52805927 3.39796 X4 X6 X9 X10LOG X12 
0.52767380 3.40727 X2 X4 X6 X10LOG X11 
0.52606658 3.44609 X4 X6 X8LOG XlOLOG X12 
0.52341923 3.51002 X4 X5 X6 XlOLOG X12 
0.52187538 3.54731 X4 X6 XlOLOG X11 X12 
0.52112358 3.56547 X4 X6 X7 X10LOG X12 
0.50999945 3.83413 X3 X4 X6 XlOLOG X11 
0.49326628 4.23826 X4 X6 X9 X10LOG X11 

6 0.61704154 3.24893 X2 X4 X6 X7 X10LOG X12 
0.60772018 3.47405 X2 X3 X4 X6 X10LOG X12 
0.59805021 3.70759 X2 X4 X6 X7 XlOLOG X11 
0.58875144 3.93217 Xl X2 X4 X6 XlOLOG X12 
0.58546208 4.01161 X2 X4 X6 X9 XlOLOG X12 
0.58074607 4.12551 X2 X4 X6 X8LOG X10LOG X12 
0.57992858 4.14525 X2 X4 X6 X7 X9 Xll 
0.57597854 4.24065 X2 X4 X5 X6 X10LOG X12 
0.57563081 4.24905 X2 X4 X6 X10LOG X11 X12 
0.56398300 4.53036 X2 X4 X6 X7 X8LOG Xll 
0.55895326 4.65183 X2 X3 X4 X6 XlOLOG Xll 
0.55836548 4.66603 X1 X3 X4 X6 XlOLOG X12 

7 0.66337120 4.13001 X2 X3 X4 X6 X7 X10LOG X12 
0.65748577 4.27215 X2 X4 X6 X7 X9 X10LOG X12 
0.64744027 4.51476 X2 X4 X6 X7 X9 X10LOG X11 
0.64130235 4.66300 X2 X3 X4 X6 X7 X10LOG X11 
0.63648918 4.77924 XI X2 X3 X4 X6 XIOLOG X12 

N = 20 Regression models for dependent variable Y1 
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Table 9. Eigenanalysis Using Proc Factor 

1 2 3 4 s 6 7 8 9 

Eigenvalue 3.495310 2.570989 1.477624 1.350735 1.022768 0.648041 0.554659 0.377841 0.268198 

Difference 0.924321 1.093365 0.126890 0.327966 0.374727 0.093382 0.176818 0.109643 0.112783 

Proportion 0.2913 0.2142 0.1231 0.1126 0.0852 0.0540 0.0462 0.0315 0.0223 

Cumulative 0.2913 0.5055 0.6287 0.7412 0.8265 0.8805 0.9267 0.9582 0.9805 

Initial Factor Method: Principal Components. Prior Community Estimates: ONE. Eignevalues of the Correlation Matrix: Total = 12 Average = 1 
12 factors will be retained by the NFACTOR criterion 

X1 

X2 

X3 

X4 

X5 

X6 

X7 

X8LOG 

X9 

XlOLOG 

X11 

X12 

UJ 
UJ 
UJ 

1 

0.20340 

-0.09560 

0.35474 

-0.01295 

0.34139 

-0.04658 

-0.31018 

-0.08741 

0.23565 

0.39116 

0.42742 

0.45792 

2 

-0.53423 

0.45902 

0.11708 

0.28526 

0.32756 

-0.32015 

0.33847 

0.06907 

-0.15656 

0.11416 

-0.00641 

0.20522 

Eigenvectors 

3 4 5 

-0.10553 0.00625 0.13370 

0.39693 0.09658 0.30973 

0.19329 -0.08175 0.24530 

-0.40587 -0.32436 0.54646 

-0.34567 -0.12286 -0.01737 

0.14338 0.32942 0.65596 

0.32795 0.15901 -0.09539 

-0.26901 0.72544 -0.06847 

0.54751 -0.23697 -0.02319 

0.04630 0.31863 0.17556 

0.08494 0.15472 -0.18363 

0.01103 0.14819 -0.13395 

10 11 12 

0.155415 0.057561 0.020860 

0.097854 0.036701 

0.0130 0.0048 0.0017 

0.9935 0.9983 1.0000 

6 

0.02981 

0.09301 

-0.23996 

0.02700 

0.08122 

0.33618 

0.18026 

-0.28036 

-0.30091 

-0.44368 

0.61250 

0.19720 



Table 10. Analysis of Variance for Discriminant Analysis 

Source DF Sum of 
Squares 

Model 12 4.19597 

Error 106 12.44268 

C Total 118 16.63866 

Root MSE 0.34261 R-square 
Dep Mean 0.00405 Adj R2 

c.v. 8465.38180 

Model: MODELl Dependent Variable: YliP 

Parameter Estimates 

Variable DF Parameter Standard Error 
Estimate 

INTERCEP 1.518747 0.71037038 

X1 -0.008313 0.00339118 

X2 -0.004231 0.00623298 

X3 -0.004648 0.00195803 

X4 -0.030028 0.03680241 

X5 -0.047232 0.01433407 

X6 -0.131173 0.05091416 

X7 -0.015705 0.01548284 

X8LOG -0.048839 0.06995496 

X9 0.015770 0.00654470 

X10LOG 0.056736 0.06203130 

Xll -0.002767 0.00497717 

X12 0.000469 0.00038445 

T =Tests: 
Xl = base + subgrade thickness 
X3 = Subgrade stiff 
X5 = asphalt thickness 
X6 = % asphalt 
X9 =age 
Subset selection: adds XlO = AADT 
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Mean Square 

0.34966 

0.11738 

0.2522 
0.1675 

T for HO: 
Parameter = 0 

2.138 

-2.451 

-0.679 

-2.374 

-0.816 

-3.295 

-2.576 

-1.014 

-0.698 

2.410 

0.915 

-0.556 

1.221 

F Value Prob > F 

2.979 0.0013 

Prob > ITI Variance 
Inflation 

0.0348 0.00000000 

0.0159 .,/ 1.28473359 

0.4987 1.32650530 

0.0194 .,/ 1.20829616 

0.4164 1.19155741 

0.0013 .,/ 1.65481066 

O.Q114 ./ 1.36065513 

0.3127 1.17135716 

0.4866 1.19218210 

O.o177 ./ 1.22658903 

0.3625 3.30498192 

0.5794 2.33804892 

0.2248 3.04153336 
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UNIVARI..;.TE PROCEDURE 
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Figure 2. Frequency Plots for Variable E1 
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Plot of LDl *LDELTA. Legend: A = 1 observation, B=2, etc. 
Note: One observation had missing values 
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Figure 4. Plot of Influential Observations 
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Figure 5. Relation of F2 and Mean Square Error to the Number of Variables Used. 
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Figure 6. Scatter Plot of Eigenanalysis 
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