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Abstract

One of the Long-Term Pavement Performance (LTPP) objectives is "to determine the
effects of (a) loading, (b) environment, (¢) material properties and variability, (d)
construction quality, and (e) maintenance levels on pavement distress and performance."
This volume reports the results of early sensitivity analyses on the National Information
Management System to determine the effects of loading, pavement structure, environment,
and material properties on pavement performance. In order to conduct the sensitivity
analyses, it was first necessary to develop statistically linear regression equations to predict
the occurrence of distresses. Once a predictive equation was available, the effects of
variations in significant independent variables were quantified by calculating the change in
the predicted distress as each significant variable was varied from one standard deviation
above its mean to one standard deviation below its mean, with all other variables held at
their mean values. The sensitivities of the distress predictions to the individual variations
in the significant variables were then plotted to display the relative significance of the
independent variables in the equation to the prediction of the distress. The primary
products of these studies are increased understanding of the relative effects of these
parameters on the occurrence of distress and the predictive equations themselves. While
it is believed that these products will prove useful in the interim, the reliability of the results
are limited at this point in time. The products are expected to be greatly improved through
later analyses when more time sequence data are available.



Executive Summary

The original planners for the Long-Term Pavement Performance (LTPP) studies established
six objectives. The fourth objective follows:

4, Determine the effects of (a) loading, (b) environment, (¢) material properties
and variability, (d) construction quality, and (e) maintenance levels on
pavement distress and performance.

The research, described in this report concerned the effects of loading, the environment,
pavement structure, and material properties on pavement distress and performance. Data
were not available for a meaningful study of the effects of material variability, construction
quality, or maintenance levels on pavement distress and performance. In addition, these
studies served as pilot studies for developing procedures for conducting the sensitivity
analyses, gaining insight into the nature of the database, gaining experience with conducting
such studies with this database, and developing recommendations for use by future analysts
when the database is enhanced by time sequence data.

It was fully recognized by those planning and those conducting this research that the
analyses at this point in forming the database would be limited. However, it was expected
that the products of the research would have considerable interim value, and that the
trailblazing aspects of this effort would prove valuable to future analysts. It was also
expected that deficiencies in the data would be discovered, so that these deficiencies could
be repaired before the next major analytical effort is undertaken.

This project began with the development of a tentative analysis plan, in coordination with
a Strategic Highway Research Program (SHRP) Expert Task Group on Experimental Design
and Analysis and with input from the highway community at large during a SHRP data
analysis workshop. The work effort was then unfortunately delayed 1 1/2 years because of
delays in data availability. Some important data, such as layer elastic moduli, were still not
available in time for use in the studies. However, the research staff was able to maximize
the value of the results, considering the time constraint and the quality of the data available.



"Sensitivity analysis" is not a common descriptor for either research engineers or statisticians,
but it has come to have a specific meaning to some individuals from both disciplines. The
definition as applied to this research follows:

Sensitivity analyses are statistical studies to determine the sensitivity of a dependent
variable to variations in independent variables (sometimes called explanatory
variables) over reasonable ranges.

An example could be a study of the sensitivity of rutting in hot-mix asphalt concrete
(HMAC) pavements to variations in layer thicknesses, traffic, material properties, or other
variables significant to the occurrence of rutting. Such studies are generally conducted by
first developing predictive equations for the distresses of interest and then studying the
effects of varying individual explanatory variables across reasonable ranges. The
development of suitable predictive equations for use in the sensitivity analyses required
thousands of multiple regressions before the best equations suitable for sensitivity analyses
were produced. Because of the nature of sensitivity analyses, the regression equations had
to be statistically linear, which means that the coefficients must be linear and that nonlinear
regression techniques could not be used.

Some limitations of the database that constrained the sensitivity analyses are as follows:

. The values of cumulative equivalent single axle loads (ESALs) were simply
estimates from the state highway agencies and are not believed to be very

reliable.

° Initial roughness in terms of International Roughness Index (IRI) had to be
estimated.

° There generally was only one measurement of distress for each test section,

plus an estimated or assumed initial value (e.g., rutting, faulting, and such
were assumed to be zero when the pavement was opened to traffic). Two
values are generally not enough to explain the curvature in a relationship, but
the ages of the pavements were distributed reasonably well over 20 years, so
that the curvatures were partially explained.

° A number of test sections were missing data which precluded their use in
these early analyses.

° There was relatively little distress in the test sections at this early point in the
20 year studies. Many test sections with adequate data had to be omitted
because they had not experienced distress.

Because there were over 100 data elements in each of the databases for flexible and rigid
pavements, it was necessary to materially reduce the number of data elements to be
considered in the analyses. It was also important to avoid strong correlations between
independent variables that were included in the studies. The approach taken to eliminating
less significant data elements was to obtain relative significance rankings from experts in
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pavement performance modeling. This approach offered a means for bringing expert
knowledge into the analysis at an early stage, as well as offering insight in the selection of
variables considered in the analyses. These selections required balancing relative
significance, data availability, and correlations with other variables.

Because the selection instructions for the General Pavement Studies (GPS)-1 and GPS-2
experiments allowed considerable overlap in pavement structure for test sections, it was
decided to view these two data sets as resources and then to recombine them into more
specific data sets such as HMAC on granular base, full-depth HMAC, HMAC over portland
cement-treated base, and so on. These latter databases were those finally used in the
analyses, and the data sometimes had to be combined to get enough test sections with
distress for analysis.

The data sets for the GPS-3 and GPS-4 experiments were also combined for a number of
rigid pavement studies (e.g., studies of joint spalling and faulting), where the presence of or
lack of reinforcement was not believed to be important.

The development of the procedures for producing the required predictive equations and for
conducting the sensitivity analyses after the equations were available were highly interactive
and time consuming. These are discussed in detail in Chapters 5 and 6 of this report.

It became apparent early in the analyses of HMAC pavements that predictive models
developed from the entire database, whose inference space included all of the United States
and parts of Canada, would generally not result in reliable models. Consequently, databases
were formed for each of the four environmental zones and separate predictive models were
developed. These models have values of the adjusted coefficient of determination R?
ranging from 0.65 to 0.93. For example, the model developed for prediction of rutting in
the wet-freeze environmental zone appears as Table 1. The form of the equation appears
at the top of the table, with the explanatory variables or interactions appearing in the table,
along with the coefficients that provide the details of the equation. The exponents B and
C are calculated by multiplying the explanatory variables or interactions in the left column
by the regression coefficients b, and ¢, and adding the results.

The results of the sensitivity analyses conducted with this predictive equation appear as
Figure 1a. This figure shows that the strongest impact on the occurrence of rutting in the
wet-freeze zone may be expected to be the cumulative number of KESALs (1000 ESALs).
The dashed lines and arrow pointing to the left indicate that reductions in KESALs decrease
rutting, but the standard deviation for KESALs is greater than the mean, and negative
KESALs are not possible. Freeze index is the next most important, followed by the
percentage of the HMAC aggregate passing a #4 sieve, air voids, and so on. It can also be
seen from the directions of the arrows that increasing KESALs and freeze index may be
expected to increase rut depths, while increasing amounts of aggregate passing the #4 sieve,
air voids, and asphalt thickness may be expected to decrease rutting. It should be
remembered that the relative sensitivities depend on the model form selected for the
predictive equation, so some differences would be expected if a different equation was used
for the sensitivity analyses.



Table 1. Coefficients for Regression Equations Developed to Predict Rutting in
HMAC Over Granular Base for the Wet-Freeze Data Set

Rut Depth = NB 10°¢ Where N = Number of Cumulative KESALs
(In) B=b +b,x;, +byx, + ... + b, x,

C=c+xp+cex+ ..+ ¢ %,

Explanatory Variable or Interaction Coefficients for Terms In “
=) Units
b, G

Constant Term - 0.183 0.0289
Log (Air Voids in HMAC) % by Volume 0 -0.189
Log (HMAC Thickness) Inches 0 -0.181
Log (HMAC Aggregate #4 Sieve) % by Weight 0 -0.592
Asphalt Viscosity at 140°'F (60'C) Poise 0 1.80 x 10°
Log (Base Thickness) Inches 0 -0.0436
(Annual Precipitation * Inches 0

Freeze Index) Degree-Days 0 323x 10"

R?=0.73 Adjusted R? = 0.68 RMSE in Log;, (Rut Depth) = 0.19
< S KESALs

[ - Freeze Index

15 .20

a. Wet-Freeze Data Set

40

b. Dry-No Freeze Data Set

Figure 1. Results From Sensitivity Analysis for Rutting in HMAC Over Granular Base
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To illustrate how different the sensitivities may be from one environmental zone to another,
the sensitivity analysis results for the dry-no freeze environmental zone are included as
Figure 1b. Most of the variables are the same as for the wet-freeze zone, but there are
some differences and the relative levels of sensitivities vary between environmental zones.

Unfortunately, the number of test sections for specific combinations of distress type and
pavement type was not sufficient for the portland cement concrete (PCC) pavement studies
to allow development of regional models. Consequently, the reliabilities of these equations
are generally somewhat lower than those for the HMAC regional equations.

While the sensitivity analyses offer useful insight, it must be remembered that most of these
pavements are in very good shape, so the interactive effects of water seeping through cracks
and expediting deterioration in lower layers really is not represented here.

The twelve most significant variables from the sensitivity analyses for HMAC pavements are
listed below by distress type in order of relative ranking, with the most significant variable
at the top and the least at the bottom:

Rutting Change in Roughness Transverse Cracking
KESALs KESALs Age

Air Voids in HMAC Asphalt Viscosity Annual Precipitation

HMAC Thickness Days With Temp.>90F (32°C) = HMAC Thickness

Base Thickness HMAC Thickness Base Thickness

Subgrade < #200 Sieve Base Thickness Asphalt Viscosity

Days With Temp. >90F (32°C) Freeze Index Base Compaction

HMAC Aggregate < #4 Sieve Subgrade < #200 Sieve Freeze Index

Asphalt Viscosity Air Voids in HMAC Days With Temp.>90F (32°'C)
Annual Precipitation Base Compaction Subgrade < #200 Sieve
Freeze Index Annual Precipitation Annual KESALs

Base Compaction Daily Temp. Range Annual Freeze-Thaw Cycles
Average Annual Min. Temp. Annual Freeze-Thaw Cycles ~ HMAC Aggregate <#4 Sieve

The assignment of rankings for PCC pavements is more complex because of the strong
impacts of dowels and reinforcement on performance. The general significance rankings for
all ten PCC models combined follow:

1. Age 7.  Percentage of Steel

2. CESALs 8.  Tied Shoulders

3. Slab Thickness 9.  Annual Freeze-Thaw Cycles
4, Static k-Value 10.  Type of Subgrade

5. Precipitation 11. PCC Flexural Strength

6. Joint Spacing 12.  Monthly Temperature Range



Other useful results follow:

For joint faulting of jointed concrete pavements (JCP) and roughness in jointed plain
concrete pavements, the analyses indicate that environment becomes important only
if the joints are not doweled. Therefore, the use of dowels is especially important
in wet or cold climates and for high traffic.

Joint spalling is generally dependent on age and the environment.

The use of shorter slabs for JCP tends to reduce joint faulting and transverse
cracking, which results in less roughness.

The use of a widened traffic lane appears to reduce roughness in continuously
reinforced concrete pavement.

It is important not to overcompact HMAC, because this will reduce the air flow
through the mix. In mixes of moderately high air voids (5 to 9%), early hardening
occurs, which stiffens the mix and substantially reduces the rate of compaction under
traffic. (It is also important to get sufficient compaction so that the early compaction
under traffic is not excessive.)

The HMAC aggregate passing a #4 sieve was selected to represent the effects of
gradation. Within its inference spaces in the separate data sets, increasing amounts
of aggregate passing a #4 sieve appeared beneficial in reducing rutting. '



Introduction

Because of the diversity of the research activities and the bulk of the text required to
describe them, this report has been produced in five reports, which include an Executive
Summary. The overall title is Early An of LTPP General Pavemen

but each separate report has an additional title as follows:

° SHRP-P-392, Executive Summary

° SHRP-P-684, Data Processing and Evaluation

° SHRP-P-393, Sensitivity Analyses for Selected Pavement Distresses

° SHRP-P-394, Evaluation of the AASHTO Design Equations and
Recommended Improvements

° SHRP-P-680, Lessons Learned and Recommendations for Future Analyses
of LTPP Data

Each report is written as a stand-alone document, but it may be useful to refer to other
reports for additional detail.

This is a report on the results from data evaluations and sensitivity analyses for Strategic
Highway Research Program (SHRP) Contract P-020, "Data Analysis," which served as
the primary vehicle for harvesting the results from the first 5 years of the SHRP Long-
Term Pavement Performance (LTPP) studies and transforming this new information into
implementable products supporting the LTPP goal and objectives. The research was
conducted by Brent Rauhut Engineering Inc. and ERES Consultants, Inc.



The goal for the LTPP studies, as stated in the Strategic Highway Research Program
Research Plans, (1986)!, is

To increase pavement life by investigation of various designs of pavement
structures and rehabilitated pavement structures, using different materials and
under different loads, environments, subgrade soil, and maintenance practices.

LTPP Objectives and Expected Products

The following six objectives were established by the SHRP Pavement Performance
Advisory Committee in 1985 to accomplish the overall goal:

evaluate existing design methods;

develop improved design methods and strategies for pavement rehabilita-
tion;

develop improved design equations for new and reconstructed pavements;
determine the effects of (1) loading, (2) environment, (3) material proper-
ties and variability, (4) construction quality, and (5) maintenance levels on

pavement distress and performance;

determine the effects of specific design features on pavement performance;
and

establish a national long-term pavement data base to support other SHRP
objectives and future needs.

This research was the first to use the National Pavement Data Base (later renamed the
National Information Management System [NIMS]) to pursue these objectives. The
early products that were expected from this data analysis are listed below and related to
project tasks (to be described later):
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A better understanding of the effects of a broad range of loading, design,
environmental, materials, construction, and maintenance variables on
pavement performance (Task 2);

Evaluation of and improvements to the models included in the 1986
American Association of State Highway and Transportation Officials
(AASHTO) Pavement Design Guide (Tasks 3 and 4);

Evaluation and improvement of AASHTO overlay design procedures using
data from the General Pavement Studies (GPS) (Task 5); and



° Data analysis plans for future analyses as GPS time sequence data and
Specific Pavement Studies (SPS) data enter the NIMS and the LTPP
Traffic Data Base and offer opportunities for further insight and design
improvements (Task 6).

This project began with development of tentative analysis plans for this initial analytical
effort. These plans were presented July 31, 1990, to the SHRP Expert Task Group on
Experimental Design and Analysis and on August 2, 1990, to the highway community in
a SHRP data analysis workshop. A detailed work plan was developed from the initial
plans, and from the comments and guidance received from these and subsequent
meetings. Guidance was furnished to the contractors throughout the research by a Data
Analysis Working Group (composed of SHRP staff and SHRP contractors), the Expert
Task Group on Experimental Design and Analysis, and the Pavement Performance
Advisory Committee.

Research Tasks

The specified tasks for SHRP Contract P-020a were
° Task 1— Develop data evaluation procedure and hold workshop,
° Task 1A— Process and evaluate data,

. Task 2— Perform sensitivity analysis of explanatory variables in
the National Pavement Performance Data Base,

° Task 3— Evaluate the AASHTO design equations,
° Task 4— Improve the AASHTO design equations,

° Task 5— Evaluate and improve AASHTO overlay
procedures using GPS data, and

. Task 6— Develop future LTPP data analysis plans.
The relationships between the tasks and the general flow of the research appear in

Figure 1.1. This report documents Task 2. As can be seen, this task provided the data
and information needed for Tasks 3, 4, 5, and 6.
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Data Bases Used in the Analyses

The NIMS will eventually include data for both the GPS and SPS, but only the GPS data
were even marginally adequate for these early analyses. In May 1993, the SPS data were
only beginning to be entered into the NIMS for projects recently constructed, and many
of the projects are not yet constructed. It should be noted that all data collected for
LTPP studies are for test sections 500 feet (152.4 meters) in length and include only the
outside traffic lane.

The GPS experiments are identified and briefly described in Table 1.1. The sensitivity
analyses were conducted only for the five data sets for pavements that had not yet been
rehabilitated, i.e.,were in their first service period before being overlaid or otherwise
rehabilitated (GPS-1 through GPS-5). The limited data bases available for the pave-
ments with overlays were used for Task S, Evaluate and Improve AASHTO Overlay
Procedures Using GPS Data (see Volume 4 of this report). There were not sufficient
test sections in GPS-6, GPS-7, and GPS-9, for which condition prior to overlay was
known, to support development of reasonable predictive models for conducting sensitivity
analyses.

Table 1.1. Listing of SHRP LTPP General Pavement Studies Experiments

GPS Experiment Brief Description No. of Projects in
Number the Database
1 Asphalt Concrete Pavement on Granular Base 253
2 Asphalt Concrete Pavement on Bound Base 133
3 Jointed Plain Concrete Pavement (JPCP) 126
i 4 Jointed Reinforced Concrete Pavement (JRCP) 71
5 Continuously Reinforced Concrete Pavement (CRCP) 85
6A AC Overlay of AC Pavement (Prior Condition
Unknown) 61
6B AC Overlay of AC Pavement (Prior Condition Known) 31
TA AC Overlay of Concrete Pavement (Prior Condition
Unknown) 34
7B AC Overlay of Concrete Pavement (Prior Condition
Known) 15
9 Unbonded PCC Overlays of Concrete Pavement 28
L ———
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Some statisticians prefer to call the GPS experimental factorials "sampling templates”
rather than experimental factorials, because existing in-service pavements were used
instead of test sections that were constructed to satisfy rigorous experimental designs. In
fact, the factorials were established to encourage reasonable distributions of the
parameters expected to be significant, and test sections were sought to meet the factorial
requirements. The SPS will follow the requirements of designed experiments.

The environmental factors considered in the sampling templates were freeze, no freeze,
wet, and dry. These broad factors were applied to encourage selection of test sections
with distributions of environmental variables. The four environmental zones (or regions)
considered for the selection of test sections appear in Figure 1.2. Where feasible, data
sets for the individual distress types were further divided into four separate data bases by
environmental zones, and separate analyses were conducted on each.

Definition of Sensitivity Analysis

"Sensitivity analysis" is not a common descriptor for either research engineers or
statisticians, but it has come to have a specific meaning to some individuals from both
disciplines. The definition as applied to this research follows:

Sensitivity analyses are statistical studies to determine the sensitivity of a
dependent variable to variations in independent variables (sometimes called
explanatory variables) over reasonable ranges.

An example is the study of the sensitivity of rutting in hot mix asphalt concrete (HMAC)
pavements to variations in layer thicknesses, traffic, material properties, or other
variables significant to the occurrence of rutting. Such studies are generally conducted
by first developing predictive equations for the distresses of interest and then studying
the effects of varying individual explanatory variables across reasonable ranges.

There is no single method of conducting sensitivity analyses. Some involve standardizing
the values of the independent variables so that the coefficients in the equations indicate
directly the relative sensitivity of the distress of interest to the explanatory variable the
coefficient multiplies. The procedure used for the studies reported involved setting all
explanatory variables in a predictive equation at their means and then varying each one
independently from one standard deviation below the mean to one standard deviation
above the mean. The relative sensitivity of the distress prediction for that variable is the
change in the predicted distress across the range of two standard deviations, compared to
the changes when other explanatory variables were varied in the same manner. Because
the relative sensitivities depend on the predictive equations selected, they would be
expected to change somewhat if other equations were used.
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Figure 1.2. Environmental Zones for SHRP LTPP Studies



No matter what procedure is used to establish the sensitivities, most of the work is spent
on statistical evaluations of the data that identify the independent variables significant to
the occurrence of the pavement distress of interest and the development of suitable
predictive equations by using the significant independent variables that were identified.

Analytical Limitations Resulting From Data Shortcomings

This project involves the analysis of data gleaned from in-service pavements, and none of
the early results may be expected to exceed in quality the adequacy of the database from
which they are developed. Therefore, it is important to discuss the data resources
available to the research team. There are certain limitations to the studies that are an
unavoidable consequence of the timing of the early data analyses. For instance, excellent
traffic data will be available to future data analysts from the recently installed monitoring
equipment but this early data analysis must rely on estimates of past equivalent single
axle loads (ESALs) of limited accuracy. While years of time sequence monitoring data
will be available later, these studies have distress measurements for only one or at most
two points in time. For most distresses, an additional data point may be inferred for
conditions just after construction; e.g., rutting, cracking, faulting of joints, and so on were
generally determined as zero initially. Analyses for roughness increases depend for most
test sections on educated estimates for initial roughness (derived from State Highway
Agencies [SHAs] estimates of initial Pavement Serviceability Index [PSI]).

The distribution in ages of the test sections offered some assistance in overcoming the
lack of time sequence data. As an example, Figure 1.2 shows the distribution of
pavement age for the GPS-1 experiment, Asphalt Concrete Over Granular Base. A
number of test sections are represented in all time intervals through 20 years of age.

Another shortcoming of the databases that influenced the results were missing items of
inventory data, collected from SHAs that concern the design and construction of the
pavements. Inventory data include such elements as date of construction, pavement
structure, and mix design. Some data elements were available for all the test sections,
while others such as asphalt viscosity were not known for some test sections and could
not be found. Unfortunately, it will generally not be possible to obtain these missing
inventory data so they will be missing for future analyses as well.

The plans developed for these analyses were well accepted, but during the processing
and evaluation of the data, it became apparent that all the plans could not be carried
out. Reflecting a tendency for SHAs to offer only pavements in reasonable condition,
many test sections had not experienced distresses as yet, and those that had generally
had only one or two distress types. The only type of distress that was generally available
for all test sections was roughness, and it was necessary to estimate the initial roughness
to study increases in roughness. For flexible pavements, rutting information was also
available for all these test sections. It was not possible to study alligator cracking in
flexible pavements, because only eighteen test sections were reported to have any of this

16



Number of Sites

02 24 46 6-8 810 10-12 12-14 14-16 16-18 1820 >20

Pavement Age, years

Figure 1.3. Distribution of Pavement Age, Experiment GPS-1, AC Over Granular Base

cracking. Similarly, raveling and weathering could not be studied because only three test
sections had experienced this distress. The only three distress types for flexible
pavements for which sufficient data were available to support the studies were rutting,
change in roughness (measured as International Roughness Index [IRI]), and transverse
(or thermal) cracking.

Friction loss was also eliminated from the studies because there were only three data
elements in addition to ESALs, to use for independent variables and none of them
would be expected to relate closely to the polishing of aggregates. Also, initial friction
values were not available and would have to be estimated to study friction loss.

The study of overlaid pavements was to have been of high priority, but it was generally
agreed that pavement condition prior to overlay was an important variable and this
information was not available for pavements that were overlaid prior to entering the
GPS. It was decided early in the implementation of the LTPP studies that test sections
would be sought for pavements for which overlays were imminent, so that the condition
prior to overlay would be available. A number of such test sections have been
implemented, but none of these are old enough to have appreciable distress. The total
number of overlaid pavements was limited, and for the reasons discussed above only a
few had sufficient information for successful analyses. Consequently, analyses for the
overlaid pavements have been limited to the studies in Task 5, i.e., used only to evaluate
the AASHTO overlay design equations.
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It should be noted that the roughness reported for a test section is an average for that
test section. Software called PROQUAL? was applied to the profile data to check it for
anomalies. Values of IRI were calculated for each of the five 100 foot intervals in a test
section. In some cases, there were significant differences in roughness among the 100
foot intervals, which may contribute to the unexplained error in the equations developed
to predict roughness or change in roughness.

It was also proposed that current knowledge be integrated into the analyses by use of
mechanistic clusters of variables in the regression equations to predict distresses, which
would then be used to conduct the sensitivity analyses. This plan to use mechanistic
clusters of variables, based on theory, was thwarted by a lack of layer stiffness data,
which only started to become available in fall 1992, and were still not all available as this
report was being written. Because the mechanistic theory required layer moduli of
elasticity, use of mechanistic clusters was limited to providing guidance for organizing
interaction terms to try in the multiple regressions used to develop the predictive
equations for distresses.

As with any data analysis, the analysis staff had to be concerned about potential biases in
the databases. Several areas of concern identified by Paul Benson, a member of the
Expert Task Group for Experimental Design and Analysis, were (1) imbalances in the
number of sections provided by different states, leading to possible undue influence from
one state’s design, construction, and maintenance practices; (2) the possibility of
systematic differences in the interpretation of SHRP guidelines for test section selection
by the states and the four SHRP regional offices and their engineers; (3) uneven
distribution of test sections in experimental factorials; (4) the possibility that the older
non overlaid pavements selected represent survivors, which are not typical of pavements
in general; and (5) in a similar vein, the possibility that by basing much of our analysis
on older pavements we may not be reflecting changes already made in modern
construction and design practices. The following recommendations by Mr. Benson were
followed in the analyses:

. Limit the inference space of a model where the data are limited or grossly
unbalanced, and consider regional models where the data do not warrant a
national model.

° Combine experiments (where distress mechanisms may be similar) to achieve a
better balance (specifically GPS experiments 1 and 2).

. Examine the distributions of independent and dependent variables for non
normality, bi-modulism, and extreme values; where such are found, attempt to
determine their source.

. Conduct a thorough residual examination as soon as preliminary models are

available, comparing residuals to project age, state, season tested, and other
variables to determine possible sources of bias.
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Sets of distress types to be studied were separately selected for pavements with asphalt
concrete (AC) and portland cement concrete (PCC) surfaces, in coordination with the
Expert Task Group on Experimental Design and Analysis, SHRP staff, and other
interested parties. Once these distress types were selected, separate tables for flexible
and rigid pavements, with the distress types as columns and all the data elements as
rows, were furnished to a set of experts. These experts were asked to indicate on a scale
of 1 to 3 how significant they believed a particular data element would be to the
occurrence of each of the distresses. The results from these surveys were then combined,
and studies were conducted to consider the expected availability of the individual data
elements and possibility of substituting other correlated data elements when important
data elements were not available. These studies identified data sets for the

sensitivity studies to be used for the combinations of distress types and pavement types,
and are described in more detail in Chapter 2. ’
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Preliminary Selection of Data Elements for Sensitivity
Analyses

The National Information Management System (NIMS) has "bins" for 117 data elements
for pavements with asphalt concrete surfaces, 128 data elements for jointed concrete
pavements (JCP), and 120 data elements for continuously reinforced concrete pavements
(CRCP). Because it clearly would not be practical to attempt to model pavement
performance with so many independent variables and literally hundreds of potential
interactions, it was necessary to considerably reduce the number of variables (data
elements) to develop meaningful performance prediction equations and reasonable
estimates of the relative significance of the independent variables to the occurrence of
specific distresses (dependent variables).

Relative Significance Studies

The approach adopted for preliminary elimination of less significant variables was to
obtain relative significance rankings from experts in pavement performance modeling.
This offered a means for bringing expert knowledge into the analysis at an early stage, as
well as offering insight for selecting the variables to be considered in the analyses.

These selections require balancing relative significance, data availability, and correlations
with other variables. Tables were developed for the three pavement types that listed the
data elements as rows and the significant distresses selected for study as columns. These
significance tables were distributed to various experts who had agreed to participate.

Three levels of significance were considered. The assignment of a "1"indicated that the
rater considered the data element to be clearly significant in predicting the distress of
interest. Assignment of a "2"indicated moderate significance, and a "3"indicated little or
no significance. Space was also included in the tables for listing other data elements that
were believed to be correlated with the one identified on that line.
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When the significance rating forms were returned, the entries for each block were
averaged. If the average score for a data element and distress combination was less than
2, that data element was considered to be significant for prediction of that distress. If
the average score was exactly 2, it was retained in the significance studies in some cases
but not in others on the basis of the research team’s judgment. Data elements with
scores greater than 2 were not considered further.

Criteria for Selection of Data Elements

Upon completion of the relative significance studies discussed above, sets of independent
variables had been developed that individually were believed to be significant to the
prediction of specific distresses. However, significant independent variables to be
included in the studies needed also to be available in the database. Therefore, the
percentage of data expected to be available had to be considered in selection of the data
elements to be included in the sensitivity analyses.

It was soon apparent that many of the data elements considered to be individually
significant would not be available in sufficient numbers to support the analyses.
However, a great many of these variables were correlated to various degrees with other
independent variables that were represented in greater percentages of the test sections
involved. These correlations were considered, and it became apparent that the "explana-
tion" of variations in the distresses (dependent variables) could for the most part be
offered by other data elements with which they were correlated. That is, by omitting
many of the variables the growth in the error pool would be manageable because of the
inclusion of other correlated variables.

It was possible through consideration of correlations as discussed above to replace most
of the significant explanatory variables. However, a few of the significant data elements
remained that were not replaceable with other correlated data elements. The level of
the effect on the results was evaluated, as well as the probability of finding values for
them, which resulted in a very small group of data elements for which the Strategic
Highway Research Program (SHRP) regional offices were asked to seek values. As an
example, the database includes bins for grade, penetration, and viscosity of the original
asphalt cement for flexible pavements. Because these data cannot be obtained by testing
the hardened asphalt taken from the in-service pavements, there was no source other
than the inventory data from the files of the State and Provincial Highway Agencies. It
was concluded that approximate values of the other two could be obtained if any one of
the three was known. Therefore, values were sought in the few cases where none of the
three values were furnished.

Appendix A provides a document developed in March 1991 to record the results from

the studies described briefly above for pavements with AC surfaces. The general
procedure applied is illustrated in Figure 2.1.
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In summary, the criteria for selecting the data elements to be included in the sensitivity
analyses were (1) the data element must have been rated by the experts as significant,
(2) the data must be available for a sufficient number of the test sections, and (3) the
data element should not be highly correlated to other data elements considered to be
more significant or to have data for more test sections.

Data Elements Selected for Sensitivity Analyses

The data elements that survived the preliminary selection process described above are
listed in Tables 2.1 and 2.2. For Table 2.1,an "X"in a box representing a specific data
element and specific distress indicates that the data element would be included in the
development of predictive equations for the specific distress, and would be further
considered in the sensitivity analyses if the statistical studies support the opinions of the
experts as to its importance. As discussed previously, data elements with average
significance rating scores greater than 2 were not considered further. However, those
that were considered very significant by at least one rater have been identified by a "#"
in Table 2.1 and may be considered further in future analyses when more data and time
are available.

Table 2.2 provides combined information for both JCP and CRCP. An "X"indicates
selection for a JCP distress, whereas an "QO"indicates selection for the CRCP studies. As
an example, portland cement concrete (PCC) surface thickness is considered significant
for transverse cracking, longitudinal cracking, pumping, roughness, and joint faulting for
JCP, but is only considered significant for localized failures, pumping, and roughness for
CRCP. As for flexible pavements, data elements that one rater considered to be very
significant have been identified in Table 2.2 by a "#" symbol for JCP and a "+ "symbol
for CRCP.

It can be readily seen that a number of data elements are available for some distress
types, while there are only a few for others.

There are no surprises in the data elements selected as significant. Thicknesses and
stiffnesses of layers control strains in the pavement structure, while other data elements
reflecting material properties (e.g.,asphalt viscosity, percentage of air voids, gradations
of aggregates and base materials, and strengths) affect layer stiffnesses and durability
under the impacts of loads and the environment. Plasticity indices of the subgrades
affect roughness through differential volume change by interacting with moisture content.
Drainage can affect moisture content in base, subbase, and subgrade, which in turn
affects layer stiffnesses and loss of fines. Performance of JCP depends heavily on joint
efficiency from deflection measurements, which indicate movements in joints under
loads.
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Table 2.1. Significant Data Elements for Predicting Distresses in
Pavements With Asphalt Concrete Surfaces

Significant
Data

Elements Friction
Loss

Surface Thickness

Base/Subbase Thickness
Surface Stiffness

Unbound Base/Subbase
Stiffness

El K I B
>
I e

Bound Base/Subbase
Stiffness

"
2
>

Subgrade Stiffness

Age of Pavement

Cumulative ESALs

R T T I B
>
>

Asphalt Viscosity

Asphalt Content

Percentage of Air Voids

LR LR L
R
L L L L

HMAC Aggregate
Gradation

>
>

Percentage of
Compaction of
Base/Subbase

Subgrade Soil # X #

Classification

In Situ Moisture Content # X
of Subgrade

Subsurface Drainage # X X
Yes/No

Geological Classification X
of Course Aggregate in
HMAC

% of Subgrade Soil # X
Passing #200 Sieve

25



Table 2.1(continued). Significant Data Elements for Predicting Distresses in
Pavements With Asphalt Concrete Surfaces

Significant Distress Types

Data . .
Elements Friction

Rutting | Roughness Loss

Plasticity Index of # # X

Subgrade Soil

Liquid Limit # # #

Percent of Subgrade Soil # X

Finer Than 0.02mm

Type of Environment # # X X X X
Average Maximum Daily # # X # #
Temperature by Month

Average Minimum Daily # # # # X
Temperature by Month

Thornthwaite Index # # X

Freeze Index # X # X

No. of Days Minimum X X # X
Temperature < 32'F

0o

No. of Days Maximum X # X X #

Temperature > 90'F

(32°C)

Number of Air Freeze- X X # X X
Thaw Cycles

Annual Precipitation X X X X X

Notes: X = data element was selected for analyses.
# = average score greater than 2, but considered very significant by at least one rater.
ESALS = equivalent single axle loads; HMAC = hot mix asphalt concrete.
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Table 2.2. Significant Data Elements for Predicting Distresses in
Pavements With Portland Cement Concrete Surfaces

—

Significant Distress Types
Data .
Elements Longitudinal
Cracking
Transverse Jcp)/ Pumping | Roughness | Friction Joint Joint/
Cracking Localized Loss Faulting | Crack
Failures Spalling
(CRCP) {
|w
PCC Surface X X X X X #
Thickness 0] 0] 0] +
Base Thickness # # X X X +
o (o) o)
PCC Surface X X X # # #
Stiffness 0] 0 + o
Base Stiffness X X X X X
0] 0 0]
Subgrade Stiffness X X X X X +
0] 0] 0]
Age of Pavement X X X X X X
0] + o (0] (0]
Cumulative 18 kip X X X X X X X
ESAL o o] o 0] o
Type of Coarse X X X X # X
Aggr. for PCC 0 + o o
Gradation of Coarse # # # # # X X
Aggr. for PCC (0] + + 0]
PCC Compressive X X X X
Strength @) (¢ (o)
AASHTO Soil Class 0] X X X #
Base/Subbase (0] 0] 0
% Compact. of # # X X X
Base/Subbase 0] 0]
Coarse Aggregate # o X # X #
Gradation of 0
Base/Subbase
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Table 2.2(continued). Significant Data Elements for Predicting Distresses in

Pavements With Portland Cement Concrete Surfaces

28

Significant Distress Types
Data o g
Elements Longltuflmal
Cracking
Transverse gce)/ Pumping | Roughness | Friction Joint Joint/
Cracking Localized Loss Faulting | Crack
Failures Spalling
i (CRCP)
|
Fine Aggr. # # X #
Gradation of + 0]
Base/Subbase
AASHTO Soil X X X X
Classification of (0] o 0]
Subgrade
Subgrade % Passing + X #
#200 Sieve o) +
Moisture Content of # # X #
Subgrade +
Joint Efficiency # X X X X
Thornthwaite Index # # X X # X #
0] 0] 0]
Annual Precipitation X (o) X # X X
O O
Precipitation Days 0] X # X
by Year o 18)
Shoulder Type X # # # # +
0] 18] 0]
Subsurface Drainage X # # # X X
Type 0] (6] 10) (0]
Avg. Max. Daily X X X X X X
Temperature by 0] 0] 0] o
Month




Table 2.2(continued). Significant Data Elements for Predicting Distresses in

#

Pavements With Portland Cement Concrete Surfaces

Notes: X
(o]
#
PCC
ESAL

AASHTO=

JCp
CRCP

Significant Distress Types
Data .
Elements Longitudinal
Cracking
Transverse Jcp)y/ Pumping | Roughness | Friction Joint Joint/
Cracking Localized Loss Faulting | Crack
Failures Spalling
(CRCP)

I |
Avg. Min. Daily X X X X X X
Temp. by Month o o 8] 0]
No. of Days Min. X X o o o
Temp. < 32'F (0°'C) (o}

No. of Days Max. 0] X X X
Temp. > 90'F

(32°C)

Air Freeze-Thaw X X X X X X

Cycles

data element was selected for JCP studies

data element was selected for CRCP studies

average score greater than 2, but considered very significant by at least one rater.
portland cement concrete

equivalent single axle load

American Association of State Highway and Transportation Officials

jointed concrete pavement

continuously reinforced concrete pavement
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Large sets of deflection measurements are available for each test section, but these were
not included in the sensitivity analyses. Although it is logical to include deflections in a
predictive equation to be used for overlay design or other purposes, it is not appropriate
to include them in models built for sensitivity analyses, because the responses to load are
already explained by other data elements that represent the pavement structure.
Including the deflection responses would account twice for the same effects.

From the significance ratings and studies described above the data elements (or
independent variables) were selected that were included in the sensitivity analyses for
each distress type. Separate analyses are planned for each of the distress types that
appear in Tables 2.1 and 2.2 and for each of the applicable GPS experiments. Data
limitations and logic led to combinations of data into studies that were not strictly along
the GPS experiment lines. These revised data sets (or studies) are described in the next
chapter.
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Restructuring of Sensitivity Analysis Plans

In the original experimental design for the General Pavement Studies (GPS) each
experiment was to be analyzed separately. However, subsequent changes in the experi-
mental designs (possibly more reasonably called sampling plans as the test sections were
acquired from in-service highways rather than being test sections rigidly controlled as to
construction details) and other database limitations led to logical groupings of the data
sets to obtain as many test sections with a distress type of interest as possible. This led
to combining data sets from GPS-1 and GPS-2 that really fit either experiment, and in
combining data sets from GPS-3 and GPS-4, where the presence or lack of reinforce-
ment would have a limited effect on the occurrence of distress. The restructuring of the
data sets is discussed separately below for pavements with asphalt concrete surfaces and
those with portland cement concrete (PCC) surfaces.

Pavements With Asphalt Concrete Surfaces

Studies were conducted on the combined GPS-1 and GPS-2 data in early 1991 with only
the inventory data available at that time. Twelve different categories of pavement
structures were identified (Column 1 of Table 3.1), and the number of test sections for
each were determined (Column 2 of Table 3.1). It can be seen that an ample database
appeared to be available for hot-mix asphalt concrete (HMAC) on granular base, and
that reasonable numbers were available for full-depth HMAC without stabilized
subgrade and for HMAC on a cement aggregate mixture base. In general, there were
not enough test sections of the other types for meaningful individual analysis. Therefore,
a study was conducted to identify potential analysis combinations, which appear in Table
3.2,

Table 3.2 indicates pavements with bases that are not subject to vertical shrinkage cracks
and those with bases that are subject to vertical shrinkage cracks. This differentiation
was made because of its anticipated importance to the modeling of transverse cracking.
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Table 3.1.  Categories of Pavement Structures in GPS-1/GPS-2 Data Pool and Number of Test Sections

for Which Data Are Available

—
1) Totzgl2 )Test Totg )Test Test Sections With Data for
Category of Pavement Structure Sections Sections
Based on Based on ) &) ©
Inventory | Available Transverse
Data Data Rutting Roughness Cracking J
1. HMAC on Granular Base 218 202 152 108 85
2, HMAC on Asphalt-Treated Base (ATB) and Granular Base 1 2 2 2 2
3. Full-Depth HMAC With Unstabilized Subgrade 52 50 46 33 22
4. Full-Depth HMAC With Lime-Stabilized Subgrade 7 14 14 12 6
5. Full-Depth HMAC With Cement-Stabilized Subgrade 3 1 1 1 0
6. HMAC Over ATB With Unstabilized Subgrade 18 27 17 21 8
7. HMAC Over ATB With Lime-Stabilized Subgrade 3 3 3 2 0
8. HMAC Over ATB With Cement-Stabilized Subgrade 1 0 0 0 0
9. HMAC with Soil Cement Base 20 16 1 5 8
10. HMAC with Lean Concrete Base 4 6 5 5 4
11. HMAC with Cement Aggregate Mixture Base 40 38 31 26 23
12, HMAC with Pozzolanic Aggregate Mixture Base 2 1 1 0 0
TOTALS 379 360 283 215 158




€€

Table 3.2. Potential Analysis Combinations, GPS-1/GPS-2 Data Pool

m

Category Combinations Test Sections Includes
1 218 All HMAC on Granular Base
1,2,3, &6 299 All Pavements with Bases Not Subject to Vertical Shrinkage
Cracks
4,517,389, 10,11, & 12 80 All Pavements with Bases Subject to Vertical Shrinkage Cracks
3,4 &S5 62 All Full-Depth HMAC
3 52 All Full-Depth HMAC with Unstabilized Subgrade
4&5 10 All Full-Depth HMAC with Lime or Cement-Stabilized Subgrade
9 20 All HMAC with Soil Cement Base
9,10, 11, & 12 66 All HMAC with Soil Cement, Lean Concrete, Cement Aggregate

Mixture, or Pozzolanic Aggregate Base

NOTE: The selection of a combination will depend on type of distress and type of structure, as well as reflect
experience from other analyses.

HMAC = hot mix asphalt concrete



Study of the data that appeared to be available (Column 2, Table 3.1) and the potential
analysis combinations (Table 3.2) led to the proposed steps in the analyses for the
distresses indicated in Tables 3.3 and 3.4. The general objective was to start with large
data sets and learn as much as possible about suitable equation forms and variable
clusters. This experience would then be brought to bear as other combinations were
studied and comparisons carried out.

All test sections were assumed to be included in the analyses; however, when only a few
test sections were available for a structure type, these test sections would only be used
for trials of equations that had been developed from larger databases to see if they might
be adequate for somewhat different pavement structures as well. As discussed
previously, these plans were developed from inventory data and prior to the availability
of data from actual monitoring and material testing. Although friction loss and
raveling/weathering were not studied, Table 3.5 has been included because of its
potential use to future analysts.

The research team studied the data to see what test sections had experienced the
distresses of interest and had the data required for use in the analyses. Table 3.1 also
indicates results from these later studies as follows: (1) the numbers of test sections by
pavement structure category that generally had sufficient data available for use in
analyses (Column 3) and (2) the number of these test sections that had experienced each
of the three types of distresses to be studied (Columns 4, 5, and 6). The actual numbers
of test sections that could be used in analyses for a particular distress were generally
much smaller than originally expected. It became apparent that data limitations would
considerably reduce the opportunities for analysis, and some test sections were moved to
other categories when materials data from sampling and testing became available. As
discussed previously, the only distress types for which the data would support the planned
analyses were rutting, roughness, and transverse cracking. There were only eighteen test
sections for which fatigue cracking data were available. Future analyses may possibly
include those test sections that have not as yet experienced the distresses of interest.
These techniques are identified for future consideration in SHRP-P-680, Early Analyses

f LTPP General Pavemen ies D Learne Recommendations for
Future Analyses of LTPP Data.

Pavements With Portland Cement Concrete Surfaces

The categories of PCC pavements that were available for the analyses were the jointed
plain concrete pavements (JPCP) of GPS-3, the jointed reinforced concrete pavements
(JRCP) of GPS-4, and the continuously reinforced concrete pavements (CRCP) of GPS-
5. As for the HMAC pavements, there was an investigation to determine whether it
would be possible to combine the data available into more logical data sets that would
be amenable to the development of the required predictive models.

Unlike HMAC pavements, however, most types of distress that occur on PCC pavements
are directly related to the surface type (JCPC, JRCP, or CRCP). In fact, the
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mechanisms of distress for PCC pavements almost always relate to the surface type. For
example, the distress mechanisms for CRCP are generally different from those for
jointed concrete pavements (JCP), and different models are often required for JPCP and
JRCP to adequately predict the same type of distress.

Consequently, it was not feasible to combine data sets, other than to combine JPCP and
JRCP for faulting and roughness. Even then, because of the strong effects of dowels on
the occurrence of joint-related distresses, it was necessary to separate the data sets into
one for test sections with dowels and one for those without dowels.

Table 3.3.  Proposed Steps in Separate Analyses for Alligator Cracking, Rutting,
and Roughness in Pavements With Asphalt Concrete Surfaces

1. Develop regression equations by using the Statistical Analysis System (SASe)* PROC REG
procedure and the data for HMAC over granular base (218 test sections).

2. If the data elements found to be significant are available for the 11 HMAC/ATB/granular base
sections, use their data to see if their performance varies appreciably from that of sections with
HMAC on granular base. (Do equations from Step 1 provide reasonable predictions for the 11
HMAC/ATB /granular base sections?)

Note: If the equations from Step 1 are adequate for the 11 HMAC/ATB/granular base
sections, the resultant predictive equations may be recommended for such pavements
that include ATB.

3. Apply experience from Step 1 on equation forms and clusters in the development of regression
equations with data for the 52 full-depth HMAC sections without stabilized subgrade. If Step 2
indicates that pavements that include an ATB layer do not perform significantly different from
sections whose bituminous layers are all HMAC, then include the 18 HMAC over ATB without
stabilized subgrade for a total of 70.

4. If the 18 HMAC over ATB sections are not included in Step 3, use the equations from Step 3
and the data from the 18 HMAC over ATB sections to see if their performance varies apprecia-
bly from that of sections with full-depth HMAC.

5. Apply experience from previous steps on equation forms and clusters in the development of
regression equations with data for the 60 test sections with HMAC over soil cement base (20) or
cement-aggregate mixture base (40).

6. Use the equations from Step 5 and data for the 4 sections with lean concrete base and the 2
sections with pozzolanic-aggregate mixture base to determine whether the equations developed
in Step 5 provide reasonable predictions for these types of nonbituminous base.

7. Review the results from the previous steps to see if better equations could be developed by
revising clusters or equation forms. If significant improvements appear possible, pursue the
improved equations.

8. Conduct sensitivity analyses on the predictive equations developed.

9. Develop graphs and/or other means of presenting the results of the sensitivity analyses.
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Table 3.4.  Proposed Steps in Sensitivity Analyses for Transverse Cracking in
Pavements With Asphalt Concrete Surfaces

1 Develop regression equations using SAS®®> PROC REG and the data for all HMAC sections

without nonbituminous bound base or stabilized subgrade. These will include 218 HMAC over
granular base, 11 HMAC over ATB over granular base, 52 full-depth HMAC without stabilized
subgrade, and 18 full-depth HMAC over ATB without stabilized subgrade.

2. From the experience from Step 1 concerning equation forms and clusters, develop regression
equations for all full-depth HMAC sections with stabilized subgrade (10), HMAC over ATB
with stabilized subgrade (4), and HMAC with nonbituminous bound base (66). These includes

the following:

a. 10 test sections with full-depth HMAC (or HMAC/ATB) over lime-stabilized
subgrade.

b. 4 test sections with full-depth HMAC (or HMAC/ATB) over lime- or cement-
stabilized subgrade.

c. 20 test sections with HMAC over soil-cement base.

d. 4 HMAC test sections over lean concrete base.

e. 40 HMAC test sections with cement-aggregate mixture base.

f. 2 HMAC test sections with pozzolanic-aggregate mixture base.

3. Compare the two resulting equations from Steps 1 and 2 by applying the equation from Step 1

to the data used in Step 2, and vice versa. Study residuals in each case to learn what can be
done about the effects of differences in base materials on the prediction of transverse cracking.

4. If there do not appear to be serious differences attributable to whether base materials were
subject to initial vertical fractures because of shrinkage cracking, regress again, with all data.
Study the residuals from each of the equations developed and decide which is to be used for the
sensitivity analyses.

5. Conduct sensitivity analyses on the predictive equations developed.

6. Develop graphs and/or other means of presenting the results of the sensitivity analyses.
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Table 3.5.  Proposed Steps in Separate Analyses for Friction Loss and Ravel-
ing/Weathering in Pavements With Asphalt Concrete Surfaces

It appears reasonable to assume that the effects from characteristics of layers below the surface layer will
be minor, especially in view of the limited data available that are considered significant to the occurrence
of these distresses. Consequently, data from all 379 test sections will be used in the analyses when these
data are available. Friction measurements and initial estimates will not be available for all test sections.

It is obvious that the presence of a seal coat, friction course, and such surface treatments will affect the
occurrences of these distresses, so identification of the type of surface treatment (if any) and its
characteristics (when available) will also be considered in the analysis. However, no testing of thin
non-HMAC layers is conducted in the SHRP laboratories, other than measurements of thickness and
designation as a seal coat, porous friction course, or surface treatment. The other possibilities for data
are from the inventory data or maintenance data. The inventory data only include a code that identifies
what type of seal it is (chip, slurry, fog, sand, or chip with modified binder) and the layer thickness.
There are virtually no maintenance data currently in the database, but future maintenance activities will
be recorded in great detail for future analyses.

The only three available data elements considered to be significant for predicting friction loss are (1) age
of pavement, (2) cumulative ESALs, and (3) geological classification of course aggregate. As the latter
data element will only be available for HMAC surfaces, there is really no hope for developing equations
to predict friction loss for pavements with thin layers of seal coat, porous friction course, or other surface
treatments. Consequently, test sections with such surface layers will be omitted from the analyses.
Similarly, materials information will also not be available for raveling/weathering of such thin surface
layers, so these test sections will be omitted from studies of this distress as well.

The proposed steps follow:
1 Develop regression equations using SAS® PROC REG® and data for all 379 test
sections, except those with a thin surface layer other than HMAC and those for which
distress data are not available.

2, Conduct sensitivity analyses on the predictive equations developed.

3. De&elop graphs and/or other means of presenting the results of the sensitivity analyses.
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Theoretical Variable Clusters and Constraints Imposed by
Late and Missing Data

The research staff had hoped to use theoretical clusters of variables to impose current
knowledge into the predictive models and to decrease the number of variables to be
regressed. The intent was to apply partial differentiation to segregate the relative
sensitivities for the individual explanatory variables. In support of this intention, Dr.
Robert L. Lytton, consultant to the project, applied mechanistic theory to develop such
clusters of variables for use in the studies of pavements with asphalt concrete surfaces.
This technical memorandum appears as Appendix B.

Similarly, Drs. Michael I. Darter and Emmanuel Owusu-Antwi developed clusters of
variables for use in the studies of pavements with portland cement concrete surfaces.
This technical memorandum appears as Appendix C.

Because the use of these theoretical clusters of variables depends on knowing the elastic
modulus of the various layers, it was not possible to use these as intended in the
regressions. Resilient modulus testing in the laboratories to gain the elastic moduli of
the layers did not reach the production testing stage until mid-1992, because of problems
in resolving issues in testing protocols and procedures and conducting the round robin
tests between laboratories to ensure uniformity. Results from laboratory testing were
still not available at the time writing began on this report. Similarly, the capabilities for
conducting backcalculations on deflection data were delayed while software was devel-
oped to interface with the Regional Information Management Systems, and this software
was not available until the analyses were in an advanced stage. As a result, the research
staff could use the technical developments only as guidelines in structuring interactive
terms within the regression equations.

The technical memoranda discussed above are included in this report; they will have
direct applicability for future analyses when the necessary data are available.
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General Procedures Followed in Developing Predictive
Equations for the Sensitivity Analyses

To conduct successful sensitivity analyses of the type considered here, it is necessary to
develop equations that are both statistically linear and contain a minimum of collinearity
between the independent variables to predict the distresses of interest. Predictive
equations linear in the coefficients are required for sensitivity analyses for the following
reasons:

e The magnitudes of the effects from varying the individual independent
variables would not be directly comparable, otherwise.

° Nonlinear regression techniques are deficient in the diagnostics needed to
identify collinearity and influential observations. Because collinearity must
be minimized if the relative sensitivities are to be meaningful, use of
nonlinear regressions could seriously limit confidence in the results.

U The research staff, including Dr. Olga J. Pendleton, the statistical
consultant, are not aware of any existing procedures for conducting
sensitivity analyses on nonlinear models; therefore, it would have been
necessary to develop a complex computer program which would have been
far out of the scope and funding for these studies.

Because it became obvious early in the contract period that there would be delays in
delivery of the required data, it was decided to develop a practice data base that Dr.
Pendleton could use to demonstrate the appropriate statistical procedures. A practice
database was developed for the General Pavement Studies (GPS)-1 experiment by the
research staff, who used a combination of data from a variety of sources, some of which
were necessarily estimated on the basis of engineering judgment, and by using other
available data. These data and sources are indicated below:
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° Inventory data that describe the pavement structure, its materials, and
some construction information.

° Distress data from early visual surveys during initial acceptance visits to the
test sections.

. Equivalent singl axle loads (ESALs) per year from early State Highway
Agencies (SHAs) estimates during candidate test section recruitment.

° Environmental data from climatic isobar maps.

° Stiffness data for asphalt concrete (AC) and base, estimated through
consideration of materials types, classification data from state records, and
other inventory data.

° Subgrade stiffness calculated from Sensor 6 deflections.

° AC layers combined and base and subbase combined to restrict data to
three-layer structures.

This practice database was used to study the nature of the data and develop the
procedures to be used. Because the Statistical Analysis Systems (SAS®) software® was
selected for conducting the studies, the procedures developed were based on that
software and identification of subroutines all refer to the SAS® software.

A tutorial was conducted for the research staff from both Brent Rauhut Engineering Inc.
(BRE) and ERES Consultants, Inc. (ERES) at Texas A&M University. The technical
manager for the Strategic Highway Research Program (SHRP), Dr. Robert Raab, also
attended. Amy Simpson, BRE’s staff engineer, who was later trained, conducted the
sensitivity analyses. A detailed technical memorandum was written to explain these
procedures in detail and gives examples. This technical memorandum appears in
Appendix D. While this chapter will provide a brief discussion of these procedures, the
technical memorandum provides additional detail.

General Procedures

A flow chart for the general procedures to be applied appears in Figure 5.1. The
selections of independent variables to be included in the studies are described in Chapter
2, and the development of theoretical clusters of variables was discussed briefly in
Chapter 4. The selections of transformations of the variable (e.g.,in logarithmic form
rather than arithmetic) and interactions were primarily carried out as part of the
multiple regressions themselves, which were part of the multivariate analyses indicated in
Figure 5.1.
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Identify and Create New Variables
(Cluster Variables, Transformations, etc.)

UNIVARIATE ANALYSES

BIVARIATE ANALYSES

MULTIVARIATE ANALYSES

Figure 5.1. Flow Chart for Data Studies and Development of Equations to Predict
Significant Distresses

The univariate analyses examine the data to determine potential distributional problems
and anomalies. (Results from similar studies appear in SHRP-P-684, Early Analyses of
LTPP General Pavement Studies Data, Data Processing and Evaluation for each GPS
experiment.) The purposes were to examine marginal distributions, identify gaps in the
data, identify any unusual observations, and identify functional forms. The procedures
included studies of continuous data descriptive statistics and frequency distributions by
using PROC UNIVARIATE, and partitioning continuous variables by categorical ones,
by using PROC UNIVARIATE with BY option.
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The bivariate analyses were used to study pairs of data elements, which may turn out to
be unusual although each variable by itself is not unusual. The specific expectations
from the bivariate analyses are to identify two-variable relationships, bivariate unusual
points, bivariate collinearities, data gaps, functional forms, and data clusters. The
procedures are as follows:

° Study two-variable scatter plots produced from PROC PLOT.
° Study correlations produced by PROC CORR.
. Study categorical data contingency tables obtained by PROC FREQ.

° Study partitioned correlations or plots by categorical data levels, produced
by PROC CORR and PROC PLOT with BY option.

The final step in the development of the predictive equations is collectively termed
"multivariate analyses." These analyses included studies to identify multivariate collinear-
ities and the development of the pavement distress models. The procedures planned
included the following:

. Discriminant analysis to identify distressed and nondistressed pavements,
using PROC REG with transformed variables.

° Development of regression analysis models for distressed pavements, using
PROC REG.
° Analysis of variance, comparing the means of independent variables for

distressed and nondistressed pavements, using PROC GLM.

The procedures described above were carried out as indicated, but it became apparent
during the analyses that revisions and additions would be required. These are discussed
in the next section of this chapter.

Principal component analysis was used to detect collinearity and influential observations.
This method uses plots of eigenvector pairs to identify collinearities that may be masked
by outliers.*

In addition to the use of the univariate and principal component analysis procedures to
detect outliers and influential observations, a procedure was used that is very similar to
the principal component analysis. Once the model had been completely developed, the
observations were examined in n-dimensional space to determine which were the farthest
from the center of the data set. The center was found by determining the average of
each data element. The five observations found to be the farthest from the center of the
data set were deleted from each regression. It was not determined whether these five
observations were significant influential observations. In the future, contours can be
drawn around the data sets at specific significance levels. Any points lying outside the
95% contour should be considered significant influential observations.
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It should be noted that the measured distresses for the in-service pavements do not
include the period just after the lane was opened to traffic. Consequently, early
compaction from traffic is not directly represented. As a boundary condition, the log of
cumulative KESALs (1,000 ESALs) was included in each equation as a separate term to
enforce zero rutting with zero ESALs. Mathematically, the equations are undefined at
zero ESALs; however, for practical purposes it is assumed that zero to some power is
zero. The same boundary condition was enforced to ensure zero change in International
Roughness Index (IRI) with zero cumulative ESALs, and age was used to enforce zero
transverse cracking at the time of construction. Consequently, the predicted progression
of distresses very early in a pavement’s life is not reliable (and not especially important
either as will be seen later).

Problems Encountered and Modifications to Procedures

Once the procedures were developed, work began with the complete database. The first
distress type considered was rutting of hot mix asphalt concrete (HMAC) pavements over
granular base. As problems were encountered, this data set was used as a "test bed" for

identifying problems and working out solutions before continuing with data sets for other
distresses and pavement types.

As required for the sensitivity analyses, modeling was conducted using the least squares
linear regression technique which minimizes random error. This technique also assumes
that the dependent variable is normally distributed about the regression line and that the
independent variables are fixed and without error. It is believed that the distresses have
approximately log-normal distributions about the regression line; therefore, the
regressions were conducted to predict the common logarithm of the distress.

The first step was to analyze the individual independent variables with the SAS® all
possible subset selection procedure. This procedure allows the user to offer a list of
independent variables, and the system will select which of these variables, singly and in
combination, best predict the dependent variable. This procedure was not expected to
give the final model; however, it was expected to aid in determining which variables were
the most influential to prediction of the dependent variable.

The second step was similar to the first, except that all possible two- and three-way
interactions were tried in the regressions. The interactive terms were selected through
consideration of the theoretical variable clusters discussed in Chapter 4, terms appearing
in prior distress equations, and engineering experience and judgment. When the
sensitivity analyses were conducted on the resulting model, it became apparent that each
independent variable needed to be in either log form or nonlog form, but not in both.
This model did not meet that criterion. For example, asphalt thickness was present both
as asphalt thickness and log asphalt thickness. Although both an independent variable
and its logarithm might be found to contribute to the explanation of the variance in the
dependent variable, only one or the other was considered for subsequent models.
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The third step was to raise variables within the model to some power. The power was
determined through an iterative process that found the models with the best root mean
square error (RMSE), coefficient of determination (R?), and P value on the individual
variable. The P value is used to determine whether the independent variable is
significant to the prediction of the dependent variable. However, the sensitivity analysis
on the resulting equation did not produce logical or believable results. These results led
to serious discussions and experimentation, which then led to the conclusion that three-
way interactions (containing three independent variables in a single term) and the
powers of the variables were confounding the sensitivity analyses. It was decided to limit
the models to main effects (single independent variables) and two-way interactions.
While the fit of the resultant models was slightly (though not significantly) worse, the
sensitivity results appeared much more logical.

As an additional trial, it was decided to try producing a predictive model for rutting by
using only test sections with two rutting measurements taken at different points in time.
Two measurements (other than the zero at construction) were available for 121 sections,
and those sections with only one measurement were deleted for this trial only. The
analyses were rerun, but the model statistics were no better than before. The two points
were no more (and generally less) than 2 years apart; it is likely that more time series
data will be required to improve the fit.

To determine the stability of the model, regression analyses were completed on five
different sets of 80% of the complete data set (a different 20% deleted each time), by
using the same equation form. The coefficients for each independent wvariable for each
run were compared and found to be quite variable. If the equation had been stable, the
coefficients would have been very similar.

Correlation among independent variables can lead to estimates of model coefficients that
are illogical in sign. For example, when the variables "average monthly maximum
temperature” and "annual number of days greater than 90°'F (32°C)" were used in the
equation for rutting, they had opposite signs. Although these nonintuitive model
estimates do not generally mar the model’s predictive ability, they are somewhat
disconcerting to the practitioner and are difficult to explain. At this point it was decided
to try the technique of ridge regression,’ a statistical method that adjusts for collinearity
(correlated independent variables) and produces more stable and logical model
estimates. One may visualize the procedure as adding m dummy equations of condition
to the n real equations of condition, where m is the number of independent variables in
the regression, and n is the number of observations. (An equation of condition is an
equation in the form of the desired regression between the dependent variable for a
given observation and the independent variables for that same observation.) The
parameter estimates in many cases change dramatically when the ridge regression
procedure is used. At some point during the iterative model developments the change in
the parameter estimates becomes much smaller, and this equation is the final one that is
used.
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The terms in the equations previously checked by using five different sets of 80% of the
data set had been primarily interactions between the independent variables. Thus, some
of the main effects (individual independent variables) were added to the equation form,
and the regressions were repeated, with a different 80% of the data set for each model.
The comparisons of the five sets of coefficients proved to be much more consistent,
which indicated that the revised equation form fit the data better.

The model was found to contain certain highly correlated variables such as age and
KESALs and subgrade moisture and annual precipitation. These pairs were identified
and the variables in each pair with relatively low sensitivities were replaced by the
variables with which they were correlated. The sensitivity analysis results for this
equation were much more reasonable. The equation was then changed so that the other
half of the pair was used in the interactions. The model created by using the variables
with higher sensitivities produced much more logical results.

All the models produced to this point and their resulting statistics were established from
a data set that involved the entire data set. In an effort to improve model statistics, the
data were separated according to the four environmental zones used in the sampling
templates, and each data set was regressed using the equation form that contained the
better half of the pair. The results from some of the sensitivity analyses were not always
reasonable. To try to remedy the problems encountered in the sensitivity analyses,
models were (as described above) found using main effects alone. The R% decreased
and RMSE:s increased somewhat; however, the results from the sensitivity analyses were
more reasonable. Next, interactions that had previously been found to work well
(including some of the three-way interactions) were added to the equations with just
main effects. Values of R and RMSE were improved, but the results from the
sensitivity analyses were not all reasonable. The above interactions were dropped from
the equations, and only two-way interactions were added. The values of R® and RMSE
were not as good as those that included the three-way interactions but were better than
the equations with just main effects. The results from the sensitivity analyses were more
logical but still problematic, particularly for the wet-no freeze and dry-no freeze zones.

For the wet-no freeze and dry-no freeze zones, log(KESALs) was replaced with age in
the equations. Problems still existed for the sensitivity analyses for these zones. Age
was then replaced by log(KESALs) in these two equations, and new two-way interactions
were introduced. Sensitivity analysis results for the dry-freeze zone were somewhat
improved.

Coordination with the statistical consultant indicated that sufficient collinearity had not
been expelled from the equation, so eigenanalysis (see Appendix D) was used to identify
additional variables to delete from the models. The ridge regressions mentioned
previously were then used to develop new models. In each of the models, KESALs and
structural thicknesses were forced into the equations. That is, the variables were placed
in the models even if they did not improve the statistics.
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It was concluded, at this point, that the five models— one for the entire data set and one
each for each of the four environmental zones— were as good as could reasonably be
expected within the constraints imposed by the requirements for sensitivity analyses and
by limitations in the data sets available (primarily lack of adequate time sequence data
for these early analyses). The techniques finally used for the rutting model were then
adopted for other distresses and pavement types.

Procedures Adopted for Developing Distress Models for
Sensitivity Analyses

The procedure, arrived at by the experimentation described above for developing distress
models to be used for sensitivity analyses, is described in the next chapter. The
modeling and sensitivity analyses are best combined as one process, so judgment can be
applied to iterate toward the optimum models for use. The analyst must carefully reach
a balance between (1) expectations and knowledge from past research and (2)
maintaining opportunity for the data to communicate new knowledge.

This procedure does not offer the best models for predicting pavement distress. It is
likely that nonlinear regression techniques would result in better models. However,
these models would not have been practical for the sensitivity analyses, because
sensitivity analyses for nonlinear models are much more complex, and there are no
computer programs (such as SAS® for linear models) to use in conducting them.
However, this does not preclude common transformations, such as the use of logarithms
or powers of the independent variables, as long as the equations are linear in the
coefficients.

Alternative Procedures Used for Developing Models for
PCC Pavement Distresses

The procedures used by ERES research staff for developing the portland cement
concrete (PCC) pavement models were essentially those discussed above, except that the
staff decided to take advantage of some graphical capabilities in the S-Plus statistical
software while the studies were in progress®. This allowed them to easily view scatter
plots and three-dimensional plots of the data, which indicated relationships between all
the dependent and independent variables being considered. From observations of the
two- and three-dimensional plots, the explanatory variables that were not linearly related
to the dependent variables were noted. Such variables were linearized by determining
the best exponents for these variables, which was done by use of the Alternating
Conditional Expectations (ACE) algorithm introduced by Breiman and Friedman, along
with the Box-Cox transformation. Detailed descriptions of these techniques are provided
in "Design of Joints in Concrete Pavements” by R.D. Bradbury’.
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These procedures were used to develop the final models used in the sensitivity analyses.
In several cases, this general procedure had to be modified to meet the specific demands
for the model to be developed.
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General Procedures for Establishing Sensitivities of
Predicted Distresses to Variations in Significant
Independent Variables

The original intent was to standardize all independent variables in a distress model so
that the coefficients on each term would represent the impact of that term. This step
would be done by subtracting each observation from the mean for that variable (to
calculate deviation from the mean) and dividing by the standard deviation. The model
would then be regressed again with these standardized observations and using the same
equation form. The sensitivity of the distress to an independent variable would then be
determined by varying each variable in the standardized equation individually from one
standard deviation above its mean to one standard deviation below its mean. The
resulting change in predicted distress would then represent the relative sensitivity of the
distress type to that independent variable.

Depending on the types of independent variables, short-cut mathematical transformations
can at times be used to facilitate computations. In the days of hand calculations,
independent variables that were evenly spaced could be recoded with an orthogonal
coding scheme to make such hand calculations easier. This is not an issue in today’s
world of computers and is mentioned here only to relate to previous sensitivity analyses
that were able to take advantage of this simplification. In reality, x-variables are seldom,
if ever equally spaced, especially with observational, noncontrolled experimental
situations. All that is necessary is to subtract the mean and divide by the standard
deviation of each x-variable (standardization). In analyses where a single x-variable is
actually a cluster of more than one independent variable, and the sensitivity of the
individual components of the cluster is of interest, this standardization is slightly
modified. The cluster is standardized in the usual fashion. To determine the sensitivity
of a given component of the cluster, all other components in the cluster are set to their
mean and the component of interest is varied.
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General Procedures for Establishing Sensitivities of
Predicted Distresses for HMAC Pavements

All the previously discussed trials were run on the data set for rutting in hot mix asphalt
concrete (HMAC) pavements on granular base. These procedures led to an algorithm
that has been consistently used to determine all the models. The algorithm appears in
Figure 6.1 as a flow chart and is also described below:

1. Starting with log traffic, each single variable of the set of variables considered and
its transformations are tried in the model. If a variable is found to improve the
coefficient of determination (R?), adjusted R?, and root mean square error
(RMSE) without adding collinearity, it is allowed to stay. After all the individual
independent variables have been tried once, any that are not in the model at that
point are tried again. For consistency’s sake the first set of variables tried after
log traffic are those dealing with the HMAC layers. Next, the variables
identifying the base layers are tried, followed by the subgrade variables, and
finally the environmental variables.

2. Once an equation with the main effects (variables identified as significant) has
been established, other equations are tried that include two-way interactions of
the main effects. If a trial interaction improves the R, the adjusted R?, and the
RMSE, but does not add collinearity, it is allowed to stay in the model. This
process is repeated until all possible two-way interactions have been tried.
Although techniques previously described were used to identify outliers, the
analyst should be alert for other outliers that may be revealed as the analysis
continues. It should be noted that the main effects in some cases were replaced
by interactions.

3. The ridge regression technique is then applied to stabilize the model, using the
main effects and interactions that survived Step 2.

4, The sensitivity analysis on the final model is conducted as discussed above.

It should be understood that the calculated sensitivities that are assigned for the
individual independent variables very much depend on the predictive equation itself.
The values will vary, depending on the form of the equation and the set of independent
variables included. As will be seen in the next chapter, models for different
environmental zones can vary considerably in form and in variables that are significant to
the prediction of a distress. Therefore, the relative sensitivities of the independent
variables should be considered indicative of their relative significance, rather than as
absolute measures of the relative importance of the variables in terms of magnitude. As
obvious examples, it can be concluded that traffic, HMAC thickness, and precipitation
merit consideration in design and pavement management, but one may not be exactly
twice as important or a half as important than another.
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While future predictive equations may be more precise and consequently offer higher
confidence in the relative importance of individual variables, it is likely that truly precise
evaluations may never be reached. However, the present equations should suffice if the
significant variables here continue to be found significant in future analyses and are
found to have more or less the same relative importance in relation to each other.

General Procedures for Establishing Sensitivities of
Predicted Distresses for PCC Pavements

The only differences between the procedures used for the sensitivity analyses for HMAC
and portland cement concrete (PCC) pavements were in the modeling process, as
discussed in Chapter 5. The use by the ERES staff of the S-Plus" plotting capabilities
and their linearization of the independent variables replaced the use of ridge regression
and some of the iterations in the HMAC procedures discussed above. Figure 6.2 shows
the procedures that were used to develop distress/International Roughness Index (IRI)
models for PCC pavements.

Once modeling had been completed, the ERES research staff used the same procedures
to determine the sensitivities of the dependent variable to variations in the independent
variables as were used for the HMAC data. These procedures are also shown in Figure
6.2,
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Figure 6.2. Flow Chart for Developing Distress Models for Rigid Pavements
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Predictive Equations for Distress Types and Resulis of
Sensitivity Analyses for Asphalt Concrete Pavements

Previous chapters have dealt with the methodology applied to select significant data
elements that impact the occurrence of pavement distresses, to sort the data into data
sets for analysis, to develop predictive distress models, and to conduct sensitivity
analyses. This chapter presents the results in terms of predictive equations and relative
sensitivity analysis results for hot mix asphalt concrete (HMAC) pavements. The results
for the various combinations of distress and pavement types are discussed separately
below.

Data Review and Evaluation

Detailed statistical evaluations of the data were conducted for each specific combination
of distress and pavement types as described in Chapter 5. Products from these
evaluations that were used in the development of predictive equations included the
following:

° Two-variable scatter plots

Variable frequency distributions for the entire database and by
enviromental zones

Correlation matrices for the separate data sets individually
Complete eigenanalysis for each data set individually

Residual plots for trial equations

Plots of predicted versus actual distresses

Traffic data were also reviewed for individual test sections as to their reasonability while
they were being processed into each data set.
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These groducts are far too voluminous to include in this report. The Statistical Analysis
System’ (SAS®) correlation analyses alone filled a stack of paper 3/4-in. (19 mm) thick.
Most of these data appear in SHRP-P-684, Early An s of LTPP General Pavemen
Studies Data, Data Processing and Evaluation, except they are recorded by General
Pavement Studies (GPS) experiment rather than by the databases used in these analyses.
Some examples are included in this section, and plots of predicted versus actual
distresses and residuals versus predicted distresses appear in subsequent sections for the
equations selected.

Figures 7.1, 7.2, and 7.3 show scatter plots for rut depth, change in roughness, and
transverse cracking versus cumulative KESALs (1,0000 equivalent single axle loads),
cumulative KESALs, and age, respectively, for the HMAC over granular base data set.
While the scatter when plotting a single variable versus another single variable is always
broad, these plots do provide some insight as to what type of function would fit the data.

Figure 7.4 shows the frequency distribution of cumulative KESALs by environmental
zone for the HMAC over granular base data set for change in roughness. Because these
distributions appear to be more log normal than normal, this fact influenced the research
staff to conduct the regressions on log(KESALs). The general equation forms selected
also provided for zero distress when KESALs were zero.

Figures 7.5, 7.6, and 7.7 show distributions of rut depth, change in International
Roughness Index (IRI), and transverse crack spacing, respectively, for the HMAC over
granular base data sets. It should be remembered that the test sections represented by
each data set are not the same for the different distresses. The tendency toward log
normal distributions illustrated in these figures contributed to the research staff’s
decision to develop the regression equations for the logarithm of distress as the
dependent variable in each case.

Table 7.1 shows the correlation matrix (as it is printed out with the SAS® software) for
change in roughness (DIRI) of HMAC over granular base. The top line for a variable
identified in the left-hand column reports the correlation between that variable and a
specific variable of those identified along the top row. The bottom line reports the
probability that the variables identified in a column and row are not correlated. If the
probability indicated in the bottom line is less than 0.05, significant correlation may be
assumed. As can be seen, the first two pages in the table are required to include all
variables identified in the rows, and the third and fourth pages add additional columns.
This was necessary to include all twenty-two variables in the analysis. Items found to
have significant correlation have been shaded.

Although some of the variables in the correlation matrix can be easily identified, others
cannot, and so they are identified below:

DIRI = change in roughness measured as IRI
BOTHIRI = measured IRI

INITIRI3 = estimated initial IRI

A _THICK = thickness of HMAC layers combined
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ASPHALT asphalt content

AIR VOID = air voids in HMAC layer in place

NO FOUR = percentage of HMAC aggregate passing a #4 sieve

VISC_140 = viscosity of asphalt at 140°'F (60°C)

B_THICK = thickness of granular base and subbase layers
combined

COMPACTI = base compaction

PI = Plasticity Index of subgrade soil

#200 = percentage of subgrade soil passing a #200 sieve

YEARS = age of pavement

KESALs = cumulative equivalent single axle loads in thousands

TOTPREC _ = total precipitation

AVG90 = average days per year when air temperature exceeds
90°F (32°C)

AVGFRZTH = average number of air freeze-thaw cycles per year

AVGMAX = average of maximum daily temperatures for each
month

AVGMIN = average of minimum daily temperatures for each
month

TEMPDIF = average daily temperature range

MAXTEMP = average maximum temperature for June, July, and
August

MINTEMP = average minimum temperature for December, January,
and February

It can be seen from Table 7.1 that DIRI is apparently only directly correlated with
asphalt viscosity. The correlation matrix was used primarily to identify independent
variables that were correlated with other independent variables. If two variables were
highly correlated, only one would be included in a trial equation. In some cases where
the correlations were more limited, the two variables were sometimes combined in an
interaction and were included in a trial equation.

It can also be seen from Table 7.1 that most of the climatic variables are highly
correlated, so one variable could often explain the effects of several others.

The eigenanalysis is described in Appendix D.

Rutting of HMAC Pavements on Granular Base

The predictive equations for the entire data set and those for the four environmental
zones appear in Table 7.2. As discussed previously, the actual regressions were
conducted to predict log,,(rut depth), which led to the equation form indicated at the top
of the table, which applies for all five predictive equations. The statistics for the
equations also appear below each equation box, as well as the number (n) of
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Figure 7.6. Distributions of Change in IRI by Environmental Zones for HMAC
Over Granular Base Data Set
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DIRI
DIRI
BOTHIRI
INITIRI3
A THICK  -0.12691
0.1906
ASPHALT  -0.00707
09421
AIR VOID 006997
04718
NO_FOUR  0.02287
0.8143
VISC_140
B THICK 010633
02734
COMPACTI  0.09125
0.3476
PI 0.01271
0.8961
#200 0.02079
0.8309
YEARS 0.12576
0.1947

BOTHIRI

0.05846

0.10084

0.2991

0.07918
0.4153

0.05307
0.5854

0.07275
0.4543

0.06294
05176

0.12485
0.1979

Table 7.1. Correlation Matrix for Change in Roughness,
HMAC Over Granular Base Data Set

INITIRI3

0.17099
0.0768

-0.06773
0.4861

0.08589
0.3768

0.07598
0.4345

-0.04852
0.6180

-0.07267
0.4548

0.12621
0.1931

0.17307
0.0733

0.00770
0.9369

Pearson Correlation Coefficients / Prob > |R| under Ho: Rho=0 / N = 108

A THICK

-0.12691
0.1906

-0.15473
0.1098

-0.06773
0.4861

1.00000

-0.14417
0.1366

0.03075
0.7520

-0.42021

-0.02556
0.7929

-0.15076
0.1194

-0.00011
0.9991

0.11704
0.2277

0.07936
04143

ASPHALT

-0.00707
0.9421

0.09117
0.3481

0.20437
<

-0.14417
0.1366

-0.00673
0.9449

0.29286

-0.02425
0.8032

0.04925
0.6128

-0.16311
0.0917

0.06108
0.5300

-0.02333
0.8106

0.03888
0.6895

AIR VOID NO_FOUR VISC_140

0.06997
04718

0.10859
0.2633

0.08589
0.3768

0.03075
0.7520

-0.00673
0.9449

0.02287
0.8143

0.05846
0.5479

0.07598
0.4345

-0.42021

0.29286

0.00615
0.9496

-0.02016
0.8360

-0.01747
0.8576

0.01653
0.8652

0.05208
0.5924

0.00447
0.9634

0.10084
0.2991

-0.02556
0.7929

-0.02425
0.8032

0.01327
0.8915

-0.02016
0.8360

00000

0.00455
0.9627

-0.08200
0.3989

0.02187
0.8222

-0.00992
0.9188

-0.20628

-0.01747
0.8576

0.00455
0.9627

0.02149
0.8253

-0.08744
0.3682

-0.08300
0.3931

-0.13731
0.1565

COMPACTI FI
0.09125 0.01271
0.3476 0.8961
0.05307 0.07275
0.5854 0.4543
-0.07267 0.12621
0.4548 0.1931
-0.24537 -0.00011
0.9991
-0.16311 0.06108
0.0917 0.5300
-0.07205 0.25431
0.4587 o0y
0.01653 0.05208
0.8652 0.5924
-0.08200 0.02187
0.3989 0.8222
0.02149 '<0.08744
0.8253 0.3682
1.00000 -0.14149
0.1441

-0.14149
0.1441

0.06529
0.5020

-0.10496
0.2797

#200

-0.02079
0.8309

0.06294
0.5176

0.17307
0.0733

0.11704
0.2277

-0.02333
0.8106

0.13204
0.1731

0.00447
0.9634

-0.00992
0.9188

-0.08300
0.3931

0.06529
0.5020

-0.07589
0.4350
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DIRI
KESALS -0.11516
0.2353
TOTPREC_  0.05260
0.5887
AVG -0.11766
0.2252
AVGFRZTH -0.05688
0.5588
AVGMAX  -0.00782
0.9360
AVGMIN 0.05247
0.5897
TEMPDIF  -0.17565
0.0690
MAXTEMP -0.12943
0.1819
MINTEMP  0.08081
0.4058

BOTHIRI

0.12573
0.1948

-0.07162
0.4614

-0.01663
0.8644

-0.03449
0.7231

-0.00145
0.9882

0.02414
0.8041

-0.07471
04422

-0.07028
0.4698

0.03011
0.7570

Table 7.1(continued). Correlation Matrix for Change in Roughness,
HMAC Over Granular Base Data Set

INITIRI3

-0.03084
0.7514

025511

0.04235
0.6634

0.01270
0.8962

-0.05508
05713

0.19716

0.11349
0.2422

-0.09958
0.3052

Pearson Correlation Coefficients / Prob > |R| under Ho: Rho=0 / N = 108

A_THICK

ASPHALT

-0.01649
0.8655

0.04656
0.6323

0.01766
0.8561

-0.02815
0.7724

0.09456
0.3303

AIR_VOID

020252

0.10620
0.2740

0.01791
0.8541

-0.16665
0.0847

0.13023
0.1791

0.19245

-0.16738
0.0834

0.03610
0.7107

0.16270
0.0925

NO_FOUR

-0.17381
0.0720

-0.10392

0.02320

0.8116

0.03753
0.6998

-0.03865
0.6913

0.00696
0.9430

0.05903
0.5440

VISC 140 B THICK COMPAC PI
-0.01869 -0.09752 -0.13282  0.02818
0.8478 0.3153 0.1706 0.7722
0.12514 0.06981 0.11496
0.1969 04728 0.2361
-0.04020
0.6795

037441

0.36393

0.47569

0.10890 -0.31561 0.00870  0.25207
0.2619

0.54865 -0.09562

0.3249

#200

-0.07018
04704

0.10154
0.2957

0.10770
0.2672

0.11073
0.2539

0.03253
0.7382

0.23913
0.0127

0.15661
0.1055

0.03162
0.7453
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YEARS

DIRI 0.12576
0.1947

BOTHIRI 0.12485
0.1979

INITIRI3 0.00770
0.9369

A THICK 0.07936
04143

ASPHALT  0.03888
0.6895

AIR VOID  0.02990
0.7587

NO _FOUR -0.22338

VISC_140 -0.20628

0.0322
B_THICK -0.13731
0.1565
COMPACTI -0.10496
0.2797
PI 0.04603
0.6362
#200 -0.07589
0.4350

YEARS 1.00000

KESALS

-0.11516
0.2353

-0.12573
0.1948

-0.03084
0.7514

0.23864

-0.01649
0.8655

-0.20252

-0.17381
0.0720

-0.01869
0.8478

-0.09752
0.3153

-0.13282
0.1706

0.02818
0.7722

-0.07018
0.4704

0.18467
0.0557

Table 7.1(continued). Correlation Matrix for Change in Roughness,

HMAC Over Granular Base Data Set

Pearson Correlation Coefficients / Prob > |R| under Ho: Rho=0 / N = 108

. TOTPREC_

-0.12147
0.2105

AVG9

-0.11766
0.2252

-0.01663
0.8644

0.05639
0.5622

0.01791
0.8541

0.06111
0.5298

-0.04020
0.6795

0.10154
0.2957

-0.03530
0.7168

AVGFRZTH AVGMAX

-0.05688
0.5588

-0.03449
0.7231

-0.00782
0.9360

-0.00145
0.9882

0.01270
0.8962

0.11073
0.2539

-0.04280
0.6601

AVGMIN

0.05247
0.5897

0.02414
0.8041

-0.05508
05713

0.03753
0.6998

047569

-0.11259
0.2460

-0.01558
0.8728

0.03253
0.7382

-0.12622
0.1930

TEMPDIF

-0.17565
0.0690

-0.07471
0.4422

015716

0.04303
0.6584

0.01766
0.8561

-0.16738
0.0834

-0.12943
0.1819

-0.07028
0.4698

0.11349
0.2422

0.03610
0.7107

0.00696
0.9430

0.10890
0.2619

0.15661
0.1055

0.00942
0.9229

0.08081
0.4058

0.03011
0.7570

0.03162
0.7453

-0.11580
0.2327
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Table 7.1(continued). Correlation Matrix for Change in Roughness,
HMAC Over Granular Base Data Set

Pearson Correlation Coefficients / Prob > |R| under Ho: Rho=0 / N = 108

0.7168

YEARS  KESALS  TOTPREC_ AVG90 AVGFRZTH AVGMAX  AVGMIN  TEMPDIF MINTEMP
KESALS 018467 1.00000 -0.17853 0.13264 0.10222 037627 0.08073
0.0557 7] 01712 02925 5001 0.4062
TOTPREC_ 012147 017853 -0.05586 0.11456
02105 0.0645 02378
AVG9 003530 03474 055817

AVGFRZTH 0.18787 -0.13264
0.0515 0.1712

AVGMAX  -0.04280

0.6601
AVGMIN  -0.12622 0.10222
0.1930 0.2925
TEMPDIF  0.23922 0.37627 -0.08781
0.0127 000 0.3661
MAXTEMP 0.00942 0.34116
0.9229 000

MINTEMP  -0.11580 0.08073
0.2327 0.4062




Table 7.2. Coefficients for Regression Equations Developed to Predict Rutting in HMAC
Pavements Over Granular Base

Rut Depth = NPB 10°€
(In.)

Where

N = Number of Cumulative KESALSs
B=b,+bx +b,x,+...+b, x,

C=c¢ctexytox+...+c, X,

a. Entire Data Set

Explanatory Variable or Interaction
)

Constant Term

Log (HMAC Aggregate < #4 Sieve)
Log (Air Voids in HMAC)

Log (Base Thickness)

Subgrade < #200 Sieve

Freeze Index

(Log (HMAC Thickness) *
Log (Base Thickness))

n =152 R =045

b. Wet-No Freeze Data Set

———————

% by Weight
% by Volume
Inches
% by Weight
Degree-Days

Inches
Inches

Adjusted R* = 0.41

RMSE in Log,,(Rut Depth) = 0.18

Coefficients for Terms In
b, G

0.151 -0.00475 |
0 -0.596 F
-0.0726 0
0 0.190
0 0.00582
8.49X 10° 0
0 -0.161

Explanatory Variable or Interaction
x)

Coefficients for Terms In

Constant Term

Log (HMAC Aggregate < #4 Sieve)
Log (Air Voids in HMAC)

Subgrade < #200 Sieve

Annual Number of Days > 90'F

Log (Annual Freeze-Thaw Cycles +1)

(Log (HMAC Thickness) *
Log (Base Thickness)) |

Units b, .
- 0.0739 0.00998

% by Weight 0 -0.373
% by Volume 0 -0.215
% by Weight -0.00056 0

Number 0 -0.00022

Number 0 0.0337

Inches

Inches 0 -0.135

n =41 R =072

Adjusted R* = 0.66

RMSE in Log;,(Rut Depth) = 0.18
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Table 72(continued). Coefficients for Regression Equations Developed to Predict
Rutting in HMAC Pavements Over Granular Base

Rut Depth = NB 10°€ Where N = Number of Cumulative KESALSs
(In.) B=b,+bx,+b,x,+ ...+ b, x,
C=¢q+xit+ex+..+¢,x,

c. Wet-Freeze Data Set

T ——
Explanatory Variable or Interaction Coefficients for Terms In J]
x) i |
!
Constant Term - 0.183 0.0289
Log (Air Voids in HMAC) % by Volume 0 -0.189
Log (HMAC Thickness) Inches 0 0.181
Log (HMAC Aggregate < #4 Sieve) % by Weight 0 -0.592
Asphalt Viscosity at 140'F Poise 0 1.80X 10°
Log (Base Thickness) Inches 0 -0.0436
(Annual Precipitation * Inches
Freeze Index) Degree-Days 0 3.23X 10°
| —
n =41 R =0.73 Adjusted R = 0.68 RMSE in Log,, (Rut Depth) = 0.19

d. Dry-No Freeze Data Set

Explanatory Variable or Interaction Coefficients for Terms In "
x) Units I|
b; S
Constant Term - 0.156 -0.00163
Log (HMAC Aggregate < #4 Sieve) % by Weight 0 -0.628
Log (HMAC Thickness) Inches 0 0.0918
Log (Air Voids in HMAC) % by Volume -0.0988 0 Iﬂ
Base Thickness Inches 0 0.00257
Subgrade < #200 Sieve % by Weight 0 0.00153
(Annual Precipitation * Inches
Annual Number of Days > 90'F) Numbers 0 6.588X 10°
n =36 . R =075 Adjusted R = 0.70 RMSE in Log,, (Rut Depth) = 0.16
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Table 7.2(continued). Coefficients for Regression Equations Developed to Predict
Rutting in HMAC Pavements Over Granular Base

Rut Depth = NB 10° Where N = Number of Cumulative KESALs
(In.) B=b,+bx,+b,x;+..+b,x,
C=c+ex+6X+ ..+ X,

Coefficients for Terms n "

e. Dry-Freeze Data Set

Explanatory Variable or Interaction
Constant Term ' - 0.0394 0.00451
Log (HMAC Thickness) Inches 0 0.0600
Mod. AASHTO Base Compaction % of Max. Density 0 -0.00849
(Base Thickness * Inches
Log (HMAC Thickness)) Inches 0 0.00875
(Log (Subgrade < #200 Sieve) * % by Weight
Log (Freeze Index +1)) Degree-Days 0 0.0107
(Log (Subgrade < #200 Sieve) * % by Weight
Log (Air Voids in HMAC)) % by Volume 0 -0.00567
n=3 R? = 0.85 Adjusted R? = 0.81 RMSE in Log,, (Rut Depth) = 0.11

observations (test sections) upon which the equation was based. It can be seen that only
152 of the 218 available test sections survived the data evaluations.

It should be noted that the quoted root mean square error (RMSE) is in log,, of rut
depth. The meaning of a standard error of regression, or RMSE on a logarithmic
variable, in terms of the effect on the variable itself, can be explained as follows, by
using arbitrary yet convenient values for an example. Assume that the RMSE of fit for a
regression on log y is 0.3. This means that 68% of the values of log y for a specific set of
x; lie between w - 0.3 and w + 0.3, where w is the value of log y predicted by the
regression. Assume w is 1.0 (i.e., y = 10), then 68% of the values of log y lie between
0.7 and 1.3. This means that 68% of the values of y lie between 5 and 20, or stated
another way, they lie within a factor of approximately 2 (antilog 0.30 = 1.995) of 10.

Thus, we see that an RMSE of ¢ in log y may be expressed as precision of prediction to
within a factor of (antilog €) in the value of y itself.

Some typical values of € and the correspondingvfactor (antilog €) are

€ Antilog €
0.05 1.122
0.10 1.259
0.15 1412
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0.20 1.585
0.25 1.778
0.30 1.995

The values of adjusted R? look quite reasonable for the data available as of May 1993,
but the RMSE:s indicate that the equations are of limited reliability. As an example, the
equation for predicting rutting in the wet-freeze environmental zone appears in Table
7.2.c. For simplicity, assume that all values of independent variables are at their means
so we can use the plots in Figure 7.10. A rut depth of approximately 0.16 in. (4 mm) is
predicted for 100 KESALs and about 0.21 in. (5 mm) for 500 KESALs. The RMSE for
this case in log(rut depth) is 0.19 and the antilog is 1.55. If this is applied as a factor
value, then

Predicted (Predicted Rut (Predicted Rut

Rut Depth Depth) + 1.55 Depth ) x 1.55
KESALs (In.) (In) (In)
100 0.16 0.10 0.25
500 0.21 0.14 0.33

At a 68% confidence level in the log of rut depth, the upper and lower confidence levels
for rut depth after 100 KESALs have been applied are 0.25 and 0.10 in. (6 and 3 mm),
respectively. Those for 500 KESALs are 0.33 and 0.14 in. (8 and 4 mm), respectively.
Thus, the precisions for these equations are poor, even though the values of R? look
quite good.

Figure 7.8 shows plots of predicted versus actual rut depths for the four environmental
zones, each with its own predictive equation. Figure 7.9 shows plots of the residuals
versus predicted rut depths.

Figure 7.10 shows the predicted rut depths versus KESALs for each environmental zone
when the independent variables appearing in the five separate predictive equations are
held at their means for their respective data sets. From these graphs the following may
be determined:

e A substantial portion of rutting may be expected to occur very early in the life
of a pavement.

e After the rapid densification early in a pavement’s life, the rate of rutting
decreases rapidly, approaching a much reduced rate for the rest of the
pavement’s life. While the rate appears to be constant in the plots, it does
continue to decrease slightly but might be expected to increase again when
cracking starts and moisture increases occur in the base/subbase and subgrade
(However, pavements are generally repaired well before rapid acceleration of
rutting begins.)
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Figure 7.8. Plots of Predicted vs. Actual Rut Depth for HMAC Over
Granular Base Data Sets
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Granular Base Data Sets
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Figure 7.10. Predicted Rutting vs. KESALs With All Other Independent
Variables at Their Mean Values, HMAC Pavements on Granular Base

e On a cursory basis, it might be decided that typical pavements in the dry
zones rut more than those in wet zones; however, this finding could be a
consequence of the particular test sections selected. It should be noted that
the mean values for rutting in all the zones are relatively low, which probably
indicates a bias resulting from the better highways being offered by State
Highway Agencies (SHAs).

e The graph for the wet-no freeze zone appears to indicate virtually no increase
in rutting after a very few KESALs. It is probable that this result is from a
bias caused by the presence of some older highways, with very high traffic but
very little rutting, in that particular data set.

It is critical to remember that plots of predicted distress in terms of one independent
variable are useful but can be very misleading. Figures 7.1, 7.2, and 7.3 and the scatter
plots in SHRP-P-684, Early An of LTPP General Pavemen
Processing and Evaluation, illustrate the actual variances when the independent variables
are not held at their mean values.

There are several causes of rutting, including densification of the HMAC mixtures,
horizontal displacement of the HMAC mixture, densification and/or horizontal
displacement of unbound materials, combinations of these, and probably others. The
mechanisms for rutting are not considered directly in the predictive equations, but may

81



be partially explained implicitly through such independent variables as air voids, layer
thicknesses, asphalt viscosity, climatic variables, and the interactions between variables.

The results from the sensitivity analyses conducted on the equations appearing in Table
7.2 appear in Figures 7.11 and 7.12. The vertical lines through the boxes are located at
the predicted mean values of rut depth for each data set. For Figure 7.11, this mean is
between 0.25 and 0.26 in. (6 and 7 mm). The boxes begin and end at the rut depths
calculated when that independent variable is varied from one standard deviation above
to one standard deviation below the mean value, with all other independent variables at
their mean values. The arrows within the boxes indicate whether an increase in that
variable increases or decreases predicted rut depth. As an example, increasing KESALs
in Figure 7.11 increases rut depth and increasing HMAC thickness decreases rut depth.

The dashed boxes with arrows pointing to the left that appear to the left of the mean rut
depths for KESALs in Figures 7.11, 7.12b, and 7.12¢, simply indicate that the standard
deviations for KESALs in these cases exceeded the mean, and that negative values of
KESALs have no physical meaning. This phenomenon was caused by a number of test
sections that had very high levels of KESALs.

The relative sensitivities for specific independent variables are indicated by the
horizontal widths of the boxes in the figures, and the relative sensitivity levels decrease
from top to bottom. For example, the occurrence of rut depth for the entire data set
represented in Figure 7.11 is most sensitive to KESALs and least sensitive to the
percentage of the subgrade soils passing a #200 sieve. For each of these two variables,
increases in the independent variables result in increases in predicted rut depth.

By comparing the sensitivity plots (Figure 7.12) for the four environmental zones, it can
be seen that predicted rut depths for three zones are most sensitive to KESALs, while
predicted rut depths for the dry-freeze zone are more sensitive to four other variables
than to KESALs. In the latter case, rut depth appears to be most sensitive to base
compaction. Although we can theorize about the relative sensitivities and their causes,
the causes are not always obvious. One might speculate that, in general for the test
sections in the dry-freeze data set, compaction was not quite adequate and that much of
the densification was in the base. This theory is supported by the fact that base
thickness is the next variable in level of sensitivity.

Also, air voids in the HMAC appear to be significant for all four zones, and higher air
voids (within the ranges in the data sets) tend to decrease rutting. At first glance, this
scenario appears questionable but has been found to be the case by other researchers.
The hypothesis for this phenomenon is that increased air flow through the HMAC results
in earlier aging and stiffness, which in turn decreases rutting.

The independent variables found to be significant to rut depth predictions are not always
the same between zones, and the relative significance of specific variables also varies
between zones. As an example, base thickness is not very important in three zones and
increases in it tend to decrease rutting, while it is quite significant in the dry-freeze zone
and tends to increase rutting as it increases. This finding seems to be consistent with the
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Figure 7.11. Results From Sensitivity Analyses for Rutting in
HMAC Pavements on Granular Base

hypothesis offered above that base compaction is generally not adequate and that
substantial densification occurs in the base.

It can also be seen that the percentage of the HMAC aggregate passing a #4 sieve
appears to be moderately significant for three of the four zones, and that rutting tends to
decrease in mixes with more material passing a #4 sieve (within the ranges existing in
the data sets).

Different environmental variables were found to be significant for the different
environmental zones. This is not surprising, but it should be remembered that many (if
not most) of the environmental variables are correlated. One would expect correlations
among freeze index, annual air freeze-thaw cycles, and number of days per year
experiencing temperatures greater than 90°F (32°C). Consequently, one data element
may represent one or more other data elements in the predictive equations.

As the graphs in Figure 7.10 represent predicted rut depths when all variables are at
their mean values in the separate data sets, they do not represent directly the poor
pavements that will experience considerable rutting or the good pavements that will
experience very little. To provide some insight, fourteen cases were examined for the
wet-no freeze environmental zone, as indicated in Table 7.3, by using three levels for
each variable. Because it would have required 6561 case studies to consider the entire
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Table 7.3. Calculated Rut Depths for Various Combinations of Independent Variable Magnitudes, Wet-No Freeze

Equation

Independent Case Numbers —“
Variable

13 '
KESALs 100 5000 | 20,000 { 5000 | 5000 | 5000 5000 | 5000 | 5000 | 5000 | 5000 [ 20,000 | 5000 | 5000
HMAC Thickness | 6 6 6 2 2 10 6 6 6 6 6 10 6 10
HMAC Air Voids | § 5 5 3 5 5 3 8 5 5 5 5 3 5
Subgrade <#200 [ 60 60 60 20 60 20 20 20 100 100 100 100 60 20
HMAC Aggr. < 50 50 50 30 50 50 50 50 50 30 50 70 30 50
#4
Base Thickness 12 12 12 4 12 12 12 12 12 12 20 20 12 4
Days > 90'F 60 60 60 0 60 60 60 60 60 60 60 60 60 60
Ann. Freeze- 30 30 30 60 30 30 30 30 30 30 30 0 30 30
Thaw Cycles
Calculated Rut 0.17 0.20 021 0.42 0.23 0.22 0.27 0.22 0.16 0.20 0.16 0.11 027 | 026
Depth




factorial at three levels, the 14 were selected to include the worst case (Case 4) and to
illustrate the effects of variations in the most significant independent variables.

Cases 1, 2, and 3 show the effects of KESALs. Note that the majority of the rutting is
expected early in the life of a pavement, with the rest occurring at a rate decreasing with
cumulative ESALs. The other cases represent various combinations of variable
magnitudes. Case 12 represents a pavement with a heavy structure, heavy traffic, and a
mix with 70% of its aggregate passing a #4 sieve and compacted to 5% air voids. The
predicted rut depth was 0.11 in. (3 mm), whereas the prediction for Case 3 (same traffic
but less structure) was 0.21 in. (5 mm).

Because the predicted rut depths for full-depth HMAC pavements and those with
portland cement treated-base would be expected to vary similarly with variations in their
independent variables, similar examples have subsequently not been provided for those
types of pavements.

The discussion of the meaning of RMSE in terms of a dependent variable when RMSE
is expressed in the log of that dependent variable applies to all the other results reported
in this chapter, so this discussion will not be repeated.

Rutting of Full-Depth HMAC Pavements

Only forty-two of the fifty-two full-depth HMAC pavements with unstabilized subgrade
survived the data evaluations. Because the number of test sections was quite small,
models were developed for the entire data set, a data set of the two dry zones, a data set
of the two wet zones, a data set of the two no freeze zones, and a data set of the two
freeze zones. The predictive equation for the entire data set appears in Table 7.4, the
prediction equations for the wet and dry data sets in Table 7.5, and the equations for the
no freeze and freeze data sets in Table 7.6. As with the HMAC over granular base, the
multiple regressions were conducted to predict log(rut depth), which led to the same
equation form appearing a